Contents & Goals

Last Lecture:

 DC Implementables

Real-Time Systems
This Lecture:
g Educational Objectives: Capabilities for following tasks/questions. i . ; ’
Lecture 9: DC Properties Ila : ) P or following tasks/que RDC in Discrete Time Cont’d
o Facts: (un)decidability properties of DC in discrete/continuous time

© What's the idea of the considered (un)decidability proofs?

« Content:

« RDC in discrete time cont'd
 Satisfiability and realisability from 0 is decidable for RDC in discrete time

» Undecidable problems of DC in continuous
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Restricted DC (RDC) Discrete Time Interpretations Differences between Continuous and Discrete Time
Fu=[P]|-F|FIVE|F B * An interpretation 7 is called discrete time interpretation if and only o Let P be a state assertion.
for each state variable X,
where P is a state assertion, but with boolean observables only. : Ti Di Ti
Xz Time -5 D(X) Continuous Time iscrete Time

Note: with E’ ([P1:1P]) v v
* No global variables, thus don't need V. o Time = R = [P]
© o all discontinuities are in INy.

o« An interval [b,¢] C Intv is called discrete if and only if b, e € Ng. '[Pl = v x

o We say (for a discrete time interpretation Z and a discrete interval [b, e]) ([P15[P])

. I bel = Fii Py
if and only if there exists m € [b,e] N Ny such that 7

lbmlfi and - Lme 5 o In particular: £ =1 <= ([1] A—(1]; [1])) (in discrete time).




Expressiveness of RDC
o l=1 = [1]A=([17511])
e« (=0 < M1
o true = =0 v (¢=0)
e [P=0 = [PTv (0
c[P=1 = (fe=0), (IPlae=q; (fP=0)
o [P=k+1 < JP:k; JP<1
e P2k = ([P k)t
o [P>k = :
e [P<k = '

§ o [P<k S

. where k € N.
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Sketch: Proof of Theorem 3.6

 give a procedure to construct, given a formula F', a regular language L(F)
such that
Z,[0,n] = F if and only if w € L(F)
where word w describes Z on [0, n]

(suitability of the procedure: Lemma 3.4)

e then F is satisfiable in discrete time if and only if £(F) is not empty
(Lemma 3.5)

o Theorem 3.6 follows because
o L(F) can effectively be constructed,
o the emptyness problem is decidable for regular languages.
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Decidability of Satisfiability/Realisability from 0

Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9

ty problem for RDC with discrete time is decidable.

Construction of L(F')

9~ 20140624 - Sdisc —

o Idea:
o alphabet X(F) consists of basic conjuncts of the state variables in F,

o a letter corresponds to an interpretation on an interval of length 1,

).

* a word of length n describes an interpretation on interva

o Example: Assume F contains exactly state variables X,Y, Z, then

S(F) = KAV A X AY A~Z, X A=Y AZ, X A-Y A7,

SXAY AZAXAY A=Z~X A=Y A Z,~X A=Y A-Z}.
w= (=X A=Y A=2Z)

.Ax>J<>JS
. \.Axi\TS
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(X AY AZ)€S(F)*

10736

3 Tnde 1L6AET]
M (rshuct
v

LF) AQ:\\L

) ¢ {T| TFFf
&iww\\ ﬂﬂﬂn\& 5 decdeSe
[t4

e wedl?) .,m\ ol

defpuicrt e sukisfuble

proacrt

Construction of L(F) more Formally

Definition 3.2. A word w = a;...a, € I(F)* with n > 0 de-
scribes a discrete interpretation Z on [0, 7] if and only if

Vie{l,...,n}Vtelj—1,j[: Z[a;]() = 1.

Forn =0 we put w =¢.

P =Xt @ (Xawa2)y (Kaaran2)

o Each state assertion P can be transformed into an equivalent disjunctive
normal form \/["| a; with a; € £(F). DF (X47¥) =

o Set DNF(P) = {a1....,an} (C S(F)).———" & XaaaZ, Xm¥ai2g

« Define £(F) inductively: / ok :N.MM ﬁqx “
i £([P)) = DVF(R)",
L(~Fy) = E\L(F).
LRV Fy) = UR) o ¥R) | (Laorr) wegutes
L(Fy 3 Fy) = LW %(F)
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Lemma 3.4

Lemma 3.4. For all RDC formulae F', discrete interpretations Z,
n >0, and all words w € ¥(F)* which describe Z on [0,7],

Z,[0,n] |= F if and only if w € L(F).
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Recall: Restricted DC (RDC)

Fu=[P||-F|AVFE|F;F

where P is a state assertion, but with boolean observables only.

From now on: “RDC + ¢ =z,Vz"

Fu=[P||~F |RVE|FiFB|(=1](=x|YVzeF

24
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Sketch: Proof of Theorem 3.9

Undecidability of Satisfiability/Realisability from O

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

kern(L) contains all words of L whose prefixes are again in L.
If L is regular, then kern(L) is also regular.

kern(L(F)) can effectively be constructed.

We have

Lemma 3.8. For all RDC formulae F, F' is realisable from 0 in
discrete time if and only if kern(L(F)) is infinite.

Infinity of regular languages is decidable.

1436
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Theorem 3.10.
The realisability from 0 problem for DC with continuous time is

undecidable, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecid-

able.

(Variants of) RDC in Continuous Time

153
Sketch: Proof of Theorem 3.10
Reduce divergence of two-counter machines to realisability from 0:
 Given a two-counter machine M with final state g,
e construct a DC formula F(M) := encoding(M)
© such that
M diverges if and only if the DC formula
F(M) A=0fgpin]
is realisable from 0.
o If realisability from 0 was (semi-)decidable,
divergence of two-counter machines would be (which it isn't).
18/3



Recall: Two-counter machines

A two-counter machine is a structure
M = (Q. 40, gfin: Prog)

where

e Qs a finite set of states,

© comprising the initial state ¢y and the final state gy,

o Prog is the machine program, i.e. a finite set of commands of the form

qrincgiq and q:deci: g ie{1,2).
(R ﬂ
ahm.m_% G sk

o We assume deterministic 2CM: for each g € Q, at most one command
starts in g, and gy, is the only state where no command starts.

2CM Configurations and Computations

T 19736
Reducing Divergence to DC realisability: Idea In
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* a configuration of M is a triple K = (g, n1,n2) € @ x Ny x INy.

o The transition relation “" on configurations is defined as follows:

Command Semantics: K - K’
q:incy:q (¢;n1,m2) F (¢', 11 + 1,m2)
q: decy (¢.0,n2) = (q',0,n2)
(g.m1 +1,n9) F (¢",m1,m2)

(g;n1.n2) F (¢";n1,m2 +1)
(q:11,0) & (¢',m1,0)
(g:m1,n2 +1) ¥ (¢",11,n2)

« The (1) computation of M is a finite sequence of the form ("M halts")
Ko = (90,0,0) - Ky = Ko &+ F (gfin, n1,m2)
or an infinite sequence of the form ("M diverges")

Ko = (¢0,0,0) F Ky - K - ...
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Reducing Divergence to DC realisability: Idea

o A single configuration K of M can be encoded in an interval of length 4;
being an encoding interval can be characterised by a DC formula.

o An interpretation on ‘Time' encodes the computation of M if
e each interval [4n,4(n 4+ 1)], n € Ny, encodes a configuration K,

o each two subsequent intervals [4n,4(n + 1)] and [4(n + 1),4(n + 2)],
n € Ny, encode configurations K, - K,,+1 in tran: n relation.

« Being encoding of the run can be characterised by DC formula F(M).

o Then M diverges if and only if F(M) A —~{[qgp,] is realisable from 0.

2CM Example

(e 2.0)  hellS

Encoding Configurations

o M = (Q.q0,fin: Prog)
= commands of the form g : in: i€ {1,2)
o configuration K = (q,n1,n2) € Q x Ny x Ng
Command | Semantics: K F K/

q:incy i q

q:decyiqq"

qrines:q (g,n1,m2) F

qdecs: q.q" (g.m1,0)

(q.n1,n2 + 1) F (¢" 11, n2)

Qfg 1., 450 Q=i 144 (3,90)
foy={ 90 a4, a&.m« ber, 2] ?MQ
furie, 44 0121 D, 10
(30,0 (4192
' :

Gor0) Tl

& :mﬁwm
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Shes of K
» We use Obs W\?cmv with
D(obs) = Qu U {C1,Ca, B, X}.

/{g

¢
X7 v A [B131Co15 (B3 [Co1 5 [BT3 [Co] 5 [B]
: A
1

=1
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Construction of F(M) Initial and General Configurations Auxiliary Formula Pattern copy
In the following, we give DC formulae describing S > 1. 1. 1. 1.
o the initial configuration, it = (024 = [ao]"5 [BY 5 [XT53 BT frue) copy(F,APy,...,Pp}) =
o the general form of configurations, Ve, deO(FAL=c); ([PLV VP AL=d); [P];0=4
o the transitions between configurations, keep s O[QT': [BY Cr' [X]': [BY Gl s £ = 4 = (=c+d+4;[P]
o the handling of the final state.
= (=4;[Q1"; [BVOI' s [X]': [BV Cel') Ve,de O((FAL=c); ([PLV VP AL=d);[Py]il=4

F(M) is the conjunction of all these formulae.
where Q := (X VC; v Cy V B). = (=c+d+4;[P]

0 - 2014

2573 2673 2773
q : incy : ¢ (Increment) q : incy : ¢ (Increment) q : decy : ¢, q" (Decrement)
(i) Change state (i) Keep rest of first counter (i) 1f zero
Lopts X 10— ATl TR
Ol [BY G (X1 [BY Gt s 0= 4 = (=43 ¢)' s true) copy([a]" s [BY €11 [C1],B. 1)) B B Gl et = T B e
. (i) Decrement counter
(ii) Leave second counter unchanged
1. . —d):[B: SrxLs (1l p—
. Y4 101 0 il 1
(ii) Increment counter SRR i true)
VdeO([q]" s [B14; (¢ =0V [C1]:[-X]): [X]' s [BV o] i 0=4
— (=431 ([B]: [C1] 3 [BIAL=d); true
n M M (iii) Keep rest of first counter
copy([ql" [B]3 [V [Bi).AB.C1})
2973 3073
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Final State

copy([qn]" s [BV C11" 3 [XT5 [BV Ca]', {gfin, B, X, C1, C2})

Validity

o By Remark 2.13, F'is valid iff [ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

o This provides us with an alternative proof of Theorem 2.23 (“there is no
sound and complete proof system for DC"

3136

Satisfiability

« Following [Chaochen and Hansen, 2004] we can observe that

M halts if and only if the DC formula /(M) A O[qgn, ] is satisfiable.

This yields

Theorem 3.11. The satisfiability problem for DC with continuous
time is undecidable.

(It is semi-decidable.)

« Furthermore, by taking the contraposition, we see

M diverges if and only if M does not halt
if and only if F(M) A —=0[qgp,] is not satisfiable.

o Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable.

Validity

* By Remark 2.13, F is valid iff =F' is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

o This provides us with an alternative proof of Theorem 2.23 (“there is no
sound and complete proof system for DC"):
o Suppose there were such a calculus C.

o By Lemma 2.22 it is semi-decidable
whether a given DC formula F' is a theorem in C.

o By the soundness and completeness of C,
F is a theorem in C if and only if F is valid.

o Thus it is semi-decidable whether F' is valid. Contradiction.

3236
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Validity

iff =F is not sati

o By Remark 2.13, F'is val ble, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.
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Discussion

* Note: the DC fragment defined by the following grammar is sufficient for
the reduction

Fu=[Pl|-F |AVE || (=1|{=x|VzeF,
P a state assertion, z a global variable.
« Formulae used in the reduction are abbreviations:

(=4 <<= (=1;0=1;0=1;(=1
(>4 <= [ =4;true
l=zx+y+4 <= l=x;l=y;l=4

o Length 1 is not necessary — we can use { = z instead, with fresh z.

This is RDC augmented by “¢ = z" and “Vz",
which we denote by RDC + ¢ = z,Vz.
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