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Lecture 9: DC Properties lla
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Last Lecture:

e DC Implementables

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.

e Facts: (un)decidability properties of DC in discrete/continuous time.
e What's the idea of the considered (un)decidability proofs?

o Content:

e RDC in discrete time cont'd
e Satisfiability and realisability from 0 is decidable for RDC in discrete time

e Undecidable problems of DC in continuous time



RDC in Discrete Time Cont’d
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Restricted DC (RDC)

F = (P-| |—|F1‘F1\/F2‘F1;F2

where P is a state assertion, but with boolean observables only.

Note:
e No global variables, thus don’t need V.
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Discrete Time Interpretations

o An interpretation Z is called discrete time interpretation if and only if,
for each state variable X,

Xz : Time — D(X)
with

° Time:Rar,

e all discontinuities are in IN.

e An interval [b,e] C Intv is called discrete if and only if b,e € INy.

o We say (for a discrete time interpretation Z and a discrete interval [b, e])
Z,[be] = F1; Fa
if and only if there exists m € [b, e] N INy such that

Z,[b,m] E F1 and Z,[m,e] E F»
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Differences between Continuous and Discrete Time

o Let P be a state assertion.

Continuous Time Discrete Time
=PLTPD | y
= [P]
=P = |, y
([PT5[PT)

o In particular: £ =1 <= ([1] A=(]1];[1])) (in discrete time).
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Expressiveness of RDC
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o =1 — [11A=([1]5]1])
e (=0 < 1M

o true = ¢<0 v ~(l=0)

e [P=0 = [PTv 0

o [P=1 = ([ =0); (1A €=9; (SP=0)
o [P=k+1 < JP:k; [P1
o [Pk = ([P =k),

o [P>Ek — :

o [P<Kk = ’

o [P<Ek —

where k € IN.

Decidability of Satisfiability/Realisability from 0
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Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.
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Sketch: Proof of Theorem 3.6
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e give a procedure to construct, given a formula F', a regular language L(F)

such that
Z,[0,n] = F if and only if w € L(F)

where word w describes Z on [0, n]
(suitability of the procedure: Lemma 3.4)

e then F is satisfiable in discrete time if and only if L(F) is not empty
(Lemma 3.5)

e Theorem 3.6 follows because

o L(F) can effectively be constructed,

e the emptyness problem is decidable for regular languages.



Construction of L(F)

e ldea:
e alphabet X(F') consists of basic conjuncts of the state variables in F,
e a letter corresponds to an interpretation on an interval of length 1,

e a word of length n describes an interpretation on interval [0, n].

o Example: Assume F' contains exactly state variables X, Y, Z, then

S(F) = KAY A4 X AY A-Z, X A-Y NZ,X A-Y A2,

“XANYNZ-XANYN-Z-XNYNZ-XNY ANZY

Xz w=(~X A-Y A~Z)
(X A=Y A-Z
Yz(l) /( )
X L Conclindn, (X AY A=Z)
21, : (XAY ANZ)eS(F)*

10/36
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Construction of L(F') more Formally

Definition 3.2. A word w = a;...a, € X(F)* with n > 0 de-
scribes a discrete interpretation Z on [0,n] if and only if

Vie{l,...,n}vteli—1,j[: I[a;] () =1

For n =0 we put w = €.

\

o $=XaY @ (Xnaka 2)v (Xa1ran2)

e Each state assertion P can be‘;mged into an equivalent disjunctive
normal form \/7" | a; with a; € X(F). MIF (X47Y) =

o Set DNF(P) :={a1,...,an} (C S(F)). § Xa¥a, x»nv;\;zﬁ
o Define L(F) inductively: /K‘*‘é Uzﬁ lesyth
(f 1= DNF(P)F
Fy) = 2(7'—)*\«{(7"4)

RT) v UE) | (pde(F) ”<(7u4r

)
)
(Fl V Fg)
Fy) = C(W) X(F)

L(Fy
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Lemma 3.4

Lemma 3.4. For all RDC formulae F', discrete interpretations Z,
n >0, and all words w € ¥(F')* which describe Z on [0, n],

Z,[0,n] = F if and only if w € L(F').

fw/v&_f ‘S",*AO‘J‘WA( ;:«an'[‘!ian.
Rt F=lPli Lt w=aq,. %, n29, 4_2_&1'& T o [oa],
I503 P11 & T,(6u]F [F] aued w21
O w2t ad V1e5Ene TL-1j1ETP]
& nl dd V14540 ol',[“,wv},_—_,ru]ad,] MJQ,{.DM‘(P/
dosibes C oy o1 wt W 1¢jén o aje NF(P) Mk
© weDF(P)*
@ we(TP)

Sgs: - o
" '-f':v:);
VR,
12/36
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Sketch: Proof of Theorem 3.9

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

kern(L) contains all words of L whose prefixes are again in L.

If L is regular, then kern(L) is also regular.

kern(L(F)) can effectively be constructed.

e We have

Lemma 3.8. For all RDC formulae F', I is realisable from 0 in
discrete time if and only if kern(L(F')) is infinite.

Infinity of regular languages is decidable.
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(Variants of) RDC in Continuous Time

15/36
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Recall: Restricted DC (RDC)

F = (P—| |—|F1‘F1\/F2‘F1;F2

where P is a state assertion, but with boolean observables only.

From now on: “RDC + ¢ =z,Vz"

F = [P-"—|F1’Fl\/FQlFl;FQ’£=1|€=I|V.%‘OF1
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Undecidability of Satisfiability/Realisability from 0
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Theorem 3.10.
The realisability from 0 problem for DC with continuous time is
undecidable, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecid-
able.

Sketch: Proof of Theorem 3.10
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Reduce divergence of two-counter machines to realisability from 0:

Given a two-counter machine M with final state g,
construct a DC formula F(M) := encoding(M)
such that

M diverges if and only if the DC formula
E(M) N =0l qfin]

is realisable from 0.

If realisability from 0 was (semi-)decidable,
divergence of two-counter machines would be (which it isn't).

17/36
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Recall: Two-counter machines
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A two-counter machine is a structure

where

M=

Q is a finite set of states,

(Q7 q0, 4fin, PT’Og)

e comprising the initial state go and the final state gg,

q:ineg:q
4 in2t g
/oA

s shoke

and q:dec;:q,q",

Prog is the machine program, i.e. a finite set of commands of the form

i€ {1,2}.

o We assume deterministic 2CM: for each ¢ € Q, at most one command
starts in ¢, and ¢, is the only state where no command starts.
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2CM Configurations and Computations
Cogrent Sheile valiess of covlrtess
e a configuration of M is a triple K = (q,n1,n2) € Q x Ny x INo.
e The transition relation “" on configurations is defined as follows:
| Command | Semantics: K F K’ |
q:incy:q (¢;m1,m2) F (¢', 11 + 1, n2)
q: decl . q/a q” (qa O7n2) F (q/a 07”2)
(g,n1 +1,m9) = (¢",n1,m2)
q:incy:q (q7n17”2) + (q/anlan2 + 1)
q: deCQ : q/a q” (qa ni, 0) F (q/anly 0)
(q7 niy,n2 + 1) F (q/lv ni, n2)
e The (!) computation of M is a finite sequence of the form (“M halts”)

or an infinite sequence of the form

Ko =1(0,0,0) F K1 F Ko -+ F (qfin, 11, n2)

KO:(q0,0,0)}_Kll_KQF...

(“M diverges”)
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2CM Example

O M = (Qv q07qﬁ7l7 Prog)
e commands of the form ¢ : inc; : ¢’ and q : dec; : ¢',q", i € {1,2}
o configuration K = (g,n1,n2) € @ x Ny x Np.
‘ Command | Semantics: K - K’ ‘
q:incy:q (g,m1,m2) = (¢'; 1 + 1, m2)
q: decl : q/v q” (q7 07 TLQ) = (q/7 07 TLQ)
L4 (q7n1 +17n2) + (q”,nl,ng)
q:incy:q (g,n1,m2) = (¢';n1,m2 + 1)
q:decy:q,q" (¢:n1,0) = (¢',n1,0)
(qa ny, N2 F 1) F (qlla ni, 7'7,2)
&=f¢,, 24, ‘lrfxs’ Q’: f;,,, 17@} (70, 0,0)
T
F = : M, '
‘n—{%‘ ‘llfn, gaau {IIOIMCZI z‘j (10’ 0,1)
L @1'"“"%\; ( T )
3 0,92
| (%-DrO) ; ,!
?V T (P 1
3 (72_’110) waching G mackine
T (1n.2.0) he(ls ‘L‘\WJ'(J
I
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Reducing Divergence to DC realisability: Idea In

Pictures
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Reducing Divergence to DC realisability: Idea

o A single configuration K of M can be encoded in an interval of length 4;
being an encoding interval can be characterised by a DC formula.

e An interpretation on ‘Time’ encodes the computation of M if

e each interval [4n,4(n + 1)], n € Ny, encodes a configuration K,

e each two subsequent intervals [4n,4(n + 1)] and [4(n + 1),4(n + 2)],
n € Ny, encode configurations K,, - K, 11 in transition relation.

o Being encoding of the run can be characterised by DC formula F(M).

e Then M diverges if and only if F/(M) A = qpn] is realisable from 0.
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' : 1
Encoding Configurations 1 ==

shdes of A — _;:3

e We use Obs # {obs} with o
D(obs) = Qnm U {C1,C, B, X }. : :

digginl Wrnis. :

Examples:
\‘_9

° K=(q,2,3) ¢
[al \ ([ TBL: GBI (G (BT ([XT\ [ [B15[Cal3 [B13[Cols [BT3 [Cal 3 [B]
A ; A H A ; A

b KO = (QO7070)

[q0] [B] [X] [B]
A ; A H A H A
(=1 (=1 =1 (=1

or, using abbreviations, [go]"; [B]*; [X]'; [B]".

24/36
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Construction of F(M)
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In the following, we give DC formulae describing

e the initial configuration,
e the general form of configurations,
e the transitions between configurations,

e the handling of the final state.

F (M) is the conjunction of all these formulae.

Initial and General Configurations
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init = (£ >4 = [qo]'; [B]'; [X]'; [B]'; true)

keep = O([Q]*; [BVC1]*; [X]Y; [BV Calt il =4
— (=4;[Q)*;[BVCi ; [X]Y; [BVCalh)
where @ := (X v C; VvV CyV B).

25/36
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Auxiliary Formula Pattern copy
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copy(F,{P1,...,P,}) <=
Ve, de O(FEANL=c); ([PLV VP ANL=d);[P]; (=4
= l=c+d+4;[P]

V"c.,doD((F/\E:c);([P1v~-an]/\E:d); [Po]:il=14
= (=c+d+4;[P,]

27/36

q : incy : ¢ (Increment)
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(i) Change state

O([q)* ;s [BVCL ;s [X]Y [BY Colt s =4 = 0=4;[¢'1"; true)

(ii) Increment counter

VdeO([q]'; [B1%; (¢ =0V [Ci];[-X]); [X]';[BVCy]tse=4
— (=4;[¢1 ;([B];[C1]; [B]I AL =4d); true

2836



q : incy : ¢ (Increment)
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(i) Keep rest of first counter

copy([q]"; [BV C1]; [C1],{B,C1})

(ii) Leave second counter unchanged

copy([q]"; [BV C115 [X]',{B, Ca})

29/36

q: decy : ¢, q" (Decrement)
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(i) If zero

O([q1': (B X155 [BVCo] s =4 = £=4;[¢1":[B]'; true)

(i) Decrement counter

VdeO([q]'; ([B];[Ci]AL=d);[B];[BVCi];[X]';[BVCyt il =
= (=4; [q”}l ; [B}d;true)

(iii) Keep rest of first counter

copy([q]": [B 5 [C1]: [B1].{B,C1})
30/36



Final State

COpy([Qﬁn—‘l ; [B \ Cl—ll ’ [X—l ; [B \ 02—‘1a {Qﬁn’BvXa 01702})

— 9 — 2014-06-24 — Scont —

31/36

Satisfiability

o Following [Chaochen and Hansen, 2004] we can observe that
M halts if and only if the DC formula F'(M) A O[q¢pn] is satisfiable.

This yields

Theorem 3.11. The satisfiability problem for DC with continuous
time is undecidable.

(It is semi-decidable.)

e Furthermore, by taking the contraposition, we see

M diverges if and only if M does not halt
if and only if F(M) A —~0[qa,| is not satisfiable.

e Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable. 32/36
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Validity

e By Remark 2.13, F'is valid iff =F' is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

Validity

e By Remark 2.13, F'is valid iff =F' is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

e This provides us with an alternative proof of Theorem 2.23 (“there is no
sound and complete proof system for DC"):

33/36
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Validity

e By Remark 2.13, F'is valid iff =F' is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

e This provides us with an alternative proof of Theorem 2.23 (“there is no
sound and complete proof system for DC"):
e Suppose there were such a calculus C.

e By Lemma 2.22 it is semi-decidable
whether a given DC formula F' is a theorem in C.

e By the soundness and completeness of C,
F'is a theorem in C if and only if F' is valid.

e Thus it is semi-decidable whether F' is valid.
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Discussion

e Note: the DC fragment defined by the following grammar is sufficient for
the reduction

F .= (P-|“!Fl|F1\/F2|F1;F2‘£=1|€=$|V$0F1,

P a state assertion, x a global variable.

e Formulae used in the reduction are abbreviations:

(=4 << (=1;4=1;/=1;/=1
(>4 < {=4;true
l=z+y+4d <= l=x;l=y;{=14

e Length 1 is not necessary — we can use ¢ = z instead, with fresh z.

e This is RDC augmented by “¢ = z"” and "Vz",
which we denote by RDC + ¢/ = z,V .
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