
–
0
2
–
2
0
1
5
-0
4
-2
7
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 02:

Project Management, Cost Estimation

2015-04-27

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
re
li
m

–

2/44

Last Lecture:

• Introduction: Engineering, Quality, Software, Software Specification

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• what characterises a project, life cycle, . . . ?

• what is a role, a phase, a milestone, . . . ?

• what are common activities and roles in software development projects?

• what are goals and activities of project management? why project managent?

• what is COCOMO, what is function points? what is it good for?
why to use it with care?

• Content:

• the notion of ‘project’

• project management activities

• what to manage: activities, people, cost and deadlines

• cost estimation, project planning

(Software) Project
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
ro
je
ct

–

3/44

project – A temporary activity that is characterized by having a start date, specific
objectives and constraints, established responsibilities, a budget and schedule, and
a completion date.

If the objective of the project is to develop a software system, then it is sometimes

called a software development or software engineering project. R. H. Thayer (1997)

(software) project – characteristics:

• The duration of a project is limited.

• Each project has an “originator” (person or institution which initiated the project).
The project owner is the originator or its representative. The project leader
reports to the project owner.

• Each project has a purpose, i.e. pursue a bunch of goals. The most important
goal is usually to create or modify software; this software is thus the result of
the project, the product. Other important goals are extension of know-how,
preparation of building blocks for later projects, or utilisation of employees.
The project is called successful if the goals are reached to a high degree.

• The product has a recipient (or will have one).
This recipient is the customer. Later users belong to the customer.

• The project links people, results (intermediate/final products), and resources. The
organisation determines their roles and relations and the external interfaces of the
project. Ludewig & Lichter (2013)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Software Project: The Very Big Picture
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
ro
je
ct

–

4/44

Software!

Customer Developer

software contract

→

10
0

1
0
0

10
0

Developer Customer

software delivery

Software Project: A Closer Look
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
ro
je
ct

–

5/44

Software!

need 1
need 2
need 3
. . .

Customer Developer
announcement

(Lastenheft)

↓

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→
10
0

1
0
0

10
0
Developer Customer

milestone N

→

10
0

1
0
0

10
0

Developer Customer

software delivery

↓

≃
· · ·

“Developer”: legal person,
may comprise many people

Repair!

Customer Developer

maintenance

Topics:

• (software) project management

• manage: tasks, deadlines, resources
(“what? when? by whom?”)

• phases of software projects

• cost estimation, software metrics

• software development processes
(and models thereof)

Cycle and Life Cycle
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
ro
je
ct

–

6/44

cycle — (1) A period of time during which a set of events is completed. See
also: ... IEEE 610.12 (1990)

software life cycle — The period of time that begins when a software product
is conceived and ends when the software is no longer available for use.

The software life cycle typically includes a concept phase, requirements phase, design

phase, implementation phase, test phase, installation and checkout phase, operation and

maintenance phase, and, sometimes, retirement phase.

Note: These phases may overlap or be performed iteratively. IEEE 610.12 (1990)

software development cycle — The period of time that begins with the de-
cision to develop a software product and ends when the software is delivered.

This cycle typically includes a requirements phase, design phase, implementation phase,

test phase, and sometimes, installation and checkout phase.

Notes: (1) the phases listed above may overlap or be performed iteratively, depending upon

the software development approach used. (2) This term is sometimes used to mean a longer

period of time, either the period that ends when the software is no longer being enhanced

by the developer, or the entire software life cycle. IEEE 610.12 (1990)

system life cycle — The period of time that begins when a system is con-
ceived and ends when it is no longer available for use. IEEE 610.12 (1990)

Project Management

–
0
2
–
2
0
1
5
-0
4
-2
7
–
m
a
in

–

7/44

“
T
an
ke
r
S
u
m
m
it
E
u
ro
p
e”

vo
n
w
or
ld
2
4
in

d
er

W
ik
ip
ed
ia

au
f
D
eu
ts
ch
.
L
iz
en
zi
er
t
u
n
te
r
C
C
B
Y
-S
A

3
.0

ü
b
er

W
ik
im

ed
ia

C
o
m
m
o
n
s
-

h
tt
p
:/
/
co
m
m
o
n
s.
w
ik
im

ed
ia
.o
rg
/
w
ik
i/
F
ile
:T
an
ke
r
S
u
m
m
it
E
u
ro
p
e.
JP

G
#
/
m
ed
ia
/
F
ile
:T
an
ke
r
S
u
m
m
it
E
u
ro
p
e.
JP

G

Project Management
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

8/44

http://commons.wikimedia.org/wiki/File:Tanker_Summit_Europe.JPG#/media/File:Tanker_Summit_Europe.JPG

Goals of Project Management
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

9/44

• Main and general goal: a successful project, i.e. project delivers

• defined results

• in demanded quality

• within scheduled time

• using the assigned resources.

10
0

10
0

10
0

Developer Customer

software delivery

Secondary goals:

• build or strengthen good reputation on market,

• acquire knowledge which is useful for later projects,

• develop re-usable components (to save resources later),

• be attractive to employees.

• . . .

Activities of Project Management
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

10/44

• Planning – without plans, a project
cannot be managed. Mistakes in
planning can be hard to resolve.

• Assessment and Control – work results
and project progress have to be assessed
and compared to the plans; it has to be
observed whether participants stick to
agreements.

• Recognising and Fighting Difficulties
as Early as Possible – unforeseen
difficulties and problems in projects are
not exceptional but usual. Therefore,
project management needs to constantly
“screen the horizon for icebergs”, and,
when spotting one, react timely and
effectively. In other words: systematic
risk management.

• Communication – distribute
information between project participants
(project owner, customer, developers,
administration).

• Leading and Motivation of Employees
– leading means: going ahead, showing
the way, “pulling” the group. Most
developers want to achieve good results,
yet need orientation and feedback.

• Creation and Preservation of
Beneficial Conditions – provide
necessary infrastructure and working
conditions for developers (against:
demanding customers, imprecisely stated
goals, organisational restructuring,
economy measures, tight office space,
other projects, . . .)

westphal
Bleistift

What to (Plan and) Manage?
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

11/44

Managing software projects involves

• tasks and activities,

• people and roles,

• costs and deadlines.

What to (Plan and) Manage (1/3)? Tasks and Activities

–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

12/44

What to (Plan and) Manage (1/3)? Tasks and Activities
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

13/44

Work that commonly needs to be done in order to develop or adapt software:

• Analysis – Software is developed to solve a
problem/satisfy a need. Goal of analysis:
understand the problem, assess whether/in
how far software can be used to solve it.

• Specification of Requirements – sort
out, document, assess, extend, correct
. . . results of analysis. Resulting documents
are basis of most other activities!

Formal methods: check consistency, realis-
ability.

• Design, Specification of Modules – Most
software systems are not monolithic but
consist modules or components which in-
teract to realise the overall functionality.
Overall structure is called software archi-
tecture (→ later). Design architecture,
specify component interfaces as precise as
possible to enable concurrent development
and seamless integration.

Formal methods: verify that design meets
requirements.

• Coding and Module Test – The needed modules
are implemented using the chosen programming
language(s). When ready, tested as needed, and
ready for integration.

Formal methods: verify that code implements
design.

• Integration, Test, Approval – System is con-
structed from completed components, interplay
is tested. Customer checks system and declares
approval (or not).

• Deployment, Operation, and Maintenance –
System is installed up to customer needs and be-
comes operational. Occurring errors are fixed.
New requirements (changes, extensions): new
project (so-called maintenance project).

• Dismissing and Replacement – Most software
systems (sooner or later) become obsolete, and
are often replaced by a successor system. Com-
mon reasons: existing system no longer main-
tainable, not adaptable to new or changed re-
quirements.

westphal
Bleistift

What to (Plan and) Manage (2/3)? People and (other) Resources

–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

14/44

(Plan and) Manage (2/3) — People and (other) Resources
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

15/44

Customer Developer

Recall: roles “Customer” and “Developer” are
assumed by legal persons, which often repre-
sent many people.

The same legal person may act as “Customer”
and “Developer” in the same project.

· · · · · ·

Clients Software people

Useful and common roles
in software projects:

• customer, user

• project manager

• (sytems) analyst

• software architect, designer

• (lead) developer
programmer, tester, . . .

• maintenance engineer

• systems administrator

• invisible clients: legislator,
norm/standard supervisory committee

westphal
Bleistift

Excursion: The Concept of Roles
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

16/44

In a software project, at each point in time:

• there is a set P of people, e.g. P =
{

, , , ,
}

• there is a set R of (active) roles, e.g. R =
{

mgr , prg , tst , ana
}

• there is a (many-to-many) relation between elements of P and R

assumes ⊆ P ×R

each person has a role (↓1 assumes = P), each role a person (↓2 assumes = R).

• Example:

mgr

one person, one role

prg

,
prg

,
prg

multiple persons, one role

tst
ana

one person, multiple roles

assumes =
{

(, mgr), (, prg), (, prg), (, prg), (, tst), (, ana)
}

• Possible visualisation: P R
assumes

1..∗ 1..∗

westphal
Bleistift

Excursion: The Concept of Roles Cont’d
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

17/44

mgr

one person, one role

prg

,
prg

,
prg

multiple persons, one role

tst
ana

one person, multiple roles

Roles typically come with responsibilities and rights.

For example,

• tst : a test engineer

• is responsible for quality control

• has the right to raise issue reports

• mgr : a project manager

• has the right to raise issue reports

• is responsible for closing issue reports

• prg : a programmer

• is responsible for reporting unforeseen problems to the project manager

• is responsible for respecting coding conventions

• is responsible for addressing issue reports

(Plan and) Manage (2/3) — People and (other) Resources
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

18/44

Some truisms and commonplaces to keep in mind:

• “Software engineering [...] takes place in the heads of humans, who like to get software or
develop it. Humans are central [in Software Engineering]; for us, that’s not an empty
phrase (‘Floskel’), but a factual statement.” (Ludewig and Lichter, 2013)

• Being discontent with the team situation, doesn’t make people better developers.
(Other way round, in most cases.)

• Recognising and resolving tensions in your team (or at least trying to) is an activity
towards project success, thus a responsibility of each and every team member.

“Everybody is responsible, the project manager is a little bit more responsible.”

• “If somebody stronly insists on a claim which feels obviously wrong to you, he/she may
be true given her/his respective (implicit) terms and assumptions.” (source?)

Try to understand and explicate these terms and assumptions.

• “Never attribute to malice that which can be adequately explained by stupidity.”
(Hanlon’s Razor)

What to (Plan and) Manage (3/3)? Deadlines and Costs

–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

19/44

What to (Plan and) Manage (3/3)? — Deadlines and Costs
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

20/44

Software!

need 1
need 2
need 3
. . .

Customer Developer
announcement

(Lastenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

1
0
0

10
0

Developer Customer

milestone N

→

10
0

1
0
0

10
0

Developer Customer

software delivery

→

Repair!

Customer Developer

maintenance

A phase is a continuous, i.e. not interrupted range of time in which certain works
are carried out and completed. At the end of the phase, there is a milestone.

A phase is successfully completed if the criteria defined by the milestone are satis-

fied. Ludewig & Lichter (2013)

• Phases (in this sense) do not overlap! There may be different “threads of development”
running in parallel, structured by different milestones.

• Splitting a project into phases makes controlling easier; milestones may involve the
customer (accept intermediate results) and trigger payments.

• The granularity of the phase structuring is critical:

• very short phases may not be tolerated by a customer,

• very long phases may mask significant delays longer than necessary.

If necessary:
define internal (customer not involved) and external (customer involved) milestones.

Deadlines Cont’d
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

21/44

• Whether a milestone is reached must be assessable by

• clear,

• objective, and

• unambiguous

criteria.

• The definition of a milestone often comprises:

• a definition of the results which need to be achieved,

• the required quality properties of these results,

• the desired time for reaching the milestone, and

• the instance (person or committee) which decides whether the milestone is reached.

• Milestones can be part of the development contract;
not reaching a defined milestone as planned can lead to legal claims.

Costs
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

22/44

“Next to ‘Software’, ‘Costs’ is one of the terms occurring most often in this
book.” Ludewig and Lichter (2013)

A first approximation:

• cost (‘Kosten’) — all disadvantages of a solution, quantifiable in terms of money or not.

• benefit (‘Nutzen’) (or: negative costs) — all benefits of a solution.

Note: costs and benefits can be very subjective — and are not necessarily
quantifiable...

Super-ordinate goal of many projects:

• Minimize overall costs, i.e. maximise difference between benefits and costs.

(Equivalent: minimize sum of positive and negative costs.)

Costs vs. Benefits: A Closer Look
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

23/44

The benefit of a software is determined by the advantages achievable using the
software; it is influenced by:

• the degree of coincidence between product and requirements,

• additional services, comfort, flexibility etc.

Some examples of cost/benefit pairs: Jones (1990)

Costs Benefits

Labor during
development

Use of existing labor

Labor during
operation

Reduced operational
labor

New equipment?
(purchase,
maintenance,
depreciation)

Replacement of
equipment
maintenance? (sale,
maintenance)

New software
purchases

(Other) use of new
software

Costs Benefits

Conversion from
old system to new

Improvement of
system

Increased data
gathering

Increased control

Employee
discontent

Employee
satisfaction

Training for
employees

Increased
productivity

Lost opportunities Better market
stance, basis for
further growth

Costs: Economics in a Nutshell
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

24/44

Distinguish current cost (‘laufende Kosten’), e.g.

• wages

• management, marketing

• rooms

• computers, networks, software as part of infrastructure

• . . .

and project-related cost (‘projektbezogene Kosten’), e.g.

• additional temporary personnel

• contract costs

• expenses

• hardware and software as part of product or system

• . . .

Software Costs in a Narrower Sense
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

25/44

software costs

net production quality costs

error prevention
costs

analyse-and-fix
costs

error costs

error localisation
costs

error removal
costs

error caused costs
(in operation)

decreased benefit

maintenance
(without quality)

quality assurance

during and after development

Ludewig and Lichter (2013)

westphal
Bleistift

westphal
Bleistift

Discovering Errors Late Can Be Expensive
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

26/44

2

5

10

20

50

100

200

relative cost of an error

Analysis Design Coding Test &
Integration

Acceptance
& Operation

phase of error
detection

larger projects

smaller projects

Relative error costs over latency according to investigations at IBM, etc. by (Boehm, 1979).

Visualisation: Ludewig and Lichter (2013)

Software Project Management Bottom-Line
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
m
g
m
t
–

27/44

“Management, management... Can’t we just sit down and write some software?”

• Quantity as Quality (Ludewig and Lichter, 2013) — the large is in general not
just a multiple of the small; solutions for small problems don’t scale in general.

Example: reliability. Consider a software system with N modules, each module
being correct with probability p.

N modules are correct with probability pN . Example N = 100:

p 0.9 0.95 0.99 0.999
p100 0.0000267 0.006 0.37 0.90

• Software Engineering as defensive discipline

Analogy: hygiene in hospital.
“Dear patient, we’re working hard to protect you from an infection.”
— “Well, doctor, I thought you were working to get me well again.”

“Software Engineering is boring and frustrating for people who don’t value the
defense of failures as a positive achievement.” (Ludewig and Lichter, 2013)

Project Planning and Cost Estimation

–
0
2
–
2
0
1
5
-0
4
-2
7
–
m
a
in

–

28/44

From ‘Lastenheft’ to ‘Pflichtenheft’
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
la
n
–

29/44

Software!

need 1
need 2
need 3
. . .

Customer Developer
announcement

(Lastenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

1
0
0

10
0

Developer Customer

milestone N

→

10
0

1
0
0

10
0

Developer Customer

software delivery

→

Repair!

Customer Developer

maintenance

software life cycle — The period of time that begins when a software product
is conceived and ends when the software is no longer available for use.

The software life cycle typically includes a concept phase, [...]. IEEE 610.12 (1990)

Lastenheft (Requirements Specification) Vom Auftraggeber festgelegte
Gesamtheit der Forderungen an die Lieferungen und Leistungen eines Auf-
tragnehmers innerhalb eines Auftrages.
(Entire demands on deliverables and services of a developer within a contracted development,

created by the customer.) DIN 69901-5 (2009)

Pflichtenheft (Feature Specification) Vom Auftragnehmer erarbeiteten
Realisierungsvorgaben aufgrund der Umsetzung des vom Auftraggeber
vorgegebenen Lastenhefts.
(Specification of how to realise a given requirements specification, created by the developer.)

DIN 69901-5 (2009)

• One way of getting there: a pre-project.

The “Estimation Funnel”
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
la
n
–

30/44

4×

2×

1×

0.5×

0.25×

effort estimated to real
effort (log. scale)

Pre-Project Analysis Design Coding & Test

t

Uncertainty with estimations (following (Boehm et al., 2000), p. 10).

Visualisation: Ludewig and Lichter (2013)

Expert’s Estimation
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
la
n
–

31/44

One approach: the Delphi method.

• Step 1:
write down your

estimates!

• Step 2: show your
estimates and

explain!

9.5
13 11 3

27

• Step 3:
estimate again!

• Then take the median, for example.

Algorithmic Estimation: COCOMO
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
la
n
–

32/44

• Constructive Cost Model:
Formulae which fit a huge set of archived project data (from the late 70’s).

• Flavours:

• COCOMO 81 (Boehm, 1981): basic, intermediate, detailed

• COCOMO II (Boehm et al., 2000)

• All based on estimated program size S measured in DSI or kDSI (thousands of
Delivered Source Instructions).

• Factors like security requirements or experience of the project team are mapped to
values for parameters of the formulae.

• COCOMO examples:

• textbooks like Ludewig and Lichter (2013) (most probably made up)

• an exceptionally large example:
COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

COCOMO 81
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
la
n
–

33/44

Software
Project Type

Characteristics of the Type
a b c d

Size Innovation
Deadlines/
Constraints

Dev.
Environment

Organic
Small
(<50 KLOC)

Little Not tight Stable 2.4 1.05 2.5 0.38

Semi-detached
Medium
(<300 KLOC)

Medium Medium Medium 3.0 1.12 2.5 0.35

Embedded Large Greater Tight
Complex HW/
Interfaces

3.6 1.20 2.5 0.32

Basic COCOMO:

E (effort required) = a(S/kDSI)b [person-months]

TDEV (time to develop) = cEd [months]

Intermediate COCOMO:

E (effort required) = Ma(S/kDSI)b [person-months]

westphal
Bleistift

. . . where
–
0
2
–
2
0
1
5
-0
4
-2
7
–
S
p
la
n
–

34/44

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

factor
very
low

low normal high
very
high

extra
high

RELY required software
reliability

0.75 0.88 1 1.15 1.40

CPLX product complexity 0.70 0.85 1 1.15 1.30 1.65

TIME execution time
constraint

1 1.11 1.30 1.66

ACAP analyst capability 1.46 1.19 1 0.86 0.71

PCAP programmer capability 1.42 1.17 1 0.86 0.7

LEXP programming language
experience

1.14 1.07 1 0.95

TOOL use of software tools 1.24 1.10 1 0.91 0.83

SCED required development
schedule

1.23 1.08 1 1.04 1.10

References

–
0
2
–
2
0
1
5
-0
4
-2
7
–
m
a
in

–

43/44

References
–
0
2
–
2
0
1
5
-0
4
-2
7
–
m
a
in

–

44/44

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design
specifications. In EURO IFIP 79, pages 711–719. Elsevier North-Holland.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W.,
Chulani, S., and Abts, C. (2000). Software Cost Estimation with COCOMO II. Prentice-Hall.

Buschermöhle, R., Eekhoff, H., and Josko, B. (2006). success – Erfolgs- und Misserfolgsfaktoren
bei der Durchführung von Hard- und Softwareentwicklungsprojekten in Deutschland. Technical
Report VSEK/55/D.

DIN (2009). Projektmanagement; Projektmanagementsysteme. DIN 69901-5.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Jones, G. W. (1990). Software Engineering. John Wiley & Sons.

Knöll, H.-D. and Busse, J. (1991). Aufwandsschätzung von Software-Projekten in der Praxis:
Methoden, Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Angewandte Informatik. BI
Wissenschaftsverlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Metzger, P. W. (1981). Managing a Programming Project. Prentice-Hall, 2 edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschätzung von DV-Projekten, Darstellung und
Praxisvergleich der wichtigsten Verfahren. Springer-Verlag.

Thayer, R. H. (1997). Tutorial – Software Engineering Project Management. IEEE Society
Press, revised edition.

	Contents & Goals
	(Software) Project
	Software Project: The Very Big Picture
	Software Project: A Closer Look
	Cycle and Life Cycle
	Project Management
	Project Management
	Goals of Project Management
	Activities of Project Management
	What to (Plan and) Manage?

	What to (Plan and) Manage (1/3)? Tasks and Activities
	What to (Plan and) Manage (1/3)? Tasks and Activities

	What to (Plan and) Manage (2/3)? People and (other) Resources
	(Plan and) Manage (2/3) — People and (other) Resources
	Excursion: The Concept of Roles
	Excursion: The Concept of Roles Cont'd
	(Plan and) Manage (2/3) — People and (other) Resources

	What to (Plan and) Manage (3/3)? Deadlines and Costs
	What to (Plan and) Manage (3/3)? — Deadlines and Costs
	Deadlines Cont'd
	Costs
	Costs vs. Benefits: A Closer Look
	Costs: Economics in a Nutshell
	Software Costs in a Narrower Sense
	Discovering Errors Late Can Be Expensive
	Software Project Management Bottom-Line

	Project Planning and Cost Estimation
	From `Lastenheft' to `Pflichtenheft'
	The ``Estimation Funnel''
	Expert's Estimation
	Algorithmic Estimation: COCOMO
	COCOMO 81
	…where
	COCOMO II
	COCOMO II Cont'd
	Algorithmic Estimation: Function Points
	COCOMO vs. Function Points
	In The End…

	Okay, estimation is done, and now…?
	The Start Phase
	Some Final Wisdom...

	References
	References

