— 02 — 2014-05-06 — main —

Real-Time Systems

Lecture 02: Timed Behaviour

2014-05-06

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 02 — 2014-05-06 — Sprelim —

Last Lecture:

e Motivation, Overview

This Lecture:

e Educational Objectives:

e Get acquainted with one (simple but powerful)
formal model of timed behaviour.

e See how first order predicate-logic can be used to state requirements.

e Content:
e Time-dependent State Variables
e Requirements and System Properities in first order predicate logic

e Classes of Timed Properties

Recall: Prerequisites

N\

sensors
e controller
K actuators

design a (gas burner) controller that meets its requirements

To

we need

v ol ol of bbanins v gunibadec i

°a ‘M*ymaf- b Cov\o\'se@ el cawm'w@ sr&%/ yt;ﬂv’m'/
s o bwgase & dessbe conrlebs belavin

v i wkon o Sput’ — wed a plod boveily nechy

— 02 — 2014-05-06 — Srecall —

Real-Time Behaviour, More Formally...

— 02 — 2014-05-06 — main

State Variables (or Observables)

o We assume that the real-time systems we consider is characterised by a
finite set of state variables (or observables)

obsy,...,o0bsy,

each equipped with a domain D(obs;), 1 <i < n.

Example: gas burner

gas valve
flame sensor

PR L ==

ignition i

G :{0,1} — 0 iff valve closed

F :{0,1} — 0 iff no flame

I:{0,1} — 0 iff ignition off

H : {0,1} — 0 iff no heating request

— 02 — 2014-05-06 — Smodel —

System Evolution over Time

o One possible evolution (or behaviour) of the considered system over time
is represented as a function

7 : Time — D(0bs1) X - -+ x D(obsy,).

o If (and only if) observable obs; has value d; € D(o0bs;) at time ¢t € Time,
1 << n, we set
ﬂ-(t) = (db SRR dn)
o For convenience, we use
obs; : Time — D(obs;)

to denote the projection of w onto the i-th component.

— 02 — 2014-05-06 — Smodel —

What’s the time?

— 02 — 2014-05-06 — Smodel —

e There are two main choices for the time domain Time:

e discrete time: Time = INg, the set of natural numbers.

e continuous

or dense time: Time = R, the set of non-negative real numbers.

e Throughout the lecture we shall use the continuous time model and

consider discrete time as a special case.

Because

e plant models usually live in continuous time,

e we avoid too early introduction introduction of hardware considerations,

o Interesting view: continous-time is a well-suited abstraction from the
discrete-time realms induced by clock-cycles etc.

Example: Gas Burner

— 02 — 2014-05-06 — Smodel —

One possible evolution of considered system over
time is represented as function

7 : Time — D(0bsy) X --- x D(obsy,)

with
7(t) = (dy,...,dy)

if (and only if) observable obs; has value d; €
D(obs;) at time t € Time.

For convenience: use obs; : Time — D(obs;).

3

gas valve
flame sensor

?D(H) ignition i

TA!):(4/ 4/ 0/ O)

T(@)=<0

T

Q

~

T
o = O = O = O
)
)

Time

Example: Gas Burner el] -

— 02 — 2014-05-06 — Smodel —

Y ,::,::
1Hl
0 ignition
1
G
0 ———— [
1 - =
1 : .
0 —_—
1
F
0

Time

id
1 — —
H 1
0p— 1
1 —
G :
0
1 o
IO i
1 H
F0 |
Time

Levels of Detail

— 02 — 2014-05-06 — Smodel —

Note:

Depending on the choice of observables we can describe a real-time system
at various levels of detail.

For instance,

o if the gas valve has different positions, use
G :Time — {0,1,2,3}

(D(G) is never continuous in the lecture, otherwise it's a hybrid system!)

e if the thermostat and the controller are connected via a bus and exchange
messages, use
B : Time — Msg*

to model the receive buffer as a finite sequence of messages from Msg.

e etc.

10/30

System Properties: A First Approach

— 02 — 2014-05-06 — main —

Predicate Logic

pu=obs(t) =d| o1V |1 Apa| o1 = @2 |01 <= @2
|Vt € Timeep |Vt € [t1+ci,ta+co]op

obs an observable, d € D(o0bs), t € Var logical variable, ¢1,cs € Rar
constants.

We assume the standard semantics interpreted over system evolutions
obs; : Time — D(obs),1 <i < n.

That is, given a particular system evolution 7 and a formula ¢, we can tell
whether 7 satisfies ¢ under a given valuation 3, denoted by , 8 |= ¢.

— 02 — 2014-05-06 — Sprop —

11/30

12/30

Recall: Predicate Logic, Standard Semantics

— 02 — 2014-05-06 — Sprop —

Evolution of system over time: 7 : Time — D(obsy) X --- x D(0bsy,).
Iff 0bs; has value d; € D(obs;) at t € Time, set: w(t) = (di,...,dy).
For convenience: use obs; : Time — D(obs;).

pu=obs(t)=d|-p|o1Ve|p1Apa| o1 = @2 |1 <= @2
|Vt € Timee o |Vt e[ty +c1,ty+co]op

e Let B : Var — Time be a valuation of the logical variables.

o 7,0 = obs;(t) = d iff

o m B if
o T, B E p1 Ve iff ...
[}

o M, EVte Timee piff

o T, B EVtE [t +c1,ta+ o] @ piff

Predicate Logic e xiaSls efgos guiAflod

— 02 — 2014-05-06 — Sprop —

Note: we can view a closed predicate logic formula ¢ as a concise
description of

{7 : Time = D(0bs1) X --- x D(obsy,) | 7,0 = ¢},
the set of all system evolutions satisfying ¢.

For example,
Vt e Timee —(I(t) A —=G(t))

describes all evolutions where there is no ignition with closed gas valve.

13/30

14/30

Requirements and System Properties

— 02 — 2014-05-06 — Sprop —

e So we can use first-order predicate logic to formally specify requirements.

A requirement ‘Req’ is a set of system behaviours with the pragmatics
that, whatever the behaviours of the final implementation are, they shall
lie within this set.

For instance,
Req <= Vit € Timee —=(I(t) AN ~G(t))
says: “an implementation is fine as long as it doesn't ignite without gas in

any of its evolutions”.

We can also use first-order predicate logic to formally describe properties of
the implementation or design decisions.

For instance,
Des (<= Vte TimeeI(t) = Vt' €[t—1,t+1]eG(t))

says that our controller opens the gas valve at least 1 time unit before
ignition and keeps it open. 15/30

Example: Gas Burner

— 02 — 2014-05-06 — Sprop —

OQ; '5 an albrry. ‘l“ (8{“"/4 gas valve

/ flame sensor g

Req <= Vt € Timee —(I(t) A G(t))

Des < Vt S Time. zgmmmi
I(t) = VYVt e[t—1,t+1] e G(t)) - 14.) =0 It <0

Req?
7 € Req o Gls) :7 ’6({;}:6

7 € Des?
Gt ok o €, ot

3

o« Tb/=1
0 G({)=1

- v 2el&-1%
1| ol ety

g I(<¢/=0
o f 2

=

O = O = O = O =

Q
-

~

S

Time

Ny
_‘("ﬁ
3
¢
Ne
~v

16/30

Correctness

o Let ‘Req’ be a requirement,
e ‘Des’ be a design, and

e ‘Impl" be an implementation.

Recall: each is a set of evolutions, i.e. a subset of (Time — x?_,D(0bs;)),
described in any form.

We say
e ‘Des’ is a (wrt. ‘Req’) if and only if
Des C Req.
o ‘Impl'is a (wrt. ‘Des’ (or ‘Req')) if and only if

Impl C Des (or Impl C Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,

— 02 — 2014-05-06 — Sprop —

Classes of Timed Properties

— 02 — 2014-05-06 — main —

proving the design correct amounts to proving that ‘Des = Req’ is valid.

17/30

18/30

Safety Properties

o A safety property states that

something bad must never happen [Lamport].

e Example: train inside level crossing with gates open.

o More general, assume observable C' : [Tme=3{0, 1} where C(t) =1
represents a critical system state at time . o, bt
e D i .

Then
Vit e Time o =(C(t)

is a safety property.

o In general, a safety property is characterised as a property that can be
falsified in bounded time.

e But safety is not everything...

— 02 — 2014-05-06 — Sclasses —

Liveness Properties

e The simplest form of a liveness property states that

something good eventually does happen.

e Example: gates open for road traffic.

o More general, assume observable G : B3 {0, 1} where G(t) = 1
represents a good system state at time .

Then
Jt € Time e G(t)

is a liveness property.
e Note: not falsified in finite time.

e With real-time, liveness is too weak...

— 02 — 2014-05-06 — Sclasses —

19/30

20/30

Bounded Response Properties

— 02 — 2014-05-06 — Sclasses —

o A bounded response property states that

the desired reaction on an input occurs in time interval [b, e].

e Example: from request to secure level crossing to gates closed.

e More general, re-consider good thing G : m {0,1} and request
R Tme=g (0. 1}

Then
b e
Vi, € Timee (R(t)) = Tt € [t + P t1 + D] @ G(ta))

is a bounded liveness property.

e This property can again be falsified in finite time.

o With gas burners, this is still not everything...

21/30

Duration Properties A%®e): <— & bl tyecqu/ @0

— 02 — 2014-05-06 — Sclasses —

€-k) 4
(c-b)2d0 o o west SH of He Hhat
. lealee
A duration property states that ol
: property a <— © Gle)a+F(¢) \
for observation interval [b, e] characterised by a condition A(b, e)
the accumulated time in which the system is in a certain critical v(be/

state has an upper bound u(b, ¢e). A= 0.05

“(e-t)
o Example: leakage in gas burner. £
etbhain, -

lofop e
e More general, re-consider critical thing C : [@.{0, 1 s

Then e
/ S“Mﬁg@g}) jf«ue-/%z-ﬁ)

Lo,

Vbe € Timee (A%) =
—_ -

. . ¢
is a duration property. t,’ IZ
e This property can again be falsified in finite time.éf o C l :‘,_

0 A

A}
7

WL 3e

22/30

Duration Calculus

g\ 23/30
Duration Calculus: Preview
gas valve D fome sensor g
e Duration Calculus is an interval logic. e =:21
e Formulae are evaluated in an zgmmi
(implicitly given) interval.
dlurost o G,F,I,H:{0,1}
Sfangest operators: o Define L : {0,1} as G A—F.
eteverywhere — Example: [G]
(Holds in a given interval [b, €] iff the gas valve is open almost everywhere.)
e chop — Example: ([-I];[I];[-I]) = (>1
(Ignition phases last at least one time unit.)
i e integral — Example: £ > 60 = [L < %
g (At most 5% leakage time within intervals of at least 60 time units.)
% 24/30

Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) Symbols
f’g7 true’false’ :7 <7>’S7Z7 m?y?’z X7Y7 Z7 d
eveliate o

(i) $tafe Assertions:
o1
P:::0|1|X:d|ﬂP1‘P1/\P2

(iii) Merms:
_xM]fP|f01,...,0 J"‘”/E

(iv) Farmulae;

F = ()|—|F1’F1/\F2’VI‘OF1’F1,F2

(v) Abbreviations:

[, [P, [PT, [P1¥, OF, OF
25/30

— 02 — 2014-05-06 — Sdcpreview —

Symbols: Syntax

e f,g: function symbols, each with arity n € INg.
Called constant if n = 0.
Assume: constants 0,1, --- € INg; binary ‘+' and *-".

e p,q: predicate symbols, also with arity.

Assume: constants true, false; binary =, <, >, <, >.

e x,y,2 € GVar: global variables.

e X,Y,Z € Obs: state variables or observables, each of a data type D
(or D(X),D(Y),D(Z) to be precise).

Called boolean observable if data type is {0,1}.

e d: elements taken from data types D of observables.

— 02 — 2014-05-06 — Sdcsymb —

26/30

Symbols: Semantics

— 02 — 2014-05-06 — Sdcsymb —

o Semantical domains are

the truth values B = {tt, ff},
the real numbers R,

time Time,
mostly Time = R (continuous), exception Time = IN; (discrete time
0

and data types D.

e The semantics of an n-ary function symbol f
is a (mathematical) function from R" to R, denoted f, i.e.

~

f:R" = R.

e The semantics of an n-ary predicate symbol p
is a function from R"™ to BB, denoted p, i.e.

JR,
p:R" = B. —_—

Symbols: Examples

— 02 — 2014-05-06 — Sdcsymb —

e The semantics of the function and predicate symbols assumed above
is fixed throughout the lecture:

true = tt, faZse = ff

0 € R is the (real) number zero, etc.

+:R? — R is the addition of real numbers, etc.

= : R? — B is the equality relation on real numbers,

< :R2 — B is the less-than relation on real numbers, etc.

“Since the semantics is the expected one, we shall often simply use the

A A A

symbols 0,1, +, -, =, < when we mean their semantics 0,1, +,°, =, <.

28/30

Symbols: Semantics

— 02 — 2014-05-06 — Sdcsymb —

o The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V:GVar = R

assigning each global variable = € GVar a real number V(z) € R.
We use Val to denote the set of all valuations, i.e. Val = (GVar — R).

Global variables are though fixed over time in system evolutions.

29/30

Symbols: Semantics

— 02 — 2014-05-06 — Sdcsymb —

e The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V:GVar - R

assigning each global variable = € GVar a real number V(z) € R.
We use Val to denote the set of all valuations, i.e. Val = (GVar — R).

Global variables are though fixed over time in system evolutions.

e The semantics of a state variable is time-dependent.
It is given by an interpretation Z, i.e. a mapping

Z : Obs — (Time — D)
assigning each state variable X € Obs a function
Z(X) : Time — D(X)

such that Z(X)(t) € D(X) denotes the value that X has at time ¢ € Time?%/*

Symbols: Representing State Variables

— 02 — 2014-05-06 — Sdcsymb —

e For convenience, we shall abbreviate Z(X) to X7.

e An interpretation (of a state variable) can be displayed in form of a
timing diagram.

For instance,

with D(X) = {dy, ds}.

30/30

