
–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 09: Live Sequence Charts

2015-06-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
li
m

–

2/50

Last Lecture:

• Scenarios and Anti-Scenarios

• User Stories, Use Cases, Use Case Diagrams

• LSC: abstract and concrete syntax

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Which are the cuts and firedsets of this LSC?

• Construct the TBA of a given LSC body.

• Given a set of LSCs, which scenario/anti-scenario/requirement is formalised by them?

• Formalise this positive scenario/anti-scenario/requirement using LSCs.

• Content:

• Excursion: automata accepting infinite words

• Cuts and Firedsets, automaton construction

• existential LSCs, pre-charts, universal LSCs

• Requirements Engineering: conclusions

Recall: LSC Body Syntax
–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

3/50

LSC Body Example
–
0
8
–
2
0
1
5
-0
6
-0
8
–
S
ls
cs
yn

–

29/78

• L : l1,0 ≺ l1,1 ≺ l1,2 ≺ l1,3, l1,2 ≺ l1,4, l2,0 ≺ l2,1 ≺ l2,2 ≺ l2,3, l3,0 ≺ l3,1 ≺ l3,2,

l1,1 ≺ l2,1, l2,2 ≺ l1,2, l2,3 ≺ l1,3, l3,2 ≺ l1,4, l2,2 ∼ l3,1,

• I = {{l1,0, l1,1, l1,2, l1,3, l1,4}, {l2,0, l2,1, l2,2, l2,3}, {l3,0, l3,1, l3,2}},

• Msg = {(l1,1, A, l2,1), (l2,2, B, l1,2), (l2,2, C, l3,1), (l2,3, D, l1,3), (l3,2, E, l1,4)}

• Cond = {({l2,2}, c2 ∧ c3)},

• LocInv = {(l1,1, ◦, c1, l1,2, •)}

I1 I2

c2 ∧ c3

I3

A

B
C

D

E

c1

LSC Semantics

–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

4/50

The Big Picture
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
c
–

5/50

• Recall: decision tables

• By the standard semantics, a decision table T is software,

JT K = {σ0
α

1−→ σ1
α

2−→ σ2 · · · | · · · } is a set of computation paths.

The Big Picture
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
c
–

5/50

• Recall: decision tables

• By the standard semantics, a decision table T is software,

JT K = {σ0
α

1−→ σ1
α

2−→ σ2 · · · | · · · } is a set of computation paths.

• Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

16/54

The Big Picture
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
c
–

5/50

• Recall: decision tables

• By the standard semantics, a decision table T is software,

JT K = {σ0
α

1−→ σ1
α

2−→ σ2 · · · | · · · } is a set of computation paths.

• Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

16/54

• We want the same for LSCs.

The Big Picture
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
c
–

5/50

• Recall: decision tables

• By the standard semantics, a decision table T is software,

JT K = {σ0
α

1−→ σ1
α

2−→ σ2 · · · | · · · } is a set of computation paths.

• Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

16/54

• We want the same for LSCs.

• We will give a procedure to construct for each LSC L an automaton B(L).
The language (or semantics) of L is the set of comp. paths accepted by B(L).
Thus an LSC is also software.

The Big Picture
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
c
–

5/50

• Recall: decision tables

• By the standard semantics, a decision table T is software,

JT K = {σ0
α

1−→ σ1
α

2−→ σ2 · · · | · · · } is a set of computation paths.

• Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

16/54

• We want the same for LSCs.

• We will give a procedure to construct for each LSC L an automaton B(L).
The language (or semantics) of L is the set of comp. paths accepted by B(L).
Thus an LSC is also software.

• Problem: computation paths may be infinite → Büchi acceptance.

Excursion: Symbolic Büchi Automata

–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

6/50

From Finite Automata to Symbolic Büchi Automata
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
tb
a
–

7/50

q1 q2

0

1

A: Σ = {0, 1}

q1 q2

0

1

B: Σ = {0, 1}

q1 q2

0

1

1

0

B′: Σ = {0, 1}

q1 q2

even(x)

odd(x)

Asym : Σ = ({x} → N)

q1 q2

even(x)

odd(x)

Bsym : Σ = ({x} → N)

Büchi

infinite words

symbolic

symbolic

Büchi

infinite words

Symbolic Büchi Automata
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
tb
a
–

8/50

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

B = (C, Q, qini ,→, QF)

where

• C is a set of atomic propositions,

• Q is a finite set of states,

• qini ∈ Q is the initial state,

• → ⊆ Q× Φ(C)×Q is the finite transition relation.

Each transitions (q, ψ, q′) ∈ → from state q to state q′ is labelled with
a formula ψ ∈ Φ(C).

• QF ⊆ Q is the set of fair (or accepting) states.

Run of TBA
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
tb
a
–

9/50

Definition. Let B = (C, Q, qini ,→, QF) be a TBA and

w = σ1, σ2, σ3, · · · ∈ (C → B)ω

an infinite word, each letter is a valuation of CB.

An infinite sequence

̺ = q0, q1, q2, . . . ∈ Qω

of states is called run of B over w if and only if

• q0 = qini ,

• for each i ∈ N0 there is a transition (qi, ψi, qi+1) ∈→ s.t. σi |= ψi.

Example: q1 q2

even(x)

odd(x)

Bsym : Σ = ({x} → N)

The Language of a TBA
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
tb
a
–

10/50

Definition.

We say TBA B = (C, Q, qini ,→, QF) accepts the word
w = (σi)i∈N0

∈ (C → B)ω if and only if B has a run

̺ = (qi)i∈N0

over w such that fair (or accepting) states are visited infinitely often by
̺, i.e., such that

∀ i ∈ N0 ∃ j > i : qj ∈ QF .

We call the set Lang(B) ⊆ (C → B)ω of words that are accepted by B
the language of B.

Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
tb
a
–

11/50

run: ̺ = q0, q1, q2, . . . ∈ Qω s.t. σi |= ψi, i ∈ N0.

q1

q2

q3

q4

q5 q6

q7

¬a

a

¬b

b ∧ φ

¬(c ∨ e)

c ∧ e

¬(d ∨ f)
d ∧ ¬f

f ∧ ¬d
¬f

f

¬d

d

d ∧ f

true

b ∧ ¬φ

LSC Semantics: TBA Construction

–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

12/50

LSC Semantics: It’s in the Cuts!
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

13/50

LSC Semantics: It’s in the Cuts!
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

13/50

Definition. Let ((L,�,∼), I,Msg,Cond, LocInv,Θ) be an LSC body.

A non-empty set ∅ 6= C ⊆ L is called a cut of the LSC body iff C

• is downward closed, i.e.

∀ l, l′ ∈ L • l′ ∈ C ∧ l � l′ =⇒ l ∈ C,

• is closed under simultaneity, i.e.

∀ l, l′ ∈ L • l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C, and

• comprises at least one location per instance line, i.e.

∀ I ∈ I • C ∩ I 6= ∅.

LSC Semantics: It’s in the Cuts!
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

13/50

Definition. Let ((L,�,∼), I,Msg,Cond, LocInv,Θ) be an LSC body.

A non-empty set ∅ 6= C ⊆ L is called a cut of the LSC body iff C

• is downward closed, i.e.

∀ l, l′ ∈ L • l′ ∈ C ∧ l � l′ =⇒ l ∈ C,

• is closed under simultaneity, i.e.

∀ l, l′ ∈ L • l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C, and

• comprises at least one location per instance line, i.e.

∀ I ∈ I • C ∩ I 6= ∅.

The temperature function is extended to cuts as follows:

Θ(C) =

{

hot , if ∃ l ∈ C • (∄ l′ ∈ C • l ≺ l′) ∧Θ(l) = hot

cold , otherwise

that is, C is hot if and only if at least one of its maximal elements is hot.

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Cut Examples
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

14/50

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

A Successor Relation on Cuts
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

15/50

The partial order “�” and the simultaneity relation “∼” of locations
induce a direct successor relation on cuts of L as follows:

Definition.

Let C ⊆ L bet a cut of LSC body ((L,�,∼), I,Msg,Cond, LocInv,Θ).

A set ∅ 6= F ⊆ L is called fired-set F of C if and only if

• C ∩ F = ∅ and C ∪ F is a cut, i.e. F is closed under simultaneity,

• all locations in F are direct ≺-successors of the front of C, i.e.

∀ l ∈ F ∃ l′ ∈ C • l′ ≺ l ∧ (∄ l′′ ∈ C • l′ ≺ l′′),

• locations in F , that lie on the same instance line, are pairwise unordered, i.e.

∀ l 6= l′ ∈ F • (∃ I ∈ I • {l, l′} ⊆ I) =⇒ l 6� l′ ∧ l′ 6� l,

• for each asynchronous message reception in F , the corresponding sending is
already in C,

∀ (l, E, l′) ∈ Msg • l′ ∈ F =⇒ l ∈ C.

The cut C ′ = C∪F is called direct successor of C via F , denoted by C F C ′.

Successor Cut Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

16/50

C ∩ F = ∅ — C ∪ F is a cut — only direct ≺-successors — same instance line on front
pairwise unordered — sending of asynchronous reception already in

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Successor Cut Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

16/50

C ∩ F = ∅ — C ∪ F is a cut — only direct ≺-successors — same instance line on front
pairwise unordered — sending of asynchronous reception already in

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Language of LSC Body: Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

17/50

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

q1

q2

q3

q4

q5 q6

q7

¬E!

E!

¬E?

E? ∧ φ

F !

F !

¬(F? ∨G! ∨G?)
G! ∧G? ∧ ¬F?

F? ∧ ¬(G! ∧G?)
¬F?

F?

¬(G! ∧G?)

G! ∧G?

G! ∧G? ∧ F?

true

E? ∧ ¬φ

The TBA B(L) of LSC L over C and E is (C, Q, qini ,→,QF) with

• Q is the set of cuts of L , qini is the instance heads cut,

• C = C ∪ E!?, where E!? = {E!, E? | E ∈ E},

• → consists of loops, progress transitions (from F), and legal exits (cold cond./local inv.),

• QF = {C ∈ Q | Θ(C) = cold ∨ C = L} is the set of cold cuts and the maximal cut.

TBA Construction Principle
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

18/50

Recall: The TBA B(L) of LSC L is (C, Q, qini ,→, QF) with

• Q is the set of cuts of L , qini is the instance heads cut,

• C = C ∪ {E!, E? | E ∈ E},

• → consists of loops, progress transitions (from F), and legal exits (cold cond./local inv.),

• F = {C ∈ Q | Θ(C) = cold ∨ C = L} is the set of cold cuts.

→= {(q, , q) | q ∈ Q} ∪ {(q, , q′) | q F q′} ∪ {(q, ,L) | q ∈ Q}

TBA Construction Principle
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

18/50

Recall: The TBA B(L) of LSC L is (C, Q, qini ,→, QF) with

• Q is the set of cuts of L , qini is the instance heads cut,

• C = C ∪ {E!, E? | E ∈ E},

• → consists of loops, progress transitions (from F), and legal exits (cold cond./local inv.),

• F = {C ∈ Q | Θ(C) = cold ∨ C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

→= {(q, , q) | q ∈ Q} ∪ {(q, , q′) | q F q′} ∪ {(q, ,L) | q ∈ Q}

TBA Construction Principle
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

18/50

Recall: The TBA B(L) of LSC L is (C, Q, qini ,→, QF) with

• Q is the set of cuts of L , qini is the instance heads cut,

• C = C ∪ {E!, E? | E ∈ E},

• → consists of loops, progress transitions (from F), and legal exits (cold cond./local inv.),

• F = {C ∈ Q | Θ(C) = cold ∨ C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

→= {(q, ψloop(q), q) | q ∈ Q} ∪ {(q, ψprog (q, q
′), q′) | q F q′} ∪ {(q, ψexit (q),L) | q ∈ Q}

TBA Construction Principle
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
cu

tfi
re

–

18/50

Recall: The TBA B(L) of LSC L is (C, Q, qini ,→, QF) with

• Q is the set of cuts of L , qini is the instance heads cut,

• C = C ∪ {E!, E? | E ∈ E},

• → consists of loops, progress transitions (from F), and legal exits (cold cond./local inv.),

• F = {C ∈ Q | Θ(C) = cold ∨ C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

→= {(q, ψloop(q), q) | q ∈ Q} ∪ {(q, ψprog (q, q
′), q′) | q F q′} ∪ {(q, ψexit (q),L) | q ∈ Q}

q

. . .

ψloop(q): “what

allows us to stay

at cut q”

“. . .F1”

ψprog (q, q′):
“characterisation

of firedset Fn”

ψexit (q):
“what allows us to

legally exit”

true

I1 I2

c2 ∧ c3

I3

A

B C

D
E

c1

TBA Construction Principle
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

19/50

So in the following, we “only” need to construct the transitions’ labels:

→= {(q, ψloop(q), q) | q ∈ Q} ∪ {(q, ψprog (q, q
′), q′) | q F q′} ∪ {(q, ψexit (q),L) | q ∈ Q}

q

q1 . . . qn

ψloop(q) =

=:ψhot
loop(q)

︷ ︸︸ ︷

ψMsg(q) ∧ ψLocInv
hot (q)∧ψLocInv

cold (q)

ψexit (q) =
(
ψhot
loop

(q) ∧ ¬ψLocInv
cold (q)

)

∨
∨

1≤i≤n ψ
hot
prog (q, qi) ∧

(
¬ψLocInv,•

cold (q, qi)∨¬ψCond
cold (q, qi)

)

ψprog (q, qn) =

ψhot
prog (q, qn)∧ψ

Cond
cold (q, qn)∧ψ

LocInv,•
cold (q, qn)

ψhot
prog (q, qn) = ψMsg(q, qn)

∧ ψCond
hot (q, qn) ∧ ψ

LocInv,•
hot (q, qn)

true

I1 I2

c2 ∧ c3

I3

A

B C

D
E

c1

Loop Condition
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

20/50

ψloop(q) = ψMsg(q) ∧ ψLocInv
hot (q) ∧ ψLocInv

cold (q)

• ψMsg(q) = ¬
∨

1≤i≤n ψ
Msg(q, qi) ∧

(

strict =⇒
∧

ψ∈E!?∩Msg(L) ¬ψ
)

• ψLocInv
θ (q) =

∧

ℓ=(l,ι,φ,l′,ι′)∈LocInv, Θ(ℓ)=θ, ℓ active at q φ

A location l is called front location of cut C if and only if ∄ l′ ∈ L • l ≺ l′.

Local invariant (l0, ι0, φ, l1, ι1) is active at cut (!) q if and only if l0 � l � l1 for some
front location l of cut (!) q.

• Msg(F) = {E! | (l, E, l′) ∈ Msg, l ∈ F} ∪ {E? | (l, E, l′) ∈ Msg, l′ ∈ F}

• Msg(F1, . . . ,Fn) =
⋃

1≤i≤nMsg(Fi)
I1 I2

c2 ∧ c3

I3

A

B C

D
E

c1

Progress Condition
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

21/50

ψhot
prog (q, qi) = ψMsg(q, qn) ∧ ψCond

hot (q, qn) ∧ ψ
LocInv,•
hot (qn)

• ψMsg(q, qi) =
∧

ψ∈Msg(qi\q)
ψ ∧

∧

j 6=i

∧

ψ∈(Msg(qj\q)\Msg(qi\q))
¬ψ

∧
(

strict =⇒
∧

ψ∈(E!?∩Msg(L))\Msg(Fi)
¬ψ

)

• ψCond
θ (q, qi) =

∧

γ=(L,φ)∈Cond, Θ(γ)=θ, L∩(qi\q) 6=∅ φ

• ψLocInv,•
θ (q, qi) =

∧

λ=(l,ι,φ,l′,ι′)∈LocInv, Θ(λ)=θ, λ •-active at qi
φ

Local invariant (l0, ι0, φ, l1, ι1) is •-active at q if and only if

• l0 ≺ l ≺ l1, or

• l = l0 ∧ ι0 = •, or

• l = l1 ∧ ι1 = •

for some front location l of cut (!) q.

I1 I2

c2 ∧ c3

I3

A

B C

D
E

c1

Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

22/50

q1

q2

q3

q4

q5 q6

q7 true

I1 I2

φ

I3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

Finally: The LSC Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

23/50

A full LSC L = (((L,�,∼), I,Msg,Cond, LocInv,Θ), ac0, am,ΘL) consist of

• body ((L,�,∼), I,Msg,Cond, LocInv,Θ),

• activation condition ac0 ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

Finally: The LSC Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

23/50

A full LSC L = (((L,�,∼), I,Msg,Cond, LocInv,Θ), ac0, am,ΘL) consist of

• body ((L,�,∼), I,Msg,Cond, LocInv,Θ),

• activation condition ac0 ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

Concrete syntax:

LSC: L1

AC: c1
AM: initial I: permissive

I1 I2 I3

E

F

G

Finally: The LSC Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

23/50

A full LSC L = (((L,�,∼), I,Msg,Cond, LocInv,Θ), ac0, am,ΘL) consist of

• body ((L,�,∼), I,Msg,Cond, LocInv,Θ),

• activation condition ac0 ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

A set of words W ⊆ (C → B)ω is accepted by L if and only if

ΘL am = initial am = invariant

co
ld

h
o
t

where ac = ac0 ∧ ψCond
cold (∅, C0) ∧ ψMsg(∅, C0); C0 is the minimal (or instance heads) cut.

Finally: The LSC Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

23/50

A full LSC L = (((L,�,∼), I,Msg,Cond, LocInv,Θ), ac0, am,ΘL) consist of

• body ((L,�,∼), I,Msg,Cond, LocInv,Θ),

• activation condition ac0 ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

A set of words W ⊆ (C → B)ω is accepted by L if and only if

ΘL am = initial am = invariant

co
ld

∃w ∈W • w0 |= ac ∧

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

h
o
t

where ac = ac0 ∧ ψCond
cold (∅, C0) ∧ ψMsg(∅, C0); C0 is the minimal (or instance heads) cut.

Finally: The LSC Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

23/50

A full LSC L = (((L,�,∼), I,Msg,Cond, LocInv,Θ), ac0, am,ΘL) consist of

• body ((L,�,∼), I,Msg,Cond, LocInv,Θ),

• activation condition ac0 ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

A set of words W ⊆ (C → B)ω is accepted by L if and only if

ΘL am = initial am = invariant

co
ld

∃w ∈W • w0 |= ac ∧

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∃w ∈W ∃ k ∈ N0 • w
k |= ac ∧

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

h
o
t

where ac = ac0 ∧ ψCond
cold (∅, C0) ∧ ψMsg(∅, C0); C0 is the minimal (or instance heads) cut.

Finally: The LSC Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

23/50

A full LSC L = (((L,�,∼), I,Msg,Cond, LocInv,Θ), ac0, am,ΘL) consist of

• body ((L,�,∼), I,Msg,Cond, LocInv,Θ),

• activation condition ac0 ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

A set of words W ⊆ (C → B)ω is accepted by L if and only if

ΘL am = initial am = invariant

co
ld

∃w ∈W • w0 |= ac ∧

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∃w ∈W ∃ k ∈ N0 • w
k |= ac ∧

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

h
o
t ∀w ∈W • w0 |= ac =⇒

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

where ac = ac0 ∧ ψCond
cold (∅, C0) ∧ ψMsg(∅, C0); C0 is the minimal (or instance heads) cut.

Finally: The LSC Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

23/50

A full LSC L = (((L,�,∼), I,Msg,Cond, LocInv,Θ), ac0, am,ΘL) consist of

• body ((L,�,∼), I,Msg,Cond, LocInv,Θ),

• activation condition ac0 ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

A set of words W ⊆ (C → B)ω is accepted by L if and only if

ΘL am = initial am = invariant

co
ld

∃w ∈W • w0 |= ac ∧

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∃w ∈W ∃ k ∈ N0 • w
k |= ac ∧

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

h
o
t ∀w ∈W • w0 |= ac =⇒

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∀w ∈W ∀ k ∈ N0 • w
k |= ac =⇒

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

where ac = ac0 ∧ ψCond
cold (∅, C0) ∧ ψMsg(∅, C0); C0 is the minimal (or instance heads) cut.

Activation Condition
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
ls
cs
em

–

24/50

LSC: L1

AC: c1
AM: initial I: permissive

I1 I2 I3

E

F

G LSC: L1

AM: initial I: permissive

I1 I2 I3

E

F

G

c1

LSCs vs. Software

–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

25/50

LSCs vs. Software
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

26/50

Let S be a software with JSK = {π = σ0

α
1−−→ σ1

α
2−−→ σ2 · · · | · · · }.

S is called compatible with LSC L over C and E is if and only if

• Σ = (C → B), i.e. the states are valuations of the conditions in C,

• A ⊆ E!?, i.e. the events are of the form E!, E?.

LSCs vs. Software
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

26/50

Let S be a software with JSK = {π = σ0

α
1−−→ σ1

α
2−−→ σ2 · · · | · · · }.

S is called compatible with LSC L over C and E is if and only if

• Σ = (C → B), i.e. the states are valuations of the conditions in C,

• A ⊆ E!?, i.e. the events are of the form E!, E?.

Construct letters by joining σi and αi+1 (viewed as a valuation of E!, E?):

w(π) = (σ0 ∪ α1), (σ1 ∪ α2), (σ2 ∪ α3), . . .

LSCs vs. Software
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

26/50

Let S be a software with JSK = {π = σ0

α
1−−→ σ1

α
2−−→ σ2 · · · | · · · }.

S is called compatible with LSC L over C and E is if and only if

• Σ = (C → B), i.e. the states are valuations of the conditions in C,

• A ⊆ E!?, i.e. the events are of the form E!, E?.

Construct letters by joining σi and αi+1 (viewed as a valuation of E!, E?):

w(π) = (σ0 ∪ α1), (σ1 ∪ α2), (σ2 ∪ α3), . . .

We say S satisfies LSC L (e.g. universal, invariant), denoted by S |= L , if and only if

∀π ∈ JSK ∀ k ∈ N0 •w(π)
k |= ac =⇒ w(π)k |= ψCond

hot (∅, C0)∧w(π)/k+ 1 ∈ Lang(B(L))

LSCs vs. Software
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

26/50

Let S be a software with JSK = {π = σ0

α
1−−→ σ1

α
2−−→ σ2 · · · | · · · }.

S is called compatible with LSC L over C and E is if and only if

• Σ = (C → B), i.e. the states are valuations of the conditions in C,

• A ⊆ E!?, i.e. the events are of the form E!, E?.

Construct letters by joining σi and αi+1 (viewed as a valuation of E!, E?):

w(π) = (σ0 ∪ α1), (σ1 ∪ α2), (σ2 ∪ α3), . . .

We say S satisfies LSC L (e.g. universal, invariant), denoted by S |= L , if and only if

∀π ∈ JSK ∀ k ∈ N0 •w(π)
k |= ac =⇒ w(π)k |= ψCond

hot (∅, C0)∧w(π)/k+ 1 ∈ Lang(B(L))

ΘL am = initial am = invariant

co
ld

∃w ∈W • w0 |= ac ∧

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∃w ∈W ∃ k ∈ N0 • w
k |= ac ∧

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

h
o
t ∀w ∈W • w0 |= ac =⇒

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∀w ∈W ∀ k ∈ N0 • w
k |= ac =⇒

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

LSCs vs. Software
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

26/50

Let S be a software with JSK = {π = σ0

α
1−−→ σ1

α
2−−→ σ2 · · · | · · · }.

S is called compatible with LSC L over C and E is if and only if

• Σ = (C → B), i.e. the states are valuations of the conditions in C,

• A ⊆ E!?, i.e. the events are of the form E!, E?.

Construct letters by joining σi and αi+1 (viewed as a valuation of E!, E?):

w(π) = (σ0 ∪ α1), (σ1 ∪ α2), (σ2 ∪ α3), . . .

We say S satisfies LSC L (e.g. universal, invariant), denoted by S |= L , if and only if

∀π ∈ JSK ∀ k ∈ N0 •w(π)
k |= ac =⇒ w(π)k |= ψCond

hot (∅, C0)∧w(π)/k+ 1 ∈ Lang(B(L))

ΘL am = initial am = invariant

co
ld

∃w ∈W • w0 |= ac ∧

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∃w ∈W ∃ k ∈ N0 • w
k |= ac ∧

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

h
o
t ∀w ∈W • w0 |= ac =⇒

w0 |= ψCond
hot (∅, C0) ∧ w/1 ∈ Lang(B(L))

∀w ∈W ∀ k ∈ N0 • w
k |= ac =⇒

wk |= ψCond
hot (∅, C0)∧w/k+1 ∈ Lang(B(L))

Software S satisfies a set of LSCs L1, . . . ,Ln if and only if S |= Li for all 1 ≤ i ≤ n.

Recall: The Crux of Requirements Engineering
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

27/50

(Σ× A)ω

?!

Customer Analyst

requirements analysis

One quite effective approach:
try to approximate the requirements with positive and negative scenarios.

• Dear customer, please describe example usages of the desired system.

“If the system is not at all able to do this, then it’s not what I want.”

• Dear customer, please describe behaviour that the desired system must not show.

“If the system does this, then it’s not what I want.”

• From there on, refine and generalise:
what about exceptional cases? what about corner-cases? etc.

Example: Buy A Softdrink
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

28/50

LSC: buy softdrink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

Example: Get Change
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
sw

ls
c
–

29/50

LSC: get change
AC: true

AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

Example: Don’t Give Two Drinks
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

30/50

Example: Don’t Give Two Drinks
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

30/50

LSC: only one drink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT
¬C50 ! ∧ ¬E1 !

false

Pre-Charts
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

31/50

LSC: only one drink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT
¬C50 ! ∧ ¬E1 !

false

A full LSC L = (PC ,MC , ac0, am,ΘL) actually consist of

• pre-chart PC = ((LP ,�P ,∼P), IP ,MsgP ,CondP , LocInvP ,ΘP) (possibly empty),

• main-chart MC = ((LM ,�M ,∼M), IM ,MsgM ,CondM , LocInvM ,ΘM) (non-empty),

• activation condition ac ∈ Φ(C), strictness flag strict (otherwise called permissive)

• activation mode am ∈ {initial, invariant},

• chart mode existential (ΘL = cold) or universal (ΘL = hot).

Pre-Charts Semantics
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

32/50

LSC: only one drink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT
¬C50 ! ∧ ¬E1 !

false

ΘL am = initial am = invariant

co
ld

∃w ∈W ∃m ∈ N0 • w0 |= ac

∧ w0 |= ψCond
hot (∅, CP0)

∧ w/1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ψCond
hot (∅, CM0)

∧ w/m+ 1 ∈ Lang(B(MC))

∃w ∈ W ∃ k < m ∈ N0 • wk |= ac

∧ wk |= ψCond
hot (∅, CP0)

∧ w/k + 1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ψCond
hot (∅, CM0)

∧ w/m+ 1 ∈ Lang(B(MC))

h
ot

∀w ∈W • w0 |= ac

∧ w0 |= ψCond
hot (∅, CP0)

∧ w/1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ψCond
cold (∅, CM0)

=⇒ wm+1 |= ψCond
cold (∅, CM0)

∧ w/m+ 1 ∈ Lang(B(MC))

∀w ∈ W ∀ k ≤ m ∈ N0 • wk |= ac

∧ wk |= ψCond
hot (∅, CP0)

∧ w/k + 1, . . . , w/m ∈ Lang(B(PC))

∧ wm+1 |= ψCond
cold (∅, CM0)

=⇒ wm+1 |= ψCond
cold (∅, CM0)

∧ w/m+ 1 ∈ Lang(B(MC))

Note: Scenarios and Acceptance Test
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

33/50

LSC: buy softdrink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

LSC: get change
AC: true

AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

LSC: only one drink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT
¬C50 ! ∧ ¬E1 !

false

• Existential LSCs∗ may hint at test-cases for the acceptance test!

(∗: as well as (positive) scenarios in general, like use-cases)

Note: Scenarios and Acceptance Test
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

33/50

LSC: buy softdrink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

LSC: get change
AC: true

AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

LSC: only one drink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT
¬C50 ! ∧ ¬E1 !

false

• Existential LSCs∗ may hint at test-cases for the acceptance test!

(∗: as well as (positive) scenarios in general, like use-cases)

• Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!

Note: Scenarios and Acceptance Test
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

33/50

LSC: buy softdrink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

LSC: get change
AC: true

AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

LSC: only one drink
AC: true

AM: invariant I: permissive

User Vend. Ma.

E1

pSOFT

SOFT

SOFT
¬C50 ! ∧ ¬E1 !

false

• Existential LSCs∗ may hint at test-cases for the acceptance test!

(∗: as well as (positive) scenarios in general, like use-cases)

• Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!

(Because they require that the software never ever exhibits the unwanted behaviour.)

Strenghening Scenarios Into Requirements
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

34/50

(Σ× A)ω

Customer Analyst

requirements analysis

Strenghening Scenarios Into Requirements
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

34/50

(Σ× A)ω

(Σ× A)ω

Customer Analyst

requirements analysis

Universal LSC: Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

35/50

LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

water in stock

dWATER

OK

Universal LSC: Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

35/50

LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !

water in stock

dWATER

OK

Universal LSC: Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

35/50

LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !

water in stock

dWATER

OK
¬(dSoft ! ∨ dTEA!)

Shortcut: Forbidden Elements
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

36/50

LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !

water in stock

dWATER

OK
¬(dSoft ! ∨ dTEA!)

LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

water in stock

dWATER

OK

Modelling Idiom: Enforcing Order
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

37/50

LSC: L
AM: invariant I: permissive

I1 I2 I3 I4

E

F

LSC: L
AM: invariant I: permissive

I1 I2 I3 I4

E

F

true

–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

38/50

Requirements on Requirements Specifications
–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
re

–

22/90

A requirements specification should be

• correct

— it correctly represents the wishes/needs of the customer,

• complete

— all requirements (existing in somebody’s head, or a document, or . . .) should be
present,

• relevant

— things which are not relevant to the project should not be constrained,

• consistent, free of contradictions

— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,

• neutral, abstract
— a requirements specification does not constrain the realisation more than necessary,

• traceable, comprehensible

— the sources of requirements are documented, requirements are uniquely identifiable,

• testable, objective
— the final product can objectively be checked for satisfying a requirement.

Requirements on LSC Specifications
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
p
re
ch

ar
t
–

39/50

• correctness is relative to “in the head of the
customer” → still difficult;

• complete: we can at least define a kind of
relative completeness in the sense of “did
we cover all (exceptional) cases?”;

• relevant also not analyseable within LSCs;

• consistency can formally be analysed!

• neutral/abstract is relative to the realisation
→ still difficult;
But LSCs tend to support abstract
specifications; specifying technical details is
tedious.

• traceable/comprehensible are
meta-properties, need to be established
separately;

• a formal requirements specification, e.g.
using LSCs, is immediately
objective/testable.

For Decision Tables, we formally defined
additional quality criteria:

• uselessness/vacuity,

• determinism may be desired,

• consistency wrt. domain model.

What about LSCs?

LSCs vs. MSCs

–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

40/50

LSCs vs. MSCs
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
d
ra
w
b
a
ck
s
–

41/50

Recall: Most severe drawbacks of, e.g., MSCs:

• unclear interpretation: example scenario or invariant?

• unclear activation: what triggers the requirement?

• unclear progress requirement: must all messages be observed?

• conditions merely comments

• no means (in language) to express forbidden scenarios

instance oriented t

instance oriented

event o

msc event_ordering

proc_a proc_b proc_c

m1

m2

m3

m4

in(m4)

(a) (ITU-T, 2011)

LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !

water in stock

dWATER

OK
¬(dSoft ! ∨ dTEA!)

Pushing It Even Further
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
d
ra
w
b
a
ck
s
–

42/50

(Harel and Marelly, 2003)

Requirements Engineering Wrap-Up

–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

43/50

Recall: Software Specification Example
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
w
ra
p
u
p
–

44/50

h
tt
p
:/
/
co
m
m
o
n
s.
w
ik
im

ed
ia
.o
rg

(C
C
-b
y-
sa

4
.0
,
D
ir
k
In
g
o
F
ra
n
ke
)

Alphabet:

• M – dispense cash only,

• C – return card only,

• M
C

– dispense cash and return card.

• Customer 1 “don’t care”

(

M.C
∣

∣

∣
C.M

∣

∣

∣

M
C

)

• Customer 2 “you choose, but be consistent”

(M.C) or (C.M)

• Customer 3 “consider human errors”

(C.M)

Recall: Formal Software Development
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
w
ra
p
u
p
–

45/50

Mmmh,

Software!

Requirements

JS1K = {(M.C, J · K1), (C.M, J · K1)}

Design

JS2K = {(M.TM .C, J · K1), (C.TC .M, J · K1)}

Implementation

JSK = {σ0
τ
−→ σ1

τ
−→ σ2 · · · , . . . }

Development
Process/
Project

Management

?

?

?

?

?

Recall: Formal Software Development
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
w
ra
p
u
p
–

45/50

Mmmh,

Software!

Requirements

JS1K = {(M.C, J · K1), (C.M, J · K1)}

Design

JS2K = {(M.TM .C, J · K1), (C.TC .M, J · K1)}

Implementation

JSK = {σ0
τ
−→ σ1

τ
−→ σ2 · · · , . . . }

Development
Process/
Project

Management

?

?

?

?

?

elicit
req.(in.)

analyst customer

elicitation

req.(in.)
formalise

req.(fo.)

analyst

formalisation

req.(fo.)
verify

req.(fo.)

✔/✘

analyst

verification

req.(fo.)

✘

fix
req.(fo.)

analyst

repair

req.(fo.)

✔

validate
req.(in.)

analyst customer

validation

Final Remarks
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
w
ra
p
u
p
–

46/50

One sometimes distinguishes:

• Systems Engineering (develop software for an embedded controller)

Requirements typically stated in terms of system observables (“press WATER button”),

needs to be mapped to terms of the software!

• Software Engineering (develop software which interacts with other software)

Requirements stated in terms of the software.

We touched a bit of both, aimed at a general discussion.

• Once again (can it be mentioned too often?):

Distinguish domain elements and software elements

and (try to) keep them apart to avoid confusion.

Systems vs. Software Engineering
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
w
ra
p
u
p
–

47/50

A Classification of Software
–
0
3
–
2
0
1
5
-0
4
-3
0
–
S
p
ro
ce
d
u
re

–

32/77

Lehmann (Lehman, 1980; Lehman and Ramil, 2001) distinguishes three classes of
software (my interpretation, my examples):

• S-programs: solve mathematical, abstract problems; can exactly (in particular formally)
be specified; tend to be small; can be developed once and for all.

Examples: sorting, compiler (!), compute π or
√

· , cryptography, textbook examples, . . .

• P-programs: solve problems in the real world, e.g. read sensors and drive actors, may be
in feedback loop; specification needs domain model (cf. Bjørner (2006), “A tryptich
software development paradigm”); formal specification (today) possible, in terms of
domain model, yet tends to be expensive

Examples: cruise control, autopilot, traffic lights controller, plant automatisation, . . .

• E-programs: embedded in socio-technical systems; in particular involve humans;
specification often not clear, not even known; can grow huge; delivering the software
induces new needs

Examples: basically everything else; word processor, web-shop, game, smart-phone apps,
. . .

Literature Recommendation
–
0
9
–
2
0
1
5
-0
6
-1
1
–
S
w
ra
p
u
p
–

48/50

(Rupp and die SOPHISTen, 2014)

References

–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

49/50

References
–
0
9
–
2
0
1
5
-0
6
-1
1
–
m
a
in

–

50/50

Harel, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.

ITU-T (2011). ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 5 edition.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

	Contents & Goals
	Recall: LSC Body Syntax
	LSC Semantics
	The Big Picture

	Excursion: Symbolic Büchi Automata
	From Finite Automata to Symbolic Büchi Automata
	Symbolic Büchi Automata
	Run of TBA
	The Language of a TBA
	Example

	LSC Semantics: TBA Construction
	LSC Semantics: It's in the Cuts!
	Cut Examples
	A Successor Relation on Cuts
	Successor Cut Example
	Language of LSC Body: Example
	TBA Construction Principle
	TBA Construction Principle
	Loop Condition
	Progress Condition
	Example
	Finally: The LSC Semantics
	Activation Condition

	LSCs vs. Software
	LSCs vs. Software
	Recall: The Crux of Requirements Engineering
	Example: Buy A Softdrink
	Example: Get Change
	Example: Don't Give Two Drinks
	Pre-Charts
	Pre-Charts Semantics
	Note: Scenarios and Acceptance Test
	Strenghening Scenarios Into Requirements
	Universal LSC: Example
	Shortcut: Forbidden Elements
	Modelling Idiom: Enforcing Order
	
	Requirements on LSC Specifications

	LSCs vs. MSCs
	LSCs vs. MSCs
	Pushing It Even Further

	Requirements Engineering Wrap-Up
	Recall: Software Specification Example
	Recall: Formal Software Development
	Final Remarks
	Systems vs. Software Engineering
	Literature Recommendation

	References
	References

