Interpolation
 Seminar Slides

Betim Musa

$27^{\text {th }}$ June 2015

Motivation

```
    program add(int a, int b) {
        var x,i : int;
\ell assume (b \geq 0);
\ell 
\ell i i := 0;
    while(i < b) {
        x := x + 1;
        i := i + 1;
        }
        assert (x == a + b);
```


Motivation

$$
\begin{array}{ll}
\text { program add(int a, int b) \{ } \\
\text { var } \mathrm{x}, \mathrm{i}: \text { int; } \\
\ell_{0} \quad \text { assume }(\mathrm{b} \geq 0) ; & \text { Pro }
\end{array}
$$

$$
\ell_{1} \quad x:=a ;
$$

$$
\ell_{2} \quad \text { i }:=0 ;
$$

while(i < b) \{

$$
x:=x+1 ;
$$

i := i + 1;

$$
\text { \} }
$$

$$
\ell_{\text {err }} \text { assert }(\mathrm{x}!=\mathrm{a}+\mathrm{b}) \text {; }
$$

Motivation

```
program add(int a, int b) {
        var x,i : int;
\ell assume (b \geq 0);
\ell 
\ell i i := 0;
        while(i < b) {
                        x := x + 1;
                i := i + 1;
        }
```


Prove correctness (CEGAR approach)

Idea: Show that all traces from
ℓ_{0} to $\ell_{\text {err }}$ are infeasible.
1 Choose an error trace τ.
2 Show that τ is infeasible.
3 Compute interpolants for τ.
$\ell_{\text {err }}$ assert (x != a + b);

Contents

A bit of history

Interpolation
What is an interpolant?
Interpolation in Propositional Logic Interpolation in First-Order Logic

Conclusion

References

Bit of history

- W. Craig (1957), Linear reasoning. A new form of the Herbrand-Gentzen theorem

Bit of history

- W. Craig (1957), Linear reasoning. A new form of the Herbrand-Gentzen theorem
- K. L. McMillan (2003), Interpolation and SAT-Based Model Checking

Bit of history

■ W. Craig (1957), Linear reasoning. A new form of the Herbrand-Gentzen theorem
\square K. L. McMillan (2003), Interpolation and SAT-Based Model Checking

- A. Cimatti et al. (2007), Efficient Interpolant Generation in SMT

Contents

A bit of history

Interpolation
What is an interpolant?

> Interpolation in Propositional Logic Interpolation in First-Order Logic

Conclusion

References

Interpolant

An interpolant I for the unsatisfiable pair of formulae A, B has the following properties:

Interpolant

An interpolant I for the unsatisfiable pair of formulae A, B has the following properties:

- $A \vDash I$

Interpolant

An interpolant I for the unsatisfiable pair of formulae A, B has the following properties:

- $A=I$
$\square I \wedge B$ is unsatisfiable

Interpolant

An interpolant I for the unsatisfiable pair of formulae A, B has the following properties:

- $A=I$
$\square I \wedge B$ is unsatisfiable
$\square I \preceq A$ and $I \preceq B$ (symbol condition)

Contents

A bit of history

Interpolation
What is an interpolant?
Interpolation in Propositional Logic
Interpolation in First-Order Logic

Conclusion

References

Interpolation in Propositional Logic

Ingredients

1 a pair of unsatisfiable formulae A, B
2 a resolution proof of their unsatisfiability

Interpolation in Propositional Logic

Resolution

Prove unsatisfiability of $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$

Interpolation in Propositional Logic

Resolution

Prove unsatisfiability of $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$
P $\quad(\neg P \vee R) \quad \neg R$

Interpolation in Propositional Logic

Resolution

Prove unsatisfiability of $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$
$P \underset{R}{(\neg P \vee R)} \neg R$

Interpolation in Propositional Logic

Resolution

Prove unsatisfiability of $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$

Interpolation in Propositional Logic

Given: unsatisfiable formulae A, B and a proof of unsatisfiability.

Interpolation in Propositional Logic

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant ITP(v) as follows:

Interpolation in Propositional Logic

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant ITP(v) as follows:

- if v is an input node

Interpolation in Propositional Logic

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant ITP(v) as follows:

- if v is an input node

1 if $v \in A$ then ITP(v) = global_literals(v)
2 else ITP(v) = true

Interpolation in Propositional Logic

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant ITP(v) as follows:

- if v is an input node

1 if $v \in A$ then
ITP(v) = global_literals(v)
2 else ITP(v) = true
\square else v must have two predecessors v_{1}, v_{2} and p_{v} is the pivot variable.

Interpolation in Propositional Logic

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant ITP(v) as follows:

- if v is an input node

1 if $v \in A$ then
ITP $(\mathbf{v})=$ global_literals (\mathbf{v})
2 else ITP(v) = true

- else v must have two predecessors v_{1}, v_{2} and p_{v} is the pivot variable.

11 if p_{V} is local to A, then

$$
\operatorname{ITP}(\mathbf{v})=\operatorname{ITP}\left(\mathbf{v}_{1}\right) \vee \operatorname{ITP}\left(\mathbf{v}_{2}\right)
$$

2 else $\operatorname{ITP}(\mathbf{v})=\operatorname{ITP}\left(\mathbf{v}_{\mathbf{1}}\right) \wedge \operatorname{ITP}\left(\mathbf{v}_{\mathbf{2}}\right)$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$
-ITP $(P)=F A L S E$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$
$\square I T P(P)=F A L S E$
$\square I T P(\neg P \vee R)=R$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$
-ITP $(P)=F A L S E$

- ITP $(\neg P \vee R)=R$
$\square \operatorname{ITP}(\neg R)=\operatorname{TRUE}$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$
-ITP $(P)=F A L S E$

- ITP $(\neg P \vee R)=R$
$\square \operatorname{ITP}(\neg R)=\operatorname{TRUE}$

- $\operatorname{ITP}(R)=$ $I T P(P) \vee I T P(\neg P \vee R)$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$

- ITP $(P)=F A L S E$
- ITP $(\neg P \vee R)=R$
$\square \operatorname{ITP}(\neg R)=\operatorname{TRUE}$
$\square \operatorname{ITP}(R)=$ $\operatorname{ITP}(P) \vee I T P(\neg P \vee R)$
- ITP(false) $=$ $\operatorname{ITP}(R) \wedge I T P(\neg R)$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$

- ITP $(P)=F A L S E$
- ITP $(\neg P \vee R)=R$
$\square \operatorname{ITP}(\neg R)=\operatorname{TRUE}$
$\square \operatorname{ITP}(R)=$ $\operatorname{ITP}(P) \vee I T P(\neg P \vee R)$
- ITP(false) $=$ $\operatorname{ITP}(R) \wedge I T P(\neg R)$

Interpolation in Propositional Logic

Example

Formula: $\overbrace{P \wedge(\neg P \vee R)}^{A} \wedge \overbrace{\neg R}^{B}$

$$
\begin{aligned}
& I T P(P)=F A L S E \\
& I T P(\neg P \vee R)=R \\
& I T P(\neg R)=T R U E \\
& I T P(R)= \\
& I T P(P) \vee I T P(\neg P \vee R) \\
& I T P(\text { false })= \\
& I T P(R) \wedge I T P(\neg R)
\end{aligned}
$$

The resulting interpolant: ITP(false) =
$(F A L S E \vee R) \wedge T R U E=R$

Contents

A bit of history

Interpolation
What is an interpolant?
Interpolation in Propositional Logic
Interpolation in First-Order Logic

Conclusion

References

Interpolation in First-Order Logic

Overview

Interesting theories in practice

Interpolation in First-Order Logic
 Overview

Interesting theories in practice

- Linear Integer Arithmetic
- Presburger Arithmetic
- Equality Theory with Uninterpreted Functions
- Theory of Arrays
- Theory of Lists

Interpolation in First-Order Logic
 Overview

Interesting theories in practice

- Linear Integer Arithmetic
- Presburger Arithmetic
- Equality Theory with Uninterpreted Functions
- Theory of Arrays
- Theory of Lists

Requirements

SAT-Solver (lazy)
a theory solver (T-Solver)

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

Procedure (lazy approach)

1 Encode as a boolean formula ϕ^{\prime}

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

Procedure (lazy approach)

1 Encode as a boolean formula ϕ^{\prime}
2 Assign a truth value to some variable (SAT-Solver)

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

Procedure (lazy approach)

1 Encode as a boolean formula ϕ^{\prime}
2 Assign a truth value to some variable (SAT-Solver)
${ }_{3}$ Check the current assignment for consistency (T-solver)

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

Procedure (lazy approach)

1 Encode as a boolean formula ϕ^{\prime}
2 Assign a truth value to some variable (SAT-Solver)
${ }_{3}$ Check the current assignment for consistency (T-solver)

- inconsistent, T-solver returns a conflict set η, add its negation as a T-lemma

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

Procedure (lazy approach)

1 Encode as a boolean formula ϕ^{\prime}
2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T-solver)
inconsistent, T-solver returns a conflict set η, add its negation as a T-lemma
consistent, go on with assignment of next variable

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

Procedure (lazy approach)

1 Encode as a boolean formula ϕ^{\prime}
2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T-solver)
inconsistent, T-solver returns a conflict set η, add its negation as a T-lemma
consistent, go on with assignment of next variable
4 If a truth value is assigned to all variables \Rightarrow SAT

SMT: Satisfiability Modulo Theory

Is a given FOL-formula ϕ satisfiable with respect to the theory T ?

Procedure (lazy approach)

1 Encode as a boolean formula ϕ^{\prime}
2 Assign a truth value to some variable (SAT-Solver)
3 Check the current assignment for consistency (T-solver)
inconsistent, T-solver returns a conflict set η, add its negation as a T-lemma
consistent, go on with assignment of next variable
4 If a truth value is assigned to all variables \Rightarrow SAT
5 If no assignment left \Rightarrow UNSAT

SMT-SAT (lazy approach)

Illustration
ϕ

SMT-SAT (lazy approach)

Illustration

SMT-SAT (lazy approach)

Illustration
start new assign.

SMT-SAT (lazy approach)

Illustration

SMT-SAT (lazy approach)

Illustration

SMT-SAT (lazy approach)

Illustration

SMT-SAT (lazy approach)

Illustration

SMT-SAT (lazy approach)

Illustration

SMT-SAT (lazy approach)

Illustration

Interpolation in SMT
 Setting

Given two formulae $c_{1}=\neg x_{1} \vee x_{2} \vee \neg x_{3}$ and $c_{2}=x_{2} \vee x_{3}$

- $c_{1} \downarrow c_{2}=x_{2} \vee \neg x_{3}$

Interpolation in SMT
 Setting

Given two formulae $c_{1}=\neg x_{1} \vee x_{2} \vee \neg x_{3}$ and $c_{2}=x_{2} \vee x_{3}$

- $c_{1} \downarrow c_{2}=x_{2} \vee \neg x_{3}$
- $c_{1} \backslash c_{2}=\neg x_{1}$

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \backslash B, \eta \downarrow B)$

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for ($\eta \backslash B, \eta \downarrow B$)
- For every input clause C in \mathscr{P} :

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for ($\eta \backslash B, \eta \downarrow B$)
- For every input clause C in \mathscr{P} :
- if $C \in A$, then $I_{C} \equiv C \downarrow B$

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
\square For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for ($\eta \backslash B, \eta \downarrow B$)
- For every input clause C in \mathscr{P} :
- if $C \in A$, then $I_{C} \equiv C \downarrow B$
- if $C \in B$, then $I_{C} \equiv \top$

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for ($\eta \backslash B, \eta \downarrow B$)
- For every input clause C in \mathscr{P} :
- if $C \in A$, then $I_{C} \equiv C \downarrow B$
\square if $C \in B$, then $I_{C} \equiv T$
- For every inner node C of \mathscr{P} obtained by resolution from $C_{1}=p \vee \phi_{1}, C_{2}=\neg p \vee \phi_{2}$,

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for ($\eta \backslash B, \eta \downarrow B$)
- For every input clause C in \mathscr{P} :
- if $C \in A$, then $I_{C} \equiv C \downarrow B$
\square if $C \in B$, then $I_{C} \equiv T$
- For every inner node C of \mathscr{P} obtained by resolution from $C_{1}=p \vee \phi_{1}, C_{2}=\neg p \vee \phi_{2}$,
\square if $p \notin B$, then $I_{C} \equiv I_{C_{1}} \vee I_{C_{2}}$

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for ($\eta \backslash B, \eta \downarrow B$)
- For every input clause C in \mathscr{P} :
- if $C \in A$, then $I_{C} \equiv C \downarrow B$
\square if $C \in B$, then $I_{C} \equiv T$
\square For every inner node C of \mathscr{P} obtained by resolution from $C_{1}=p \vee \phi_{1}, C_{2}=\neg p \vee \phi_{2}$,
- if $p \notin B$, then $I_{C} \equiv I_{C_{1}} \vee I_{C_{2}}$
- else $I_{C} \equiv I_{C_{1}} \wedge I_{C_{2}}$

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every T - lemma $\neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for ($\eta \backslash B, \eta \downarrow B$)
- For every input clause C in \mathscr{P} :
- if $C \in A$, then $I_{C} \equiv C \downarrow B$
\square if $C \in B$, then $I_{C} \equiv T$
- For every inner node C of \mathscr{P} obtained by resolution from $C_{1}=p \vee \phi_{1}, C_{2}=\neg p \vee \phi_{2}$,
- if $p \notin B$, then $I_{C} \equiv I_{C_{1}} \vee I_{C_{2}}$
- else $I_{C} \equiv I_{C_{1}} \wedge I_{C_{2}}$
\square Output the interpolant at the root node, namely I_{\perp}

Conclusion

Interpolation

an important technique in software verification

Conclusion

Interpolation

- an important technique in software verification
available for many relevant theories (e.g. LIA, Equality with UF, Arrays, Lists)

Conclusion

Interpolation

- an important technique in software verification
available for many relevant theories (e.g. LIA, Equality with UF, Arrays, Lists)
- research in progress for other theories

What is interpolation?

automatically generalize formulae and preserve relevant parts

Summary

What is interpolation?

automatically generalize formulae and preserve relevant parts

- interpolant (Craig's definition)

Summary

What is interpolation?

automatically generalize formulae and preserve relevant parts

- interpolant (Craig's definition)

What is interpolation?

automatically generalize formulae and preserve relevant parts

- interpolant (Craig's definition)

How does it work?
Propositional Logic: resolution proof

Summary

What is interpolation?

automatically generalize formulae and preserve relevant parts

- interpolant (Craig's definition)

How does it work?

- Propositional Logic: resolution proof

First-Order Logic: Resolution proof, Theory interpolation

Future work

A theory where no efficient interpolation algorithm exists

theory of non-linear integer arithmetic (e.g. $x^{2}+y^{2}=1$)

References I

© A. Cimatti, A. Griggio, R. Sebastiani.
Efficient Interpolant Generation in SMT.
圊 K.L.McMillan.
Interpolation and SAT-based Model Checking.
R Philipp Rümmer
Craig Interpolation in SAT and SMT
http://satsmt2014.forsyte.at/files/2014/01/
interpolation_philipp.pdf
R D. Kroening, G. Weissenbacher .
Lifting Propositional Interpolants to the Word-Level.

References II

國 Wikipedia

Satisfiability Modulo Theories.

https://en.wikipedia.org/wiki/Satisfiability_ Modulo_Theories

