
–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 03: Procedure and Process Models

2015-04-30

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
re
li
m

–

2/77

Last Lecture:

• terms: project, (life) cycle, phase, milestone, role, costs

• project management goals and activities; (cost) estimation: the Delphi method

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• what are the basic conceps of COCOMO, function points?

• estimate this project using COCOMO, function points

• what is a process? a model? a process model?

• give an example for role, activity, artefact, decision point

• what is a prototype? what is evolutionary, incremental, iterative?

• what’s the fundamental idea of the spiral model? where’s the spiral?

• what is the difference between procedure and process model?

• what are the constituting elements of “V-Modell XT”? what project types does it support,
what is the consequence?

• what is tailoring in the context of “V-Modell XT”?

• what are examples of agile process models? what are the agile principles?

• describe XP, Scrum

• Content: cost estimation cont’d (COCOMO, FP); procedure and process models

Cost Estimation Cont’d

–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

3/77

Algorithmic Estimation: COCOMO
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

4/77

• Constructive Cost Model:
Formulae which fit a huge set of archived project data (from the late 70’s).

• Flavours:

• COCOMO 81 (Boehm, 1981): basic, intermediate, detailed

• COCOMO II (Boehm et al., 2000)

• All based on estimated program size S measured in DSI or kDSI (thousands of
Delivered Source Instructions).

• Factors like security requirements or experience of the project team are mapped to
values for parameters of the formulae.

• COCOMO examples:

• textbooks like Ludewig and Lichter (2013) (most probably made up)

• an exceptionally large example:
COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

COCOMO 81
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

5/77

Software
Project Type

Characteristics of the Type
a b c d

Size Innovation
Deadlines/
Constraints

Dev.
Environment

Organic
Small
(<50 KLOC)

Little Not tight Stable 2.4 1.05 2.5 0.38

Semi-detached
Medium
(<300 KLOC)

Medium Medium Medium 3.0 1.12 2.5 0.35

Embedded Large Greater Tight
Complex HW/
Interfaces

3.6 1.20 2.5 0.32

Basic COCOMO:

E (effort required) = a(S/kDSI)b [person-months]

TDEV (time to develop) = cEd [months]

Intermediate COCOMO:

E (effort required) = Ma(S/kDSI)b [person-months]

. . . where
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

6/77

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

factor
very
low

low normal high
very
high

extra
high

RELY required software
reliability

0.75 0.88 1 1.15 1.40

CPLX product complexity 0.70 0.85 1 1.15 1.30 1.65

TIME execution time
constraint

1 1.11 1.30 1.66

ACAP analyst capability 1.46 1.19 1 0.86 0.71

PCAP programmer capability 1.42 1.17 1 0.86 0.7

LEXP programming language
experience

1.14 1.07 1 0.95

TOOL use of software tools 1.24 1.10 1 0.91 0.83

SCED required development
schedule

1.23 1.08 1 1.04 1.10

westphal
Bleistift

COCOMO II
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

7/77

Consists of

• Application Composition Model — configuration dominates programming

• Early Design Model — adaption of Function Point approach (in a minute)

• Post-Architecture Model — like COCOMO 81, needs architecture defined

E = 2.94 ·

(

S

kSLOC

)X

·M

where X = PREC + FLEX + RESL+ TEAM + PMAT .

So-called scaling factors (although not used as scalar):

• Precedentness (PREC) — experience with similar projects

• Development flexibility (FLEX) — development process fixed by customer

• Architecture/risk resolution (RESL) — risk management, architecture size

• Team cohesion (TEAM) — communication effort in team

• Process maturity (PMAT) — see CMM

COCOMO II Cont’d
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

8/77

M now depends on:

group factor description

Product factors RELY required software reliability

DATA size of database

CPLX complexity of system

RUSE degree of development of reusable components

DOCU amount of required documentation

Platform factors TIME execution time constraint

STOR memory consumption constraint

PVOL stability of development environment

Team factors ACAP analyst capability

PCAP programmer capability

PCON continuity of involved personnel

APEX experience with application domain

PLEX experience with development environment

LTEX experience with programming language(s) and tools

Project factors TOOL use of software tools

SITE degree of distributedness

SCED required development schedule

Algorithmic Estimation: Function Points
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

9/77

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF
VAF =

0.65 +

∑
14

i=1
GSC i

100
,

0 ≤ GSC i ≤ 5,

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Algorithmic Estimation: Function Points
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

9/77

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF

IBM and VW curve for the conversion from AFPs to PM
according to (Noth and Kretzschmar, 1984) and

(Knöll and Busse, 1991).

VAF =

0.65 +

∑
14

i=1
GSC i

100
,

0 ≤ GSC i ≤ 5,

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

COCOMO vs. Function Points
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

10/77

(Ludewig and Lichter, 2013) says:

• function point approach used in practice, in particular commercial software
(business software?)

• COCOMO tends to overestimate in this domain; needs to be adjusted by
corresponding factors

In The End. . .
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

11/77

. . . it’s experience, experience, experience.

“estimate, document, estimate better” (Ludewig and Lichter, 2013)

Suggestion: start to explicate your experience now.

• Take notes on your projects (Softwarepraktikum, Bachelor Projekt, Master
Bacherlor’s Thesis, Team Projekt, Master’s Thesis, . . .)

• timestamps

• size of program created

• number of errors found

• number of pages written

• . . . (more measures/metrics: later)

• Try to identify factors: what hindered productivity, what boosted productivity, . . .

• Which detours and mistakes were avoidable in hindsight? How?

Okay, estimation is done, and now. . . ?

–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

12/77

The Start Phase
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

13/77

Software!

need 1
need 2
need 3
. . .

Customer Developer
announcement

(Lastenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

1
0
0

10
0

Developer Customer

milestone N

→

10
0

1
0
0

10
0

Developer Customer

software delivery

→

Repair!

Customer Developer

maintenance

• The phase between customer’s decision to have software developed and start of
project is called start phase. Start of project: project plan is installed.

• Planning activities;

• Clarify extension of deliverables and scope of work.

• Identify risks.

• Create budget and time plans.

• Define and structure tasks.

• Define who reports what to whom, inside team and towards customer.

• Estimate needed personnel (number and qualifications).

• Assign tasks to roles, and roles to personnel.

• Provide necessary support (e.g. infrastructure).

Some Final Project Management Wisdom...
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
la
n
–

14/77

Most software projects are successful (cf. SUCCESS survey (Buschermöhle et al., 2006));
if they fail, they tend to fail due to:

• insufficient education (in particular project management)

• unrealistic expectations of higher management

• implicit customer expectations

• behaviour of team members

• own expectations (Ludewig and Lichter, 2013)

Rules of behaviour for successful project management:

(i) Think people first, the business is second. All a business is, is its people. Take care of them.

(ii) Establish a clear definition of your project’s development cycle and stick to it.

(iii) Emphasize the front-end of the project so that the rear-end won’t be dragging.

(iv) Establish baselines early and protect them from uncontrolled change.

(v) State clearly the responsibilities of each person on the project.

(vi) Define a system of documents clearly and early.

(vii) Never give an estimate or an answer you don’t believe in.

(viii) Never forget Rule (i). (Metzger, 1981)

Process

–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

15/77

Process
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
ss

–

16/77

process— (1) A sequence of steps performed for a given purpose; for example,
the software development process.
(2) See also: task; job.
(3) To perform operations on data. IEEE 610.12 (1990)

software development process The process by which user needs are trans-
lated into a software product. The process involves translating user needs into
software requirements, transforming the software requirements into design,
implementing the design in code, testing the code, and sometimes, installing
and checking out the software for operational use. IEEE 610.12 (1990)

• The process of a software development project may be

• implicit,

• informally agreed on, or

• prescribed (by a procedure or process model).

• But: each software development has a process!

Example Process
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
ss

–

17/77

Assume

• The desired software product S is obtained from two modules A and B.

• There is a specification for both A and B.

• There is a test plan for both A and B.

• A and B, after having been tested, are integrated to obtain S.

One Example Process Creating S
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
ss

–

18/77

code B
B. . .

rev. 139.

test B
B. . .

rev. 139.

✔

A,B ready?A,B ready? integrate S

code A
A. . .

rev. 127.

test A
A. . .

rev. 127.

✘

code A
A. . .

rev. 254.

test A
A. . .

rev. 254.

✔

spec. of B tests for B

prg tst

spec. of A tests for A

prg tst prg tst

int

• Can we describe (model) the underlying principles?

• In terms of roles, activities, artefacts — abstracting from A, B, and particular people.

westphal
Bleistift

Excursion: Model

–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

19/77

Model
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
m
o
d
el

–

20/77

Definition. [Folk] A model is an abstract, formal, mathematical representation
or description of structure or behaviour of a (software) system.

Definition. (Glinz, 2008, 425)
A model is a concrete or mental image (Abbild) of something
or a concrete or mental archetype (Vorbild) for something.

Three properties are constituent:

(i) the image attribute (Abbildungsmerkmal), i.e. there is an entity (called
original) whose image or archetype the model is,

(ii) the reduction attribute (Verkürzungsmerkmal), i.e. only those attributes
of the original that are relevant in the modelling context are represented,

(iii) the pragmatic attribute, i.e. the model is built in a specific context for
a specific purpose.

Model Example: Floorplan
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
m
o
d
el

–

21/77

1. Requirements

• Shall fit on given
piece of land.

• Each room shall
have a door.

• Furniture shall fit
into living room.

• Bathroom shall
have a window.

• Cost shall be in
budget.

2. Designmodel

h
tt
p
:/
/
w
ik
im

ed
ia
.o
rg

(C
C
n
c-
sa

3
.0
,
O
tt
o
kl
ag
es
)

3. System

h
tt
p
:/
/
w
ik
im

ed
ia
.o
rg

(C
C
n
c-
sa

3
.0
,
B
o
b
th
eb
u
ild
er
8
2
)

Observation: Floorplan abstracts from certain system properties, e.g. . . .

• kind, number, and placement of bricks,

• subsystem details (e.g., window style),

• water pipes/wiring, and

• wall decoration

→ architects can efficiently work on appropriate level of abstraction

Model Example: Floorplan
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
m
o
d
el

–

21/77

1. Requirements

• Shall fit on given
piece of land.

• Each room shall
have a door.

• Furniture shall fit
into living room.

• Bathroom shall
have a window.

• Cost shall be in
budget.

2. Designmodel

h
tt
p
:/
/
w
ik
im

ed
ia
.o
rg

(C
C
n
c-
sa

3
.0
,
O
tt
o
kl
ag
es
)

3. System

h
tt
p
:/
/
w
ik
im

ed
ia
.o
rg

(C
C
n
c-
sa

3
.0
,
B
o
b
th
eb
u
ild
er
8
2
)

Observation: Floorplan preserves/determines certain system properties, e.g.,

• house and room extensions (to scale),

• presence/absence of windows and doors,

• placement of subsystems
(such as windows).

→ find design errors before building the system (e.g. bathroom windows)

Process and Procedure Models

–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

22/77

An Ad-Hoc Process Model
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
m
ex
a
–

23/77

. . .

✘

coding
. . .

spec. of . . .

programmer

role

activity

artefact

decision

responsible

is input to

is input to

triggers

Model: Process Model

Instance: Process

code B
B. . .

rev. 139.

test B
B. . .

rev. 139.

✔

A,B ready?A,B ready? integrate S

code A
A. . .

rev. 127.

test A
A. . .

rev. 127.

✘

code A
A. . .

rev. 254.

test A
A. . .

rev. 254.

✔

spec. of B tests for B

prg tst

spec. of A tests for A

prg tst prg tst

int

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

An Ad-Hoc Process Model
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
m
ex
a
–

23/77

. . .

✘

coding
. . .

spec. of . . .

programmer

. . .
testing

. . .

✔/✘

tests for . . .

tester

role

activity

artefact

decision

responsible

is input to

is input to

triggers

Model: Process Model

Instance: Process

code B
B. . .

rev. 139.

test B
B. . .

rev. 139.

✔

A,B ready?A,B ready? integrate S

code A
A. . .

rev. 127.

test A
A. . .

rev. 127.

✘

code A
A. . .

rev. 254.

test A
A. . .

rev. 254.

✔

spec. of B tests for B

prg tst

spec. of A tests for A

prg tst prg tst

int

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

An Ad-Hoc Process Model
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
m
ex
a
–

23/77

. . .

✘

coding
. . .

spec. of . . .

programmer

. . .
testing

. . .

✔/✘

tests for . . .

tester

. . .

✔

...

. . .

✔

integrate . . .

integrator

role

activity

artefact

decision

responsible

is input to

is input to

triggers

Model: Process Model

Instance: Process

code B
B. . .

rev. 139.

test B
B. . .

rev. 139.

✔

A,B ready?A,B ready? integrate S

code A
A. . .

rev. 127.

test A
A. . .

rev. 127.

✘

code A
A. . .

rev. 254.

test A
A. . .

rev. 254.

✔

spec. of B tests for B

prg tst

spec. of A tests for A

prg tst prg tst

int

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Ad-Hoc Process Model Refined
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
m
ex
a
–

24/77

coding
. . .

spec. of . . .

programmer

. . .

✘

fixing
. . .

spec. of . . .

lead programmer programmer

role

activity

artefact

decision

responsible

is input to

is input to

triggers

• an (ordinary) programmer creates the initial version according to the specification

• if testing discovers an error, the lead developer is responsible for fixing it,
a programmer supports the activity

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Process and Procedure Models: The Bigger Picture

–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

25/77

Anticipated Benefits. . .
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
m

–

27/77

. . . of process models:

• “economy of thought” — don’t re-invent principles

• one can assess the quality of how products are created (→ CMMI)

• identify weaknesses, learn from (bad) experience, improve the process

• fewer errors — testing a module cannot be forgotten because integration depends
on module with “test passed” flagged

• clear responsibilities — “I thought you’d fix the module!”

Process model is a topic as emotional as progamming language, editor,
operating system, soccer club, . . . — let’s try to keep the discussion objective.

• process model-ing is easily overdone —
the best process model is worthless if your software people don’t “live” it

• before introducing a process model

• understand what you have, understand what you need

• process-model as much as needed, not more (→ tailoring)

• assess whether new/changed process model makes matters better or worse (→ metrics)

• but: customer may require a certain process model

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Process vs. Procedure Model
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
m

–

26/77

• In the literature, process model and procedure model are often used as
synonyms.

• (Ludewig and Lichter, 2013) propose to distinguish:

• process model (‘Prozessmodell’) — 90s/00s “RUP, XP”: comprises

• procedure model (‘Vorgehensmodell’) — 70s/80s “waterfall model”

• organisational structure comprising

• requirements on project management and responsibilities,

• requirements on quality assurance,

• requirements on documentation, document structure,

• requirements on revision control.

• Analogy: theatre (Ludewig and Lichter, 2013)

• procedure model: script

• process model: staging (script plus cast, costumes, stage setting)

westphal
Bleistift

Procedure Models

–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

28/77

Procedure Model: Code and Fix
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

29/77

Code and Fix — denotes an approach, where coding and correction alternat-
ing with ad-hoc tests are the only consciously conducted activities of software
development. Ludewig & Lichter (2013)

Advantages:

• Corresponds to our desire to “get ahead”, solve the stated problem quickly.

• There are executable programs early.

• The conducted activities (coding and ad-hoc testing) are easy.

Disadvantages:

• It is hard to plan the project, there are no rational/explicit decisions.

• It is hard to distribute work over multiple persons or groups.

• If requirements are not stated, there is no notion of correctness (= meeting requirements).

• Tests are lacking expected outcome (otherwise, e.g., derived from requirements).

• Resulting programs often hard to maintain.

• Effort for maintenance high: most errors are only detected in operation.

• Important concepts and decisions are not documented, but only in the heads of the developers,
thus hard to transfer.

westphal
Bleistift

westphal
Bleistift

Procedure Model: The Waterfall Model
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

30/77

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance

(Rosove, 1967)

westphal
Bleistift

westphal
Bleistift

Procedure Model: The Waterfall Model
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

30/77

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance

(Rosove, 1967)

Waterfall or Document-Model— Software development is seen as a sequence of

activities coupled by (partial) results (documents). These activities can be con-

ducted concurrently or iteratively. Apart from that, the sequence of activities is

fixed as (basically) analyse, specify, design, code, test, install, maintain.

Ludewig & Lichter (2013)

westphal
Bleistift

The Waterfall Model: Discussion
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

31/77

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance

• The waterfall model has been subject of heated discussions.

• With 40 years of distance:

• it gives room for numerous interpretations:
a very abstract model, hardly usable as a “template” for real projects,

• in particular the cycles (and the lack of milestones) makes is hard for project
management to assess a project’s process

• still there’s some truth in it:

“Dear people (of the 60’s), there’s more in software development than
coding, and there are (obvious) dependencies.”

That may have been news back then. . . (→ software crisis)

• Given the computers and software of that time (no∗ personal computers, no∗ smart
phones, no∗ web-shops, no∗ computer games, no∗ automotive software, no∗ . . .).

A Classification of Software
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

32/77

Lehmann (Lehman, 1980; Lehman and Ramil, 2001) distinguishes three classes of
software (my interpretation, my examples):

• S-programs: solve mathematical, abstract problems; can exactly (in particular formally)
be specified; tend to be small; can be developed once and for all.

Examples: sorting, compiler (!), compute π or
√ · , cryptography, textbook examples, . . .

• P-programs: solve problems in the real world, e.g. read sensors and drive actors, may be
in feedback loop; specification needs domain model (cf. Bjørner (2006), “A tryptich
software development paradigm”); formal specification (today) possible, in terms of
domain model, yet tends to be expensive

Examples: cruise control, autopilot, traffic lights controller, plant automatisation, . . .

• E-programs: embedded in socio-technical systems; in particular involve humans;
specification often not clear, not even known; can grow huge; delivering the software
induces new needs

Examples: basically everything else; word processor, web-shop, game, smart-phone apps,
. . .

Non-linear Procedure Models
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

33/77

Analysis of Requirements
Use on Target System

Defined Steps
Preliminary Results Used

Complete Plan

Rapid
Prototyping

Evolutionary
Development

Iterative
Development

Incremental
Development

. . .

yes

to some amount

to a low amount

(Rapid) Protoyping
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

34/77

prototype — A preliminary type, form, or instance of a system that serves as a

model for later stages or for the final, complete version of the system.

IEEE 610.12 (1990)

prototyping — A hardware and software development technique in which a prelim-

inary version of part or all of the hardware or software is developed to permit user

feedback, determine feasibility, or investigate timing or other issues in support of the

development process. IEEE 610.12 (1990)

rapid prototyping —A type of prototyping in which emphasis is placed on developing

protoypes early in the development process to permit early feedback and analysis in

support of the development process. IEEE 610.12 (1990)

• A prototype realises selected aspects of the final system.

• A prototype is checked/tested and assessed, at best involving the customer.

• Sometimes distinguished from prototype (which is executable):
mock-up, like a drawing of the intended graphical user interface, or game menu
screens and structure simulated with HTML pages (→ requirements engineering)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Prototyping
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

35/77

Approach:

• clarify: which purpose does the prototype have, what are the open questions?

• which persons (roles) participate in development and, most important,
assessment of the prototype?

• what is the time/cost budget for prototype development?

question
prototype

specification

operation
environment

prototype
assessment

prototype

determines

developbasis of
modify

assess
(Ludewig and Lichter, 2013)

Kinds of Prototypes and Goals of Prototyping
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

36/77

• demonstration prototype (‘Demonstrationsprototyp’)
“throw away products” to demonstrate look-and-feel or potential usage of proposed
product; can be “quick and dirty”

• functional prototype (‘Funktionaler Prototyp’)
usually regarding (graphical) user interface; maybe many separate prototypes for specific
questions

• lab sample (‘Labormuster’)
addresses open technical questions, proof-of-concept; need not be part of the final system

• pilot system (‘Pilotsystem’)
functionality and quality are at least sufficient for a (temporary) use in the target
environment

Floyd Taxonomy:

• explorative prototyping — support analysis

• experimental prototyping — develop new techonology

• evolutionary prototyping — the product is the last prototype

(categories may overlap)

References

–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

76/77

References
–
0
3
–
2
0
1
5
-0
4
-3
0
–
m
a
in

–

77/77

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development methods. review and analysis. Technical
Report 478.

Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-Wesley.

Bjørner, D. (2006). Software Engineering, Vol. 3: Domains, Requirements and Software Design. Springer-Verlag.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(5):61–72.

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W., Chulani, S., and Abts, C. (2000). Software

Cost Estimation with COCOMO II. Prentice-Hall.

Buschermöhle, R., Eekhoff, H., and Josko, B. (2006). success – Erfolgs- und Misserfolgsfaktoren bei der Durchführung von Hard- und
Softwareentwicklungsprojekten in Deutschland. Technical Report VSEK/55/D.

Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thesen und Erfahrungen. Informatik Spektrum, 31(5):425–434.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Knöll, H.-D. and Busse, J. (1991). Aufwandsschätzung von Software-Projekten in der Praxis: Methoden, Werkzeugeinsatz, Fallbeispiele.
Number 8 in Reihe Angewandte Informatik. BI Wissenschaftsverlag.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of the IEEE Special Issue on Software

Engineering, 68(9):1060–1076.

Lehman, M. M. and Ramil, J. F. (2001). Rules and tools for software evolution planning and management. Annals of Software Engineering,
11(1):15–44.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Metzger, P. W. (1981). Managing a Programming Project. Prentice-Hall, 2 edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschätzung von DV-Projekten, Darstellung und Praxisvergleich der wichtigsten Verfahren.
Springer-Verlag.

Rosove, P. E. (1967). Developing Computer-based Information Systems. John Wiley and Sons.

Schwaber, K. (1995). SCRUM development process. In Sutherland, J. et al., editors, Business Object Design and Implementation,

OOPSLA’95 Workshop Proceedings. Springer-Verlag.

V-Modell XT (2006). V-Modell XT. Version 1.4.

Wheeler, D. A. (2006). Linux kernel 2.6: It’s worth more!

Züllighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with the Tools and Materials

Approach. dpunkt.verlag/Morgan Kaufmann.

	Contents & Goals
	Cost Estimation Cont'd
	Algorithmic Estimation: COCOMO
	COCOMO 81
	…where
	COCOMO II
	COCOMO II Cont'd
	Algorithmic Estimation: Function Points
	COCOMO vs. Function Points
	In The End…

	Okay, estimation is done, and now…?
	The Start Phase
	Some Final Project Management Wisdom...

	Process
	Process
	Example Process
	One Example Process Creating S

	Excursion: Model
	Model
	Model Example: Floorplan

	Process and Procedure Models
	An Ad-Hoc Process Model
	Ad-Hoc Process Model Refined

	Process and Procedure Models: The Bigger Picture
	Process vs. Procedure Model
	Anticipated Benefits…

	Procedure Models
	Procedure Model: Code and Fix
	Procedure Model: The Waterfall Model
	The Waterfall Model: Discussion
	A Classification of Software
	Non-linear Procedure Models
	(Rapid) Protoyping
	Prototyping
	Kinds of Prototypes and Goals of Prototyping
	Evolutionary and Iterative Development
	Incremental Development
	Quick Excursion: Risk and Riskvalue
	The Spiral Model Boehm1988
	Wait, Where's the Spiral?

	Process Models
	From Procedure to Process Model
	Light vs. Heavyweight Process Models

	Phase Models
	The Phase Model

	V-Modell XT
	V-Modell XT
	V-Modell XT: Project Types
	V-Modell XT: Terminology
	V-Modell XT: Decision Points
	V-Modell XT: The V-World (naja…)
	V-Modell XT: Tailoring Instance
	V-Modell XT: Customer/Developer Interface
	V-Modell XT: Roles (a lot!)
	V-Modell XT: Disciplines and Products (even more!)
	V-Modell XT: Activities (as many?!)
	V-Modell XT: Procedure Building Blocks
	V-Modell XT: Example Building Block
	V-Modell XT: Development Strategies
	V-Modell XT: Development Strategies
	V-Modell XT: Discussion

	Rational Unified Process
	Rational Unified Process (RUP)

	Agile Process Models
	The Agile Manifesto
	Agile Principles
	Similarities of Agiles Process Models

	Extreme Programming (XP)
	Extreme Programming (XP) Beck1999

	Scrum
	Scrum
	Scrum Documents
	Scrum Process
	Scrum: Discussion

	References
	References

