
–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 1: Introduction

2015-04-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

2/37

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on April 03,2015 at 13:47:32 UTC from IEEE Xplore. Restrictions apply.

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

3/37

software engineering — (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.
(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

Software Engineering: Multi-person Development of Multi-version Pro-
grams. D. L. Parnas (2011)

software engineering — 1. the systematic application of scientific and tech-
nological knowledge, methods, and experience to the design, implementation,
testing, and documentation of software. 2. the application of a systematic,
disciplined, quantifiable approach to the development, operation, and mainte-
nance of software; that is, the application of engineering to software.

ISO/IEC/IEEE 24765 (2010)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

4/37

software engineering — (1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of soft-
ware; that is, the application of engineering to soft-
ware. (2) The study of approaches as in (1).

IEEE 610.12 (1990)

Software engineering — the establishment and use
of sound engineering principles to obtain economi-
cally software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

Software Engineering: Multi-person Development
of Multi-version Programs. D. L. Parnas (2011)

software engineering — 1. the systematic ap-
plication of scientific and technological knowledge,
methods, and experience to the design, implemen-
tation, testing, and documentation of software. 2.
the application of a systematic, disciplined, quantifi-
able approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.

ISO/IEC/IEEE 24765 (2010)
0018-9162/01/$10.00 © 2001 IEEEComputer

Software
Engineering in
the Academy

T
here is no universally accepted definition of software engineering.
For some, software engineering is just a glorified name for program-
ming. If you are a programmer, you might put “software engineer”
on your business card but never “programmer.” Others have higher
expectations. A textbook definition of the term might read something

like this: “the body of methods, tools, and techniques intended to produce qual-
ity software.”

Rather than just emphasizing quality, we could distinguish software engi-
neering from programming by its industrial nature, leading to another definition:
“the development of possibly large systems intended for use in production envi-
ronments, over a possibly long period, worked on by possibly many people, and
possibly undergoing many changes,” where “development” includes manage-
ment, maintenance, validation, documentation, and so forth.

David Parnas,1 a pioneer in the field, emphasizes the “engineering” part and
advocates a software engineering education firmly rooted in traditional engi-
neering—including courses on materials and the like—and split from computer
science the way electrical engineering is separate from physics.

Because this article presents a broad perspective on software education, I won’t
settle on any of these definitions; rather, I’d like to accept that they are all in
some way valid and retain all the views of software they encompass. In fact, I
am not just focusing on the “software engineering courses” traditionally offered
in many universities but more generally on how to instill software engineering
concerns into an entire software curriculum.

If not everyone agrees on the definition of the discipline, few question its
importance. We might have wished for less embarrassing testimonials of our
work’s societal relevance than the Y2K scare, but it is still fresh enough in every-
one’s mind to remind us how much the world has come to rely on software sys-
tems. The institutions that teach software—either as part of computer science
or in a specific software engineering program—are responsible for producing
software professionals who will build and maintain these systems to the satis-
faction of their beneficiaries.

SOFTWARE PROFESSIONALS

Judging by the employment situation, current and future graduates can be happy
with their studies. The Information Technology Association of America estimated
in April 20002 that 850,000 IT jobs would go unfilled in the next 12 months. The
dearth of qualified personnel is just as perceptible in Europe and Australia. Salaries
are excellent. Project leaders wake up at night worrying about headhunters hir-
ing away some of their best developers—or pondering the latest offers they received
themselves.

Institutions that teach

software are responsible

for producing

professionals who will

build and maintain

systems to the

satisfaction of their

beneficiaries. This

article presents some

ideas on how best to

honor this

responsibility.

Bertrand Meyer
Interactive Software Engineering

The course’s working definition of Software Engineering

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

5/37

software engineering — (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.
(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

Engineering vs. Non-Engineering

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

6/37

workshop
(technical product)

studio
(artwork)

Mental
prerequisite

the existing and available
technical know-how

artist’s inspiration, among
others

Deadlines can usually be planned with
sufficient precision

cannot be planned due to
dependency on artist’s
inspiration

Price oriented on cost, thus
calculable

determined by market value,
not by cost

Norms and
standards

exist, are known and are
usually respected

are rare and, if known, not
respected

Evaluation and
comparison

can be conducted using
objective, quantified criteria

is only subjectively possible,
results are disputed

Author remains anonymous, often
lacks emotional ties to the
product

considers the artwork as part
of him/herself

Warranty and
liability

are clearly regulated, cannot
be excluded

are not defined and in
practice hardly enforceable

(Ludewig and Lichter, 2013)

The course’s working definition of Software Engineering

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

7/37

software engineering — (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.
(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

“obtain economically” (Bauer, 1971)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

8/37

scope/
quality

cost

time

The course’s working definition of Software Engineering

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

9/37

software engineering — (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.
(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

“software that is reliable and works efficiently” (Bauer, 1971)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

10/37

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability
maturity

fault tolerance
recoverability

usability

understandability

learnability

operability

attractiveness

efficiency time behaviour
resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence
replaceability

6.1 Functionality
The capability of the software product to provide
functions which meet stated and implied needs
when the software is used under specified condi-
tions.

6.1.1 Suitability
The capability of the software product to provide
an appropriate set of functions for specified tasks
and user objectives.

“software that is reliable and works efficiently” (Bauer, 1971)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

10/37

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability
maturity

fault tolerance
recoverability

usability

understandability

learnability

operability

attractiveness

efficiency time behaviour
resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence
replaceability

The course’s working definition of Software Engineering

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

11/37

software engineering — (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.
(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

“software”

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

12/37

software — Computer programs, procedures, and possibly associated docu-
mentation and data pertaining to the operation of a computer system.
See also: application software; support software; system software.
Contrast with: hardware. IEEE 610.12 (1990)

Note: not all software created in a software project is visible in the final product,
e.g. build scripts, test drivers, stubs, etc.

Some Empirical Findings

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

13/37

Erfolgs- und Misserfolgsfaktoren

bei der Durchführung von Hard- und

Softwareentwicklungsprojekten

in Deutschland

2006

Autoren:

Ralf Buschermöhle
Heike Eekhoff
Bernhard Josko

Report: VSEK/55/D
Version: 1.1
Datum: 28.09.2006

Characteristics of Software Projects in SUCCESS

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

14/37

28.57
5.82

1.85

21.16

41.01

< 10

10-49

50-249

250-499

≥ 500

employees in company (378 responses)

3.17

30.16
6.88

5.03

25.66

29.1

1-9,999

10,000-99,999

100,000-499,999

500,000-999,999

≥ 1,000,000

not specified

budget in e (378 responses)

33.07
2.91

10.05

22.49
25.13

≤ 3

> 3-6

> 6-12

> 12-24

> 24

planned duration in months (378 responses)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

business
critical

mission
critical

safety
critical

Criticality (378 responses, 30 ’not spec.’)

Projectsuccess, Budget, Functionality

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

15/37

97.35
2.65

completed

cancelled

project completion (378 responses)

81.52

11.14

3.26

kept

below

above

budget (368 responses)

0.27

82.61

4.89

4.89

5.16

1.9
25-49%

50-74%

75-89%

90-94%

95-99%

100%

main functionality realised (368 responses)

4.89

57.61

8.15
7.61

13.04

4.89

2.99

< 25%

25-49%

50-74%

75-89%

90-94%

95-99%

100%

secondary functionality realised (368 responses)

Deadlines, Project Leader, Process Model

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

16/37

72.01

24.73

2.45

kept

early

late

deadline (368 responses)

29.67

15.38

5.49

9.89

20.88

< 20%

20-49%

50-99%

100-199%

≥ 200%

deadline missed by (91 responses)

77.51

3.17

19.31

leader responded

appointed

not appointed

existence of project leader (378 responses)

2.68

39.95

57.41

not spec.

used

not used

use of process model (378 responses)

Course Goals and Content

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

17/37

Course Goals and Content

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

18/37

• First of all:

• communicate/cooperate
with “real” software engineers

• enable further study of today’s
software engineering research

• To this end:

• provide a broad overview over
software engineering research

• point out areas, landmarks and elaborate
example techniques/formalisms/tools

• ... with an emphasis on formal methods

L 1: 20.4., Mo
Introduction T 1: 23.4., Do

L 2: 27.4., Mo
L 3: 30.4., Do
L 4: 4.5., Mo

Development
Process, Metrics

T 2: 7.5., Do
L 5: 11.5., Mo
- 14.5., Do
L 6: 18.5., Mo
L 7: 21.5., Do
- 25.5., Mo
- 28.5., Do

Requirements
Engineering

T 3: 1.6., Mo
- 4.6., Do
L 8: 8.6., Mo
L 9: 11.6., Do
L 10: 15.6., Mo

Design Modelling
& Analysis

T 4: 18.6., Do
L 11: 22.6., Mo
L 12: 25.6., Do
L 13: 29.6., Mo

Implementation,
Testing

T 5: 2.7., Do
L 14: 6.7., Mo
L 15: 9.7., Do
L 16: 13.7., Mo

Formal
Verification

T 6: 16.7., Do
L 17: 20.7., Mo

The Rest L 18: 23.7., Do

Course Goals and Content

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

18/37

• First of all:

• communicate/cooperate
with “real” software engineers

• enable further study of today’s
software engineering research

• To this end:

• provide a broad overview over
software engineering research

• point out areas, landmarks and elaborate
example techniques/formalisms/tools

• ... with an emphasis on formal methods

L 1: 20.4., Mo
Introduction T 1: 23.4., Do

L 2: 27.4., Mo
L 3: 30.4., Do
L 4: 4.5., Mo

Development
Process, Metrics

T 2: 7.5., Do
L 5: 11.5., Mo
- 14.5., Do
L 6: 18.5., Mo
L 7: 21.5., Do
- 25.5., Mo
- 28.5., Do

Requirements
Engineering

T 3: 1.6., Mo
- 4.6., Do
L 8: 8.6., Mo
L 9: 11.6., Do
L 10: 15.6., Mo

Design Modelling
& Analysis

T 4: 18.6., Do
L 11: 22.6., Mo
L 12: 25.6., Do
L 13: 29.6., Mo

Implementation,
Testing

T 5: 2.7., Do
L 14: 6.7., Mo
L 15: 9.7., Do
L 16: 13.7., Mo

Formal
Verification

T 6: 16.7., Do
L 17: 20.7., Mo

The Rest L 18: 23.7., Do

A Glimpse of Formal Methods

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

19/37

Formal Methods (in the Software Development Domain)

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

20/37

... back to “ ‘technological paradise’ where ‘no acts of God can be permitted’
and everything happens according to the blueprints”.

(Kopetz, 2011; Lovins and Lovins, 2001)

Definition. [Bjørner and Havelund (2014)]

A method is called formal method if and only if its techniques and
tools can be explained in mathematics.

Example: If a method includes, as a tool, a specification language, then that
language has

• a formal syntax,

• a formal semantics, and

• a formal proof system.

Formal, Rigorous, or Systematic Development

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

21/37

“The techniques of a formal method help

• construct a specification, and/or

• analyse a specification, and/or

• transform (refine) one (or more) specification(s) into a program.

The techniques of a formal method, (besides the specification languages) are
typically software packages that help developers use the techniques and other
tools.

The aim of developing software, either

• formally (all arguments are formal) or

• rigorously (some arguments are made and they are formal) or

• systematically (some arguments are made on a form that can be made formal)

is to (be able to) reason in a precise manner about properties of what is
being developed.” (Bjørner and Havelund, 2014)

Software, formally

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

22/37

Definition. Software is a finite description S of a (possibly infinite)
set JSK of (finite or infinite) computation paths of the form

σ0
α
1−→ σ1

α
2−→ σ2 · · ·

where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and

• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpreta-
tion of S.

Example: Software, formally

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

23/37

Software is a finite description S of a (possibly infinite) set JSK of (finite or infinite)

computation paths of the form σ0

α
1−−→ σ1

α
2−−→ σ2 · · · .

σi: state/configuration; αi: action/event.

• Programs.

1: public int f(int x, int y) {
2: x = x + y;

3: y = x / 2;

4: return y;

5: }

Example: Software, formally

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

23/37

Software is a finite description S of a (possibly infinite) set JSK of (finite or infinite)

computation paths of the form σ0

α
1−−→ σ1

α
2−−→ σ2 · · · .

σi: state/configuration; αi: action/event.

• Programs.

• HTML.

1: <html>

2: <head>

3: <title>SWT 2015</title>

4: </head>

5: <body/>

6: </html>

Example: Software, formally

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

23/37

Software is a finite description S of a (possibly infinite) set JSK of (finite or infinite)

computation paths of the form σ0

α
1−−→ σ1

α
2−−→ σ2 · · · .

σi: state/configuration; αi: action/event.

• Programs.

• HTML.

• Global Invariants.

x ≥ 0

Example: Software, formally

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

23/37

Software is a finite description S of a (possibly infinite) set JSK of (finite or infinite)

computation paths of the form σ0

α
1−−→ σ1

α
2−−→ σ2 · · · .

σi: state/configuration; αi: action/event.

• Programs.

• HTML.

• Global Invariants.

• State Machines.

Example: Software, formally

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

23/37

Software is a finite description S of a (possibly infinite) set JSK of (finite or infinite)

computation paths of the form σ0

α
1−−→ σ1

α
2−−→ σ2 · · · .

σi: state/configuration; αi: action/event.

• Programs.

• HTML.

• Global Invariants.

• State Machines.

• User’s Manual.

Software Specification, formally

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

24/37

Definition. A software specification is a finite description S of
a (possibly infinite) set JS K of softwares, i.e.

JS K = {(S1, J · K1), . . . }.

The (possibly partial) function J · K : S 7→ JS K is called interpre-
tation of S .

Example: Software Specification

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

25/37

h
tt
p
:/
/
co
m
m
o
n
s.
w
ik
im

ed
ia
.o
rg

(C
C
-b
y-
sa

4
.0
,
D
ir
k
In
g
o
F
ra
n
ke
)

Alphabet:

• M – dispense cash only,

• C – return card only,

• M

C
– dispense cash and return card.

• Customer 1 “don’t care”

(

M.C

∣

∣

∣
C.M

∣

∣

∣

M

C

)

• Customer 2 “you choose, but be consistent”

(M.C) or (C.M)

• Customer 3 “consider human errors”

(C.M)

Literature

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

27/37

. . . more on lecture’s homepage.

h
tt
p
:/
/
w
w
w
.a
n
ta
rc
ti
ca
.g
o
v.
au

(J
an
et

S
h
el
le
y)

Literature

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

28/37

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

29/37

Any questions so far?

Formalia

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

30/37

Who’s Who

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

31/37

• Lecturer: Dr. Bernd Westphal

• Assistant: Sergio Feo Arenis, MSc

• Tutors: Betim, Claus, Jan, Michael

• Homepage:

http://swt.informatik.uni-freiburg.de/teaching/SS2015/swtvl

• Course language: tja, English or German...?

• Script/Media:

• slides without annotations on homepage with beginning of lecture the latest

• slides with annotations on homepage typically soon after the lecture

• recording on ILIAS (stream and download) with max. 1 week delay
(link on homepage)

Questions and Interaction

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

32/37

• Interaction:
absence often moaned but it takes two, so please ask/comment immediately.

• Questions:

• “online”: ask immediately or in the break

• “offline”:

(i) try to solve yourself

(ii) discuss with colleagues

(iii) • Exercises: contact tutor (cf. homepage)

• Rest: contact lecturer (cf. homepage)
or just drop by: Building 52, Room 00-020

• Break:

• We’ll have a 10 min. break in the middle of each lecture from now on,
unless a majority objects now.

Exam

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

33/37

• Exam Admission:

Achieving 50% of the regular admission points (→ next slide) in total
is sufficient for admission to exam.

Typically, 20 regular admission points per exercise sheet.

• Exam Form:

• written exam

• Friday, September, 11th, 2015, 9:00 c.t.

• Building 101, Room: 026+036

• Scores from the exercises do not contribute to the final grade.

Exercises & Tutorials

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

34/37

• Schedule/Submission:

• exercises online with first lecture of a block,
early turn in 24h before tutorial (usually Wednesday, 12:15, local time),
regular turn in right before tutorial (usually Thursday, 12:15, local time).

• should work in groups of approx. 3, clearly give names on submission

• please submit electronically via ILIAS; paper submissions are tolerated

• Rating system: “most complicated rating system ever”

• Admission points (good-will rating, upper bound)
(“reasonable proposal given student’s knowledge before tutorial”)

• Exam-like points (evil rating, lower bound)
(“reasonable proposal given student’s knowledge after tutorial”)

10% bonus for early submission.

• Tutorial: Plenary.

• Together develop one good proposal,
starting from discussion of the early submissions (anonymous).

• Tutorial notes provided as print-outs in subsequent lecture.

Evaluation of the Course

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

35/37

• Mid-term Evaluation(s):

• In addition to the mandatory final evaluation,
we will have intermediate evaluation(s).

• If you decide to leave the course earlier you may want to do us a favour
and tell us the reasons – by participating in the evaluation(s)
(will be announced on homepage).

• Note: we’re always interested in

comments/hints/proposals/wishes/...

concerning form or content.

Feel free to approach us (tutors, Sergio, me) in any form. We don’t bite.

References

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

36/37

References

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

37/37

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530–538.

Bjørner, D. and Havelund, K. (2014). 40 years of formal methods. talk.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC FDIS (2000). Information technology – Software product quality – Part 1: Quality
model. 9126-1:2000(E).

ISO/IEC/IEEE (2010). Systems and software engineering – Vocabulary. 24765:2010(E).

Jones, C. B. et al., editors (2011). Dependable and Historic Computing - Essays Dedicated to
Brian Randell on the Occasion of His 75th Birthday, volume 6875 of LNCS. Springer.

Kopetz, H. (2011). What I learned from Brian. In Jones et al. (2011).

Lovins, A. B. and Lovins, L. H. (2001). Brittle Power - Energy Strategy for National Security.
Rocky Mountain Institute.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Parnas, D. L. (2011). Software engineering: Multi-person development of multi-version
programs. In Jones et al. (2011), pages 413–427.

