
–
0
2
–
2
0
1
4
-0
5
-0
6
–
m
a
in

–

Real-Time Systems

Lecture 02: Timed Behaviour

2014-05-06

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
p
re
li
m

–

2/30

Last Lecture:

• Motivation, Overview

This Lecture:

• Educational Objectives:

• Get acquainted with one (simple but powerful)
formal model of timed behaviour.

• See how first order predicate-logic can be used to state requirements.

• Content:

• Time-dependent State Variables

• Requirements and System Properities in first order predicate logic

• Classes of Timed Properties

Recall: Prerequisites

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
re
ca
ll
–

3/30

plant sensors

actuators

controller

gas valve

flame sensor

ignition

To

design a (gas burner) controller that meets its requirements

we need

• a formal model of behaviour
in (quantitative) time,

• a language to concisely, conveniently
specify requirements on behaviour,

• a language to specify behaviour
of controllers,

• a notion of “meet” and
a methodology to verify meeting.

Real-Time Behaviour, More Formally...

–
0
2
–
2
0
1
4
-0
5
-0
6
–
m
a
in

–

4/30

State Variables (or Observables)

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
m
o
d
el

–

5/30

• We assume that the real-time systems we consider is characterised by a
finite set of state variables (or observables)

obs1, . . . , obsn

each equipped with a domain D(obs i), 1 ≤ i ≤ n.

• Example: gas burner
gas valve

flame sensor

ignition

• G : {0, 1} — 0 iff valve closed

• F : {0, 1} — 0 iff no flame

• I : {0, 1} — 0 iff ignition off

• H : {0, 1} — 0 iff no heating request

System Evolution over Time

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
m
o
d
el

–

6/30

• One possible evolution (or behaviour) of the considered system over time
is represented as a function

π : Time → D(obs1)× · · · × D(obsn).

• If (and only if) observable obs i has value di ∈ D(obs i) at time t ∈ Time,
1 ≤ i ≤ n, we set

π(t) = (d1, . . . , dn).

• For convenience, we use

obs i : Time → D(obs i)

to denote the projection of π onto the i-th component.

What’s the time?

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
m
o
d
el

–

7/30

• There are two main choices for the time domain Time:

• discrete time: Time = N0, the set of natural numbers.

• continuous
or dense time: Time = R

+

0
, the set of non-negative real numbers.

• Throughout the lecture we shall use the continuous time model and
consider discrete time as a special case.

Because

• plant models usually live in continuous time,

• we avoid too early introduction introduction of hardware considerations,

• Interesting view: continous-time is a well-suited abstraction from the
discrete-time realms induced by clock-cycles etc.

Example: Gas Burner

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
m
o
d
el

–

8/30

One possible evolution of considered system over
time is represented as function

π : Time → D(obs1)× · · · × D(obsn)

with
π(t) = (d1, . . . , dn)

if (and only if) observable obs i has value di ∈
D(obsi) at time t ∈ Time.

For convenience: use obsi : Time → D(obsi).

gas valve

flame sensor

ignition

π :

Time

1
H

0

1
G

0

1
I
0

1
F

0

Example: Gas Burner

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
m
o
d
el

–

9/30

gas valve

flame sensor

ignition

Time

1
H

0

1
G

0

1
I
0

1
F

0

Time

1
H

0

1
G

0

1
I
0

1
F

0

Levels of Detail

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
m
o
d
el

–

10/30

Note:
Depending on the choice of observables we can describe a real-time system
at various levels of detail.

For instance,

• if the gas valve has different positions, use

G : Time → {0, 1, 2, 3}

(D(G) is never continuous in the lecture, otherwise it’s a hybrid system!)

• if the thermostat and the controller are connected via a bus and exchange
messages, use

B : Time → Msg∗

to model the receive buffer as a finite sequence of messages from Msg .

• etc.

System Properties: A First Approach

–
0
2
–
2
0
1
4
-0
5
-0
6
–
m
a
in

–

11/30

Predicate Logic

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
p
ro
p
–

12/30

ϕ ::= obs(t) = d | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 =⇒ ϕ2 | ϕ1 ⇐⇒ ϕ2

| ∀ t ∈ Time • ϕ | ∀ t ∈ [t1 + c1, t2 + c2] • ϕ

obs an observable, d ∈ D(obs), t ∈ Var logical variable, c1, c2 ∈ R
+

0

constants.

We assume the standard semantics interpreted over system evolutions

obs i : Time → D(obs), 1 ≤ i ≤ n.

That is, given a particular system evolution π and a formula ϕ, we can tell
whether π satisfies ϕ under a given valuation β, denoted by π, β |= ϕ.

Recall: Predicate Logic, Standard Semantics

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
p
ro
p
–

13/30

Evolution of system over time: π : Time → D(obs1)× · · · × D(obsn).
Iff obs i has value di ∈ D(obsi) at t ∈ Time, set: π(t) = (d1, . . . , dn).
For convenience: use obs i : Time → D(obsi).

ϕ ::= obs(t) = d | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 =⇒ ϕ2 | ϕ1 ⇐⇒ ϕ2

| ∀ t ∈ Time • ϕ | ∀ t ∈ [t1 + c1, t2 + c2] • ϕ

• Let β : Var → Time be a valuation of the logical variables.

• π, β |= obs i(t) = d iff obs i(β(t)) = d

• π, β |= ¬ϕ iff not π, β |= ϕ

• π, β |= ϕ1 ∨ ϕ2 iff ...

• ...

• π, β |= ∀ t ∈ Time • ϕ iff for all t0 ∈ Time, π, β[t 7→ t0] |= ϕ

• π, β |= ∀ t ∈ [t1 + c1, t2 + c2] • ϕ iff
for all t0 ∈ [β(t1) + c1, β(t2) + c2], π, β[t 7→ t0] |= ϕ

Predicate Logic

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
p
ro
p
–

14/30

Note: we can view a closed predicate logic formula ϕ as a concise
description of

{π : Time → D(obs1)× · · · × D(obsn) | π, ∅ |= ϕ},

the set of all system evolutions satisfying ϕ.

For example,
∀ t ∈ Time • ¬(I(t) ∧ ¬G(t))

describes all evolutions where there is no ignition with closed gas valve.

Requirements and System Properties

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
p
ro
p
–

15/30

• So we can use first-order predicate logic to formally specify requirements.

A requirement ‘Req’ is a set of system behaviours with the pragmatics
that, whatever the behaviours of the final implementation are, they shall
lie within this set.

For instance,

Req :⇐⇒ ∀ t ∈ Time • ¬(I(t) ∧ ¬G(t))

says:“an implementation is fine as long as it doesn’t ignite without gas in
any of its evolutions”.

• We can also use first-order predicate logic to formally describe properties of
the implementation or design decisions.

For instance,

Des :⇐⇒ ∀ t ∈ Time • I(t) =⇒ ∀ t′ ∈ [t− 1, t+ 1] •G(t′))

says that our controller opens the gas valve at least 1 time unit before
ignition and keeps it open.

Example: Gas Burner

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
p
ro
p
–

16/30

Req :⇐⇒ ∀ t ∈ Time • ¬(I(t) ∧ ¬G(t))

Des :⇐⇒ ∀ t ∈ Time•
I(t) =⇒ ∀ t′ ∈ [t− 1, t+ 1] •G(t′))

π ∈ Req?
π ∈ Des?

gas valve

flame sensor

ignition

π :

Time

1
H

0

1
G

0

1
I
0

1
F

0

Correctness

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
p
ro
p
–

17/30

• Let ‘Req’ be a requirement,

• ‘Des’ be a design, and

• ‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of
(

Time → ×n
i=1D(obs i)

)

,
described in any form.
We say

• ‘Des’ is a correct design (wrt. ‘Req’) if and only if

Des ⊆ Req.

• ‘Impl’ is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if

Impl ⊆ Des (or Impl ⊆ Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving that ‘Des =⇒ Req’ is valid.

Classes of Timed Properties

–
0
2
–
2
0
1
4
-0
5
-0
6
–
m
a
in

–

18/30

Safety Properties

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
cl
a
ss
es

–

19/30

• A safety property states that

something bad must never happen [Lamport].

• Example: train inside level crossing with gates open.

• More general, assume observable C : Time → {0, 1} where C(t) = 1
represents a critical system state at time t.

Then
∀ t ∈ Time • ¬C(t)

is a safety property.

• In general, a safety property is characterised as a property that can be
falsified in bounded time.

• But safety is not everything...

Liveness Properties

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
cl
a
ss
es

–

20/30

• The simplest form of a liveness property states that

something good eventually does happen.

• Example: gates open for road traffic.

• More general, assume observable G : Time → {0, 1} where G(t) = 1
represents a good system state at time t.

Then
∃ t ∈ Time •G(t)

is a liveness property.

• Note: not falsified in finite time.

• With real-time, liveness is too weak...

Bounded Response Properties

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
cl
a
ss
es

–

21/30

• A bounded response property states that

the desired reaction on an input occurs in time interval [b, e].

• Example: from request to secure level crossing to gates closed.

• More general, re-consider good thing G : Time → {0, 1} and request
R : Time → {0, 1}.

Then

∀ t1 ∈ Time • (R(t1) =⇒ ∃ t2 ∈ [t1 + 10, t1 + 15] •G(t2))

is a bounded liveness property.

• This property can again be falsified in finite time.

• With gas burners, this is still not everything...

Duration Properties

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
cl
a
ss
es

–

22/30

• A duration property states that

for observation interval [b, e] characterised by a condition A(b, e)
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, e).

• Example: leakage in gas burner.

• More general, re-consider critical thing C : Time → {0, 1}.

Then

∀ b, e ∈ Time •

(

A(b, e) =⇒

∫

e

b

C(t) dt ≤ u(b, e)

)

is a duration property.

• This property can again be falsified in finite time.

Duration Calculus

–
0
2
–
2
0
1
4
-0
5
-0
6
–
m
a
in

–

23/30

Duration Calculus: Preview

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cp
re
vi
ew

–

24/30

• Duration Calculus is an interval logic.

• Formulae are evaluated in an
(implicitly given) interval.

gas valve

flame sensor

ignition

• G,F, I,H : {0, 1}

• Define L : {0, 1} as G∧¬F .Strangest operators:

• everywhere — Example: ⌈G⌉

(Holds in a given interval [b, e] iff the gas valve is open almost everywhere.)

• chop — Example: (⌈¬I⌉ ; ⌈I⌉ ; ⌈¬I⌉) =⇒ ℓ ≥ 1

(Ignition phases last at least one time unit.)

• integral — Example: ℓ ≥ 60 =⇒ ∫ L ≤ ℓ

20

(At most 5% leakage time within intervals of at least 60 time units.)

Duration Calculus: Overview

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cp
re
vi
ew

–

25/30

We will introduce three (or five) syntactical “levels”:

(i) Symbols:

f, g, true, false,=, <,>,≤,≥, x, y, z, X, Y, Z, d

(ii) State Assertions:

P ::= 0 | 1 | X = d | ¬P1 | P1 ∧ P2

(iii) Terms:
θ ::= x | ℓ | ∫ P | f(θ1, . . . , θn)

(iv) Formulae:

F ::= p(θ1, . . . , θn) | ¬F1 | F1 ∧ F2 | ∀x • F1 | F1 ; F2

(v) Abbreviations:

⌈ ⌉, ⌈P ⌉, ⌈P ⌉t, ⌈P ⌉≤t, ♦F, �F

Symbols: Syntax

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cs
ym

b
–

26/30

• f, g: function symbols, each with arity n ∈ N0.

Called constant if n = 0.

Assume: constants 0, 1, · · · ∈ N0; binary ‘+’ and ‘·’.

• p, q: predicate symbols, also with arity.

Assume: constants true, false; binary =, <,>,≤,≥.

• x, y, z ∈ GVar: global variables.

• X,Y, Z ∈ Obs: state variables or observables, each of a data type D
(or D(X),D(Y),D(Z) to be precise).

Called boolean observable if data type is {0, 1}.

• d: elements taken from data types D of observables.

Symbols: Semantics

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cs
ym

b
–

27/30

• Semantical domains are

• the truth values B = {tt,ff},

• the real numbers R,

• time Time,
(mostly Time = R

+

0 (continuous), exception Time = N0 (discrete time))

• and data types D.

• The semantics of an n-ary function symbol f
is a (mathematical) function from R

n to R, denoted f̂ , i.e.

f̂ : Rn → R.

• The semantics of an n-ary predicate symbol p
is a function from R

n to B, denoted p̂, i.e.

p̂ : Rn → B.

Symbols: Examples

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cs
ym

b
–

28/30

• The semantics of the function and predicate symbols assumed above
is fixed throughout the lecture:

• ˆtrue = tt, ˆfalse = ff

• 0̂ ∈ R is the (real) number zero, etc.

• +̂ : R2 → R is the addition of real numbers, etc.

• =̂ : R2 → B is the equality relation on real numbers,

• <̂ : R2 → B is the less-than relation on real numbers, etc.

• “Since the semantics is the expected one, we shall often simply use the
symbols 0, 1,+, ·,=, < when we mean their semantics 0̂, 1̂, +̂, ·̂, =̂, <̂.”

Symbols: Semantics

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cs
ym

b
–

29/30

• The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V : GVar → R

assigning each global variable x ∈ GVar a real number V(x) ∈ R.

We use Val to denote the set of all valuations, i.e. Val = (GVar → R).

Global variables are though fixed over time in system evolutions.

Symbols: Semantics

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cs
ym

b
–

29/30

• The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V : GVar → R

assigning each global variable x ∈ GVar a real number V(x) ∈ R.

We use Val to denote the set of all valuations, i.e. Val = (GVar → R).

Global variables are though fixed over time in system evolutions.

• The semantics of a state variable is time-dependent.
It is given by an interpretation I, i.e. a mapping

I : Obs → (Time → D)

assigning each state variable X ∈ Obs a function

I(X) : Time → D(X)

such that I(X)(t) ∈ D(X) denotes the value that X has at time t ∈ Time.

Symbols: Representing State Variables

–
0
2
–
2
0
1
4
-0
5
-0
6
–
S
d
cs
ym

b
–

30/30

• For convenience, we shall abbreviate I(X) to XI .

• An interpretation (of a state variable) can be displayed in form of a
timing diagram.

For instance,

XI : D(X)

Time

d1

d2

with D(X) = {d1, d2}.

