
Interpolation
Seminar Slides

Albert-Ludwigs-Universität Freiburg

Betim Musa
27th June 2015



Motivation

program add(int a, int b) {
var x,i : int;

`0 assume(b ≥ 0);
`1 x := a;
`2 i := 0;

while(i < b) {
`3 x := x + 1;
`4 i := i + 1;

}
assert (x == a + b);

`err assert (x != a + b);

Prove correctness (CEGAR
approach)

Idea: Show that all traces from
`0 to `err are infeasible.

1 Choose an error trace τ.

2 Show that τ is infeasible.
3 Compute interpolants for τ.

27th June 2015 Betim Musa – Interpolation 2 / 22



Motivation

program add(int a, int b) {
var x,i : int;

`0 assume(b ≥ 0);
`1 x := a;
`2 i := 0;

while(i < b) {
`3 x := x + 1;
`4 i := i + 1;

}

assert (x == a + b);

`err assert (x != a + b);

Prove correctness (CEGAR
approach)

Idea: Show that all traces from
`0 to `err are infeasible.

1 Choose an error trace τ.
2 Show that τ is infeasible.

3 Compute interpolants for τ.

27th June 2015 Betim Musa – Interpolation 2 / 22



Motivation

program add(int a, int b) {
var x,i : int;

`0 assume(b ≥ 0);
`1 x := a;
`2 i := 0;

while(i < b) {
`3 x := x + 1;
`4 i := i + 1;

}

assert (x == a + b);

`err assert (x != a + b);

Prove correctness (CEGAR
approach)

Idea: Show that all traces from
`0 to `err are infeasible.

1 Choose an error trace τ.
2 Show that τ is infeasible.
3 Compute interpolants for τ.

27th June 2015 Betim Musa – Interpolation 2 / 22



Contents

A bit of history

Interpolation
What is an interpolant?
Interpolation in Propositional Logic
Interpolation in First-Order Logic

Conclusion

References

27th June 2015 Betim Musa – Interpolation 3 / 22



Bit of history

W. Craig (1957), Linear reasoning. A new form of the
Herbrand-Gentzen theorem

K. L. McMillan (2003), Interpolation and SAT-Based Model
Checking
A. Cimatti et al. (2007), Efficient Interpolant Generation in
SMT

27th June 2015 Betim Musa – Interpolation 4 / 22



Bit of history

W. Craig (1957), Linear reasoning. A new form of the
Herbrand-Gentzen theorem
K. L. McMillan (2003), Interpolation and SAT-Based Model
Checking

A. Cimatti et al. (2007), Efficient Interpolant Generation in
SMT

27th June 2015 Betim Musa – Interpolation 4 / 22



Bit of history

W. Craig (1957), Linear reasoning. A new form of the
Herbrand-Gentzen theorem
K. L. McMillan (2003), Interpolation and SAT-Based Model
Checking
A. Cimatti et al. (2007), Efficient Interpolant Generation in
SMT

27th June 2015 Betim Musa – Interpolation 4 / 22



Contents

A bit of history

Interpolation
What is an interpolant?
Interpolation in Propositional Logic
Interpolation in First-Order Logic

Conclusion

References

27th June 2015 Betim Musa – Interpolation 5 / 22



Interpolant

An interpolant I for the unsatisfiable pair of formulae A,B has
the following properties:

A |= I
I∧B is unsatisfiable
I � A and I � B (symbol condition)

27th June 2015 Betim Musa – Interpolation 6 / 22



Interpolant

An interpolant I for the unsatisfiable pair of formulae A,B has
the following properties:

A |= I

I∧B is unsatisfiable
I � A and I � B (symbol condition)

27th June 2015 Betim Musa – Interpolation 6 / 22



Interpolant

An interpolant I for the unsatisfiable pair of formulae A,B has
the following properties:

A |= I
I∧B is unsatisfiable

I � A and I � B (symbol condition)

27th June 2015 Betim Musa – Interpolation 6 / 22



Interpolant

An interpolant I for the unsatisfiable pair of formulae A,B has
the following properties:

A |= I
I∧B is unsatisfiable
I � A and I � B (symbol condition)

27th June 2015 Betim Musa – Interpolation 6 / 22



Contents

A bit of history

Interpolation
What is an interpolant?
Interpolation in Propositional Logic
Interpolation in First-Order Logic

Conclusion

References

27th June 2015 Betim Musa – Interpolation 7 / 22



Interpolation in Propositional Logic

Ingredients

1 a pair of unsatisfiable formulae A,B
2 a resolution proof of their unsatisfiability

27th June 2015 Betim Musa – Interpolation 8 / 22



Interpolation in Propositional Logic
Resolution

Prove unsatisfiability of
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

27th June 2015 Betim Musa – Interpolation 9 / 22



Interpolation in Propositional Logic
Resolution

Prove unsatisfiability of
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

27th June 2015 Betim Musa – Interpolation 9 / 22



Interpolation in Propositional Logic
Resolution

Prove unsatisfiability of
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

27th June 2015 Betim Musa – Interpolation 9 / 22



Interpolation in Propositional Logic
Resolution

Prove unsatisfiability of
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

27th June 2015 Betim Musa – Interpolation 9 / 22



Interpolation in Propositional Logic

Given: unsatisfiable formulae A,B and
a proof of unsatisfiability.

For every
vertex v of the proof define the
interpolant ITP(v) as follows:

if v is an input node

1 if v ∈ A then
ITP(v) = global_literals(v)

2 else ITP(v) = true

else v must have two
predecessors v1,v2 and pv is the
pivot variable.

1 if pv is local to A, then
ITP(v) = ITP(v1)∨ ITP(v2)

2 else ITP(v) = ITP(v1)∧ ITP(v2)

C1 C2 . . . Cn

v ¬v

false

27th June 2015 Betim Musa – Interpolation 10 / 22



Interpolation in Propositional Logic

Given: unsatisfiable formulae A,B and
a proof of unsatisfiability. For every
vertex v of the proof define the
interpolant ITP(v) as follows:

if v is an input node

1 if v ∈ A then
ITP(v) = global_literals(v)

2 else ITP(v) = true
else v must have two
predecessors v1,v2 and pv is the
pivot variable.

1 if pv is local to A, then
ITP(v) = ITP(v1)∨ ITP(v2)

2 else ITP(v) = ITP(v1)∧ ITP(v2)

C1 C2 . . . Cn

v ¬v

false

27th June 2015 Betim Musa – Interpolation 10 / 22



Interpolation in Propositional Logic

Given: unsatisfiable formulae A,B and
a proof of unsatisfiability. For every
vertex v of the proof define the
interpolant ITP(v) as follows:

if v is an input node

1 if v ∈ A then
ITP(v) = global_literals(v)

2 else ITP(v) = true
else v must have two
predecessors v1,v2 and pv is the
pivot variable.

1 if pv is local to A, then
ITP(v) = ITP(v1)∨ ITP(v2)

2 else ITP(v) = ITP(v1)∧ ITP(v2)

C1 C2 . . . Cn

v ¬v

false

27th June 2015 Betim Musa – Interpolation 10 / 22



Interpolation in Propositional Logic

Given: unsatisfiable formulae A,B and
a proof of unsatisfiability. For every
vertex v of the proof define the
interpolant ITP(v) as follows:

if v is an input node
1 if v ∈ A then

ITP(v) = global_literals(v)
2 else ITP(v) = true

else v must have two
predecessors v1,v2 and pv is the
pivot variable.

1 if pv is local to A, then
ITP(v) = ITP(v1)∨ ITP(v2)

2 else ITP(v) = ITP(v1)∧ ITP(v2)

C1 C2 . . . Cn

v ¬v

false

27th June 2015 Betim Musa – Interpolation 10 / 22



Interpolation in Propositional Logic

Given: unsatisfiable formulae A,B and
a proof of unsatisfiability. For every
vertex v of the proof define the
interpolant ITP(v) as follows:

if v is an input node
1 if v ∈ A then

ITP(v) = global_literals(v)
2 else ITP(v) = true

else v must have two
predecessors v1,v2 and pv is the
pivot variable.

1 if pv is local to A, then
ITP(v) = ITP(v1)∨ ITP(v2)

2 else ITP(v) = ITP(v1)∧ ITP(v2)

C1 C2 . . . Cn

v ¬v

false

27th June 2015 Betim Musa – Interpolation 10 / 22



Interpolation in Propositional Logic

Given: unsatisfiable formulae A,B and
a proof of unsatisfiability. For every
vertex v of the proof define the
interpolant ITP(v) as follows:

if v is an input node
1 if v ∈ A then

ITP(v) = global_literals(v)
2 else ITP(v) = true

else v must have two
predecessors v1,v2 and pv is the
pivot variable.

1 if pv is local to A, then
ITP(v) = ITP(v1)∨ ITP(v2)

2 else ITP(v) = ITP(v1)∧ ITP(v2)

C1 C2 . . . Cn

v ¬v

false

27th June 2015 Betim Musa – Interpolation 10 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R
ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE

ITP(¬P∨R) = R
ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R

ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R
ITP(¬R) = TRUE

ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R
ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)

ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R
ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R
ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R
ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R

27th June 2015 Betim Musa – Interpolation 11 / 22



Contents

A bit of history

Interpolation
What is an interpolant?
Interpolation in Propositional Logic
Interpolation in First-Order Logic

Conclusion

References

27th June 2015 Betim Musa – Interpolation 12 / 22



Interpolation in First-Order Logic
Overview

Interesting theories in practice

Linear Integer Arithmetic
Presburger Arithmetic
Equality Theory with Uninterpreted Functions
Theory of Arrays
Theory of Lists

Requirements

SAT-Solver (lazy)
a theory solver (T -Solver)

27th June 2015 Betim Musa – Interpolation 13 / 22



Interpolation in First-Order Logic
Overview

Interesting theories in practice
Linear Integer Arithmetic
Presburger Arithmetic
Equality Theory with Uninterpreted Functions
Theory of Arrays
Theory of Lists

Requirements

SAT-Solver (lazy)
a theory solver (T -Solver)

27th June 2015 Betim Musa – Interpolation 13 / 22



Interpolation in First-Order Logic
Overview

Interesting theories in practice
Linear Integer Arithmetic
Presburger Arithmetic
Equality Theory with Uninterpreted Functions
Theory of Arrays
Theory of Lists

Requirements

SAT-Solver (lazy)
a theory solver (T -Solver)

27th June 2015 Betim Musa – Interpolation 13 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)

3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma

consistent, go on with assignment of next variable
4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT

5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT

27th June 2015 Betim Musa – Interpolation 14 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′

SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?

co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left

27th June 2015 Betim Musa – Interpolation 15 / 22



Interpolation in SMT
Setting

Given two formulae c1 = ¬x1∨x2∨¬x3 and c2 = x2∨x3
c1 ↓ c2 = x2∨¬x3

c1 \c2 = ¬x1

27th June 2015 Betim Musa – Interpolation 16 / 22



Interpolation in SMT
Setting

Given two formulae c1 = ¬x1∨x2∨¬x3 and c2 = x2∨x3
c1 ↓ c2 = x2∨¬x3
c1 \c2 = ¬x1

27th June 2015 Betim Musa – Interpolation 16 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.

Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B

For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)

For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B

if C ∈ B, then IC ≡>
For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2

else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Interpolation in SMT

Generate an interpolant for the conjunction A∧B.
Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥

27th June 2015 Betim Musa – Interpolation 17 / 22



Conclusion

Interpolation

an important technique in software verification

available for many relevant theories (e.g. LIA, Equality with
UF, Arrays, Lists)
research in progress for other theories

27th June 2015 Betim Musa – Interpolation 18 / 22



Conclusion

Interpolation

an important technique in software verification
available for many relevant theories (e.g. LIA, Equality with
UF, Arrays, Lists)

research in progress for other theories

27th June 2015 Betim Musa – Interpolation 18 / 22



Conclusion

Interpolation

an important technique in software verification
available for many relevant theories (e.g. LIA, Equality with
UF, Arrays, Lists)
research in progress for other theories

27th June 2015 Betim Musa – Interpolation 18 / 22



Summary

What is interpolation?

automatically generalize formulae and preserve relevant
parts

interpolant (Craig’s definition)

How does it work?

Propositional Logic: resolution proof
First-Order Logic: Resolution proof, Theory interpolation

27th June 2015 Betim Musa – Interpolation 19 / 22



Summary

What is interpolation?

automatically generalize formulae and preserve relevant
parts
interpolant (Craig’s definition)

How does it work?

Propositional Logic: resolution proof
First-Order Logic: Resolution proof, Theory interpolation

27th June 2015 Betim Musa – Interpolation 19 / 22



Summary

What is interpolation?

automatically generalize formulae and preserve relevant
parts
interpolant (Craig’s definition)

How does it work?

Propositional Logic: resolution proof
First-Order Logic: Resolution proof, Theory interpolation

27th June 2015 Betim Musa – Interpolation 19 / 22



Summary

What is interpolation?

automatically generalize formulae and preserve relevant
parts
interpolant (Craig’s definition)

How does it work?

Propositional Logic: resolution proof

First-Order Logic: Resolution proof, Theory interpolation

27th June 2015 Betim Musa – Interpolation 19 / 22



Summary

What is interpolation?

automatically generalize formulae and preserve relevant
parts
interpolant (Craig’s definition)

How does it work?

Propositional Logic: resolution proof
First-Order Logic: Resolution proof, Theory interpolation

27th June 2015 Betim Musa – Interpolation 19 / 22



Future work

A theory where no efficient interpolation algorithm exists

theory of non-linear integer arithmetic (e.g. x2 +y2 = 1)

27th June 2015 Betim Musa – Interpolation 20 / 22



References I

A. Cimatti, A. Griggio, R. Sebastiani.
Efficient Interpolant Generation in SMT.

K.L.McMillan.
Interpolation and SAT-based Model Checking.

Philipp Rümmer
Craig Interpolation in SAT and SMT
http://satsmt2014.forsyte.at/files/2014/01/
interpolation_philipp.pdf

D. Kroening, G. Weissenbacher .
Lifting Propositional Interpolants to the Word-Level.

27th June 2015 Betim Musa – Interpolation 21 / 22

http://satsmt2014.forsyte.at/files/2014/01/interpolation_philipp.pdf
http://satsmt2014.forsyte.at/files/2014/01/interpolation_philipp.pdf


References II

Wikipedia
Satisfiability Modulo Theories.
https://en.wikipedia.org/wiki/Satisfiability_
Modulo_Theories

27th June 2015 Betim Musa – Interpolation 22 / 22

https://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories
https://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

	A bit of history
	Interpolation
	What is an interpolant?
	Interpolation in Propositional Logic
	Interpolation in First-Order Logic

	Conclusion
	References

