Interpolation Seminar Slides

Albert-Ludwigs-Universität Freiburg

Betim Musa 27th June 2015


```
program add(int a, int b) {
       var x,i : int;
\ell_0
       assume(b \geq 0);
\ell_1
    x := a;
\ell_2
       i := 0;
       while(i < b) {</pre>
\ell_3
            x := x + 1;
\ell_4
            i := i + 1;
       }
      assert (x == a + b);
```

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

	<pre>program add(int a, int</pre>	b) {
	var x,i : int;	Dre
ℓ ₀	$assume(b \ge 0);$	PIO
ℓ_1	x := a;	app
ℓ_2	i := 0;	Idea
	while(i < b) {	ℓ_0 to
ℓ_3	x := x + 1;	
ℓ_4	i := i + 1;	
	}	
ℓ_{err}	assert (x != a + b);	

Prove correctness (CEGAR approach)

dea: Show that all traces from ℓ_0 to ℓ_{err} are infeasible.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

	<pre>program add(int a, int</pre>	b) {
	var x,i : int;	Due
ℓ ₀	$assume(b \ge 0);$	Pro
ℓ_1	x := a;	app
ℓ_2	i := 0;	Idea
	while(i < b) {	ℓ_0 to
l ₃	x := x + 1;	1
ℓ_4	i := i + 1;	2
	}	3
		5
ℓ_{err}	assert (x != a + b);	

Prove correctness (CEGAR approach)

Idea: Show that all traces from ℓ_0 to ℓ_{err} are infeasible.

- 1 Choose an error trace τ .
- 2 Show that τ is infeasible.
- Sompute interpolants for τ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

A bit of history

Interpolation What is an interpolant? Interpolation in Propositional Logic Interpolation in First-Order Logic

Conclusion

References

W. Craig (1957), Linear reasoning. A new form of the Herbrand-Gentzen theorem

- W. Craig (1957), Linear reasoning. A new form of the Herbrand-Gentzen theorem
- K. L. McMillan (2003), Interpolation and SAT-Based Model Checking

- W. Craig (1957), Linear reasoning. A new form of the Herbrand-Gentzen theorem
- K. L. McMillan (2003), Interpolation and SAT-Based Model Checking
- A. Cimatti et al. (2007), Efficient Interpolant Generation in SMT

A bit of history

Interpolation

What is an interpolant?

Interpolation in Propositional Logic Interpolation in First-Order Logic

Conclusion

References

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

■ *A* |= *I*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- *A* |= *I*
- I \wedge B is unsatisfiable

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 つくの

- $\blacksquare A \models I$
- I \wedge B is unsatisfiable
- I $\leq A$ and $I \leq B$ (symbol condition)

A bit of history

Interpolation What is an interpolant? Interpolation in Propositional Logic Interpolation in First-Order Logic

Conclusion

References

(日)

Ingredients

- a pair of unsatisfiable formulae A, B
- 2 a resolution proof of their unsatisfiability

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○ ○ ○

Prove unsatisfiability of $\overbrace{P \land (\neg P \lor R)}^{A} \land \overbrace{\neg R}^{B}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Prove unsatisfiability of $\overrightarrow{P \land (\neg P \lor R)} \land \overrightarrow{\neg R}^B$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Prove unsatisfiability of $\overbrace{P \land (\neg P \lor R)}^{A} \land \overbrace{\neg R}^{B}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Given: unsatisfiable formulae A, B and a proof of unsatisfiability.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

BURG

1

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant *ITP*(v) as follows:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の父(?)

BURG

Betim Musa - Interpolation

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant *ITP*(v) as follows:

■ if v is an input node

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ◆ ●

REIBURG

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant *ITP*(v) as follows:

- if v is an input node
 - if $v \in A$ then ITP(v) = global_literals(v)
 - 2 else ITP(v) = true

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

BURG

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant *ITP*(v) as follows:

- if v is an input node
 - if v ∈ A then ITP(v) = global_literals(v)
 else ITP(v) = true
- else v must have two predecessors v_1, v_2 and p_v is the pivot variable.

BURG

10/22

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Given: unsatisfiable formulae A, B and a proof of unsatisfiability. For every vertex v of the proof define the interpolant ITP(v) as follows:

- if v is an input node
 - if v ∈ A then ITP(v) = global_literals(v)
 2 else ITP(v) = true
- else v must have two predecessors v_1, v_2 and p_v is the pivot variable.
 - 1 if p_v is *local* to A, then ITP(v) = ITP(v_1) \lor ITP(v_2)
 - 2 else ITP(v) = ITP(v₁) \land ITP(v₂)

BURG

Formula: $\overrightarrow{P \land (\neg P \lor R)} \land \overrightarrow{\neg R}^B$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Formula: $\overrightarrow{P \land (\neg P \lor R)} \land \overrightarrow{\neg R}^B$

 $\blacksquare ITP(P) = FALSE$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Formula:
$$\overrightarrow{P \land (\neg P \lor R)} \land \overrightarrow{\neg R}$$

ITP(*P*) = *FALSE ITP*(¬*P* ∨ *R*) = *R*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Formula:
$$\overbrace{P \land (\neg P \lor R)}^{A} \land \overbrace{\neg R}^{B}$$

ITP(P) = FALSE
 ITP(¬P∨R) = R
 ITP(¬R) = TRUE

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- $\blacksquare ITP(P) = FALSE$
- $\blacksquare ITP(\neg P \lor R) = R$
- $\blacksquare ITP(\neg R) = TRUE$
- $\blacksquare ITP(R) =$ $ITP(P) \lor ITP(\neg P \lor R)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへの

Formula:
$$\overbrace{P \land (\neg P \lor R)}^{A} \land \overbrace{\neg R}^{B}$$

- $\blacksquare ITP(P) = FALSE$
- $\blacksquare ITP(\neg P \lor R) = R$
- $\blacksquare ITP(\neg R) = TRUE$
- $\blacksquare ITP(R) =$ $ITP(P) \lor ITP(\neg P \lor R)$
- ITP(false) = $ITP(R) \land ITP(\neg R)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Formula:
$$\overbrace{P \land (\neg P \lor R)}^{A} \land \overbrace{\neg R}^{B}$$

- $\blacksquare ITP(P) = FALSE$
- $\blacksquare ITP(\neg P \lor R) = R$
- $\blacksquare ITP(\neg R) = TRUE$
- $\blacksquare ITP(R) =$ $ITP(P) \lor ITP(\neg P \lor R)$
- ITP(false) = $ITP(R) \land ITP(\neg R)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Formula:
$$\overbrace{P \land (\neg P \lor R)}^{A} \land \overbrace{\neg R}^{B}$$

- $\blacksquare ITP(P) = FALSE$
- $\blacksquare ITP(\neg P \lor R) = R$
- $\blacksquare ITP(\neg R) = TRUE$
- $\blacksquare ITP(R) =$ $ITP(P) \lor ITP(\neg P \lor R)$
- ITP(false) = $ITP(R) \land ITP(\neg R)$

The resulting interpolant: ITP(false) = $(FALSE \lor R) \land TRUE = R$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

A bit of history

Interpolation What is an interpolant? Interpolation in Propositional Logic Interpolation in First-Order Logic

Conclusion

References

(日)

Interpolation in First-Order Logic Overview

UNI FREIBURG

Interesting theories in practice

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Interesting theories in practice

- Linear Integer Arithmetic
- Presburger Arithmetic
- Equality Theory with Uninterpreted Functions
- Theory of Arrays
- Theory of Lists

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 ○の久(で)
Interesting theories in practice

- Linear Integer Arithmetic
- Presburger Arithmetic
- Equality Theory with Uninterpreted Functions
- Theory of Arrays
- Theory of Lists

Requirements

SAT-Solver (lazy)a theory solver (*T*-Solver)

3

< ロ > < 同 > < 回 > < 回 > < □ > <

B 🖌 🖌 B 🕨 4 A 1

Procedure (lazy approach)

👖 Encode as a boolean formula ϕ'

IBURG

Procedure (lazy approach)

- 👖 Encode as a boolean formula ϕ'
- 2 Assign a truth value to some variable (SAT-Solver)

◆□▶ ◆□▶ ◆ ヨ ▶ ◆ ヨ ▶ ● ヨ ● � � � �

Cal

Procedure (lazy approach)

- 🔟 Encode as a boolean formula ϕ'
- 2 Assign a truth value to some variable (SAT-Solver)
- Check the current assignment for consistency (T-solver)

◆□ > ◆□ > ◆三 > ◆三 > ・三 · のへの

Procedure (lazy approach)

- 🔟 Encode as a boolean formula ϕ'
- 2 Assign a truth value to some variable (SAT-Solver)
- Check the current assignment for consistency (T-solver)
 - **inconsistent**, *T*-solver returns a conflict set η , add its negation as a *T*-lemma

Procedure (lazy approach)

- 🔟 Encode as a boolean formula ϕ'
- 2 Assign a truth value to some variable (SAT-Solver)
- Check the current assignment for consistency (T-solver)
 - inconsistent, *T*-solver returns a conflict set η, add its negation as a *T*-lemma
 - consistent, go on with assignment of next variable

Procedure (lazy approach)

- 🔟 Encode as a boolean formula ϕ'
- 2 Assign a truth value to some variable (SAT-Solver)
- Check the current assignment for consistency (T-solver)
 - inconsistent, *T*-solver returns a conflict set η, add its negation as a *T*-lemma
 - consistent, go on with assignment of next variable
- If a truth value is assigned to all variables \implies SAT

Procedure (lazy approach)

- 🔟 Encode as a boolean formula ϕ'
- 2 Assign a truth value to some variable (SAT-Solver)
- 3 Check the current assignment for consistency (T-solver)
 - inconsistent, *T*-solver returns a conflict set η, add its negation as a *T*-lemma
 - consistent, go on with assignment of next variable
- 4 If a truth value is assigned to all variables \Longrightarrow SAT
- 5 If no assignment left \Longrightarrow UNSAT

Illustration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Illustration

enco 2 boolea BIN

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Illustration

Illustration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

15/22

Illustration

イロト イロト イヨト

Illustration

27th June 2015

Betim Musa - Interpolation

イロト イロト イヨト

Illustration

э

Illustration

REIBURG

Illustration

Given two formulae $c_1 = \neg x_1 \lor x_2 \lor \neg x_3$ and $c_2 = x_2 \lor x_3$

$$\square c_1 \downarrow c_2 = x_2 \lor \neg x_3$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Given two formulae $c_1 = \neg x_1 \lor x_2 \lor \neg x_3$ and $c_2 = x_2 \lor x_3$

$$C_1 \downarrow C_2 = X_2 \lor \neg X_3$$
$$C_1 \setminus C_2 = \neg X_1$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣ん(?)

Interpolation in SMT

Generate an interpolant for the conjunction $A \wedge B$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Generate an interpolant for the conjunction $A \wedge B$.

Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

UNI FREIBURG

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$

UNI FREIBURG

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$
- For every input clause C in \mathcal{P} :

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$
- For every input clause C in \mathcal{P} :
 - If $C \in A$, then $I_C \equiv C \downarrow B$

FREIBURG

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$
- For every input clause C in \mathcal{P} :

If
$$C \in A$$
, then $I_C \equiv C \downarrow B$

If $C \in B$, then $I_C \equiv \top$

・ロン ・ 「 ・ ・ ヨン・ ・ ヨン・ ヨー

UNI FREIBURG

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$
- For every input clause C in \mathcal{P} :

If
$$C \in A$$
, then $I_C \equiv C \downarrow B$

If
$$C \in B$$
, then $I_C \equiv \top$

For every inner node C of \mathscr{P} obtained by resolution from $C_1 = p \lor \phi_1, C_2 = \neg p \lor \phi_2,$

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$
- For every input clause C in \mathcal{P} :

If
$$C \in A$$
, then $I_C \equiv C \downarrow B$

- If $C \in B$, then $I_C \equiv \top$
- For every inner node C of 𝒫 obtained by resolution from C₁ = p ∨ φ₁, C₂ = ¬p ∨ φ₂,
 if p ∉ B, then I_C ≡ I_{C1} ∨ I_{C2}

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$
- For every input clause C in \mathcal{P} :

If
$$C \in A$$
, then $I_C \equiv C \downarrow B$

- If $C \in B$, then $I_C \equiv \top$
- For every inner node C of 𝒫 obtained by resolution from C₁ = p ∨ φ₁, C₂ = ¬p ∨ φ₂,
 if p ∉ B, then I_C ≡ I_{C1} ∨ I_{C2}
 else I_C ≡ I_{C1} ∧ I_{C2}

Generate an interpolant for the conjunction $A \wedge B$.

- Compute a proof of unsatisfiability \mathscr{P} for $A \wedge B$
- For every $T lemma \neg \eta$ in \mathscr{P} compute an interpolant $I_{\neg \eta}$ for $(\eta \setminus B, \eta \downarrow B)$
- For every input clause C in \mathcal{P} :

If
$$C \in A$$
, then $I_C \equiv C \downarrow B$

- If $C \in B$, then $I_C \equiv \top$
- For every inner node C of 𝒫 obtained by resolution from C₁ = p ∨ φ₁, C₂ = ¬p ∨ φ₂,
 if p ∉ B, then I_C ≡ I_{C1} ∨ I_{C2}
 else I_C ≡ I_{C1} ∧ I_{C2}
- Output the interpolant at the root node, namely I_{\perp}

Interpolation

an important technique in software verification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Conclusion

Interpolation

an important technique in software verification
 available for many relevant theories (e.g. LIA, Equality with UF, Arrays, Lists)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Conclusion

Interpolation

- an important technique in software verification
- available for many relevant theories (e.g. LIA, Equality with UF, Arrays, Lists)
- research in progress for other theories

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ● ○ ○ ○

What is interpolation?

automatically generalize formulae and preserve relevant parts

э

What is interpolation?

- automatically generalize formulae and preserve relevant parts
- interpolant (Craig's definition)

What is interpolation?

- automatically generalize formulae and preserve relevant parts
- interpolant (Craig's definition)

What is interpolation?

- automatically generalize formulae and preserve relevant parts
- interpolant (Craig's definition)

How does it work?

Propositional Logic: resolution proof

What is interpolation?

- automatically generalize formulae and preserve relevant parts
- interpolant (Craig's definition)

How does it work?

- Propositional Logic: resolution proof
- First-Order Logic: Resolution proof, Theory interpolation

A theory where no efficient interpolation algorithm exists

theory of non-linear integer arithmetic (e.g. $x^2 + y^2 = 1$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Betim Musa - Interpolation

3

 interpolation_philipp.pdf
D. Kroening, G. Weissenbacher . Lifting Propositional Interpolants to the Word-Level.

http://satsmt2014.forsyte.at/files/2014/01/

 K.L.McMillan. Interpolation and SAT-based Model Checking.
Philipp Rümmer Craig Interpolation in SAT and SMT

A. Cimatti, A. Griggio, R. Sebastiani. Efficient Interpolant Generation in SMT.

Wikipedia Satisfiability Modulo Theories. https://en.wikipedia.org/wiki/Satisfiability_ Modulo_Theories

Betim Musa - Interpolation