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Motivation

program add(int a, int b) {
var x,i : int;

`0 assume(b ≥ 0);
`1 x := a;
`2 i := 0;

while(i < b) {
`3 x := x + 1;
`4 i := i + 1;

}
assert (x == a + b);

`err assert (x != a + b);

Prove correctness (CEGAR
approach)

Idea: Show that all traces from
`0 to `err are infeasible.

1 Choose an error trace τ.

2 Show that τ is infeasible.
3 Compute interpolants for τ.
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Bit of history

W. Craig (1957), Linear reasoning. A new form of the
Herbrand-Gentzen theorem

K. L. McMillan (2003), Interpolation and SAT-Based Model
Checking
A. Cimatti et al. (2007), Efficient Interpolant Generation in
SMT
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Interpolant

An interpolant I for the unsatisfiable pair of formulae A,B has
the following properties:

A |= I
I∧B is unsatisfiable
I � A and I � B (symbol condition)
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Interpolation in Propositional Logic

Ingredients

1 a pair of unsatisfiable formulae A,B
2 a resolution proof of their unsatisfiability
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Interpolation in Propositional Logic
Resolution

Prove unsatisfiability of
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false
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Interpolation in Propositional Logic

Given: unsatisfiable formulae A,B and
a proof of unsatisfiability.

For every
vertex v of the proof define the
interpolant ITP(v) as follows:

if v is an input node

1 if v ∈ A then
ITP(v) = global_literals(v)

2 else ITP(v) = true

else v must have two
predecessors v1,v2 and pv is the
pivot variable.

1 if pv is local to A, then
ITP(v) = ITP(v1)∨ ITP(v2)

2 else ITP(v) = ITP(v1)∧ ITP(v2)

C1 C2 . . . Cn

v ¬v

false
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Interpolation in Propositional Logic
Example

Formula:
A︷ ︸︸ ︷

P∧ (¬P∨R)∧
B︷︸︸︷
¬R

P (¬P∨R) ¬R

R

false

ITP(P) = FALSE
ITP(¬P∨R) = R
ITP(¬R) = TRUE
ITP(R) =
ITP(P)∨ ITP(¬P∨R)
ITP(false) =
ITP(R)∧ ITP(¬R)

The resulting interpolant:
ITP(false) =
(FALSE ∨R)∧TRUE = R
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Interpolation in First-Order Logic
Overview

Interesting theories in practice

Linear Integer Arithmetic
Presburger Arithmetic
Equality Theory with Uninterpreted Functions
Theory of Arrays
Theory of Lists

Requirements

SAT-Solver (lazy)
a theory solver (T -Solver)
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SMT: Satisfiability Modulo Theory

Is a given FOL-formula φ satisfiable with respect to the theory T?

Procedure (lazy approach)

1 Encode as a boolean formula φ ′

2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T -solver)

inconsistent, T -solver returns a conflict set η , add its
negation as a T -lemma
consistent, go on with assignment of next variable

4 If a truth value is assigned to all variables =⇒ SAT
5 If no assignment left =⇒ UNSAT
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SMT-SAT (lazy approach)
Illustration

φ

φ ′ SAT-Solver

T-Solver

SAT

UNSAT

encode
as

boolean
form

ula

start new assign.

assign some var.

consistent?co
ns

is
te
nt

inconsist. (store conflict set)

all vars. assigned

no assignment left
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Interpolation in SMT
Setting

Given two formulae c1 = ¬x1∨x2∨¬x3 and c2 = x2∨x3
c1 ↓ c2 = x2∨¬x3

c1 \c2 = ¬x1
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Interpolation in SMT

Generate an interpolant for the conjunction A∧B.

Compute a proof of unsatisfiability P for A∧B
For every T − lemma ¬η in P compute an interpolant I¬η

for (η \B,η ↓ B)
For every input clause C in P:

if C ∈ A, then IC ≡ C ↓ B
if C ∈ B, then IC ≡>

For every inner node C of P obtained by resolution from
C1 = p∨φ1,C2 = ¬p∨φ2,

if p /∈ B, then IC ≡ IC1 ∨ IC2
else IC ≡ IC1 ∧ IC2

Output the interpolant at the root node, namely I⊥
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Conclusion

Interpolation

an important technique in software verification

available for many relevant theories (e.g. LIA, Equality with
UF, Arrays, Lists)
research in progress for other theories
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Summary

What is interpolation?

automatically generalize formulae and preserve relevant
parts

interpolant (Craig’s definition)

How does it work?

Propositional Logic: resolution proof
First-Order Logic: Resolution proof, Theory interpolation
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Future work

A theory where no efficient interpolation algorithm exists

theory of non-linear integer arithmetic (e.g. x2 +y2 = 1)

27th June 2015 Betim Musa – Interpolation 20 / 22



References I

A. Cimatti, A. Griggio, R. Sebastiani.
Efficient Interpolant Generation in SMT.

K.L.McMillan.
Interpolation and SAT-based Model Checking.

Philipp Rümmer
Craig Interpolation in SAT and SMT
http://satsmt2014.forsyte.at/files/2014/01/
interpolation_philipp.pdf

D. Kroening, G. Weissenbacher .
Lifting Propositional Interpolants to the Word-Level.

27th June 2015 Betim Musa – Interpolation 21 / 22

http://satsmt2014.forsyte.at/files/2014/01/interpolation_philipp.pdf
http://satsmt2014.forsyte.at/files/2014/01/interpolation_philipp.pdf


References II

Wikipedia
Satisfiability Modulo Theories.
https://en.wikipedia.org/wiki/Satisfiability_
Modulo_Theories

27th June 2015 Betim Musa – Interpolation 22 / 22

https://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories
https://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

	A bit of history
	Interpolation
	What is an interpolant?
	Interpolation in Propositional Logic
	Interpolation in First-Order Logic

	Conclusion
	References

