— 09 — 2015-06-11 — main

Softwaretechnik / Software-Engineering

Lecture 09: Live Sequence Charts

2015-06-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 09 — 2015-06-11 — Sprelim —

Last Lecture:

e Scenarios and Anti-Scenarios
o User Stories, Use Cases, Use Case Diagrams

e LSC: abstract and concrete syntax

This Lecture:

e Educational Objectives: Capabilities for following tasks/questions.

o Which are the cuts and firedsets of this LSC?
e Construct the TBA of a given LSC body.
e Given a set of LSCs, which scenario/anti-scenario/requirement is formalised by them?

e Formalise this positive scenario/anti-scenario/requirement using LSCs.

e Content:

e Excursion: automata accepting infinite words
e Cuts and Firedsets, automaton construction
o existential LSCs, pre-charts, universal LSCs

e Requirements Engineering: conclusions

2/50

Recall: LSC Body Syntax

— 09 — 2015-06-11 — main —

LSC Body Example

L:ilio=<Ubi1<lba2=<lgz, lL2=<lia, l2o=<l21 <l22=<l23, I30=<131 <132,
i1 <lo, lap<li2, lo3<li3, l32=<li,4, l22~I31,

o T={l0,l1,02,03,01a},{l2,0,l2,1,12,2,123}, {130,131, 13,2} },
o Msg ={(l1,1,4,l2.1),(l2,2, B, l1,2), (l2,2,C,l3,1), (I2,3, D, l1,3), (Is,2, E, l1,4) }
o Cond = {({l22}, 2 A ca)},

Loclnv = {(l1,1,0,c1,l1,2,0)}

I I I3

— 08 — 2015-06-08 — Slscsyn —
)
\
|
\
e}

29/78

3/50

LSC Semantics

4/50

— utew — 17-90-910¢ — 60 —

The Big Picture

— 09 — 2015-06-11 — Slsc —

e Recall: decision tables

e By the standard semantics, a decision table T’ is software,
[T] = {o, = 0y —2 0y--- | -++} is a set of computation paths.

5/50

The Big Picture

— 09 — 2015-06-11 — Slsc —

e Recall: decision tables

e By the standard semantics, a decision table T’ is software,
[T] = {o, = 0y —2 0y--- | -++} is a set of computation paths.

e Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

T
]/ L.y

5/50

The Big Picture

— 09 — 2015-06-11 — Slsc —

e Recall: decision tables

e By the standard semantics, a decision table T’ is software,
[T] = {o, = 0y —2 0y--- | -++} is a set of computation paths.

e Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

T
]/ L.y

e We want the same for LSCs.

5/50

The Big Picture

— 09 — 2015-06-11 — Slsc —

e Recall: decision tables

e By the standard semantics, a decision table T’ is software,
[T] = {o, = 0y —2 0y--- | -++} is a set of computation paths.

e Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

—
]/ L.y

e We want the same for LSCs.

o We will give a procedure to construct for each LSC . an automaton B(.Z).
The language (or semantics) of .Z is the set of comp. paths accepted by B(.7).
Thus an LSC is also software.

5/50

The Big Picture

— 09 — 2015-06-11 — Slsc —

e Recall: decision tables

e By the standard semantics, a decision table T’ is software,
[T] = {o, = 0y —2 0y--- | -++} is a set of computation paths.

e Recall: Decision tables as software specification:

But We Want A Software Specification, Don’t We...?

—
]/ L.y

e We want the same for LSCs.

o We will give a procedure to construct for each LSC . an automaton B(.Z).
The language (or semantics) of .Z is the set of comp. paths accepted by B(.7).
Thus an LSC is also software.

o : computation paths may be infinite — Buchi acceptance.

5/50

— 09 — 2015-06-11 — main —

Excursion: Symbolic Biichi Automata

6/50

From Finite Automata to Symbolic Biichi Automata

— 09 — 2015-06-11 — Stba —

A: 0 > ={0,1} B: 0 > ={0,1}
@ 1 @ infinite words @ 1 @
B 0 ={0,1}
symbolic]
0
symbolic
Asym even Y = ({x} — IN) Bsym even Y= ({x} — IN)

odd(z infinite words odd(z

7/50

Symbolic Biichi Automata

— 09 — 2015-06-11 — Stba —

Definition. A Symbolic Biichi Automaton (TBA) is a tuple

B = (Ca Qv Qings 7, QF)

where

C is a set of atomic propositions,
() is a finite set of states,
Qini € @ is the initial state,

— C @ x ®(C) x @ is the finite transition relation.

Each transitions (g, %, q") € — from state ¢ to state ¢’ is labelled with
a formula ¢ € ®(C).

Qr C @ is the set of fair (or accepting) states.

8/50

Run of TBA

— 09 — 2015-06-11 — Stba —

Definition. Let B = (C, Q, ¢ins, —, Qr) be a TBA and
w = 01,092,03, -+ € (C — B)~

an infinite word, each letter is a valuation of Cg.

An infinite sequence

0=4q0,q1,q2,... € Q”

of states is called run of B over w if and only if
¢ qO — q’L’n’Lr

o for each i € INy there is a transition (q;, ¥;, qir1) €= s.t. o; E ;.

Bsym.: = ({x IN
even(x) ===)

Example:

odd(x) 9/50

The Language of a TBA

— 09 — 2015-06-11 — Stba —

Definition.

We say TBA B = (C, Q, qini, —, Q) accepts the word
w = (0;)ien, € (C — B)¥ if and only if B a run

0 — (%’)z’E]No

over w such that fair (or accepting) states are visited infinitely often by
0, i.e., such that
VieNg dj>i:q; € QF.

We call the set Lang(B) C (C — B)“ of words that are accepted by B
the language of 5.

10/50

Example

— 09 — 2015-06-11 — Stba —

run. o0 = qo, 41, 42,

.. EQY s.t. 0 E i, 1 € Np.

11/50

— 09 — 2015-06-11 — main —

LSC Semantics: TBA Construction

12/50

LSC Semantics: It’s in the Cuts!

— 09 — 2015-06-11 — Scutfire —

13/50

LSC Semantics: It’s in the Cuts!

— 09 — 2015-06-11 — Scutfire —

Definition. Let ((£,=,~),Z,Msg, Cond, Loclnv,©®) be an LSC body.

A non-empty set) £ C' C L is called a cut of the LSC body iff C
e is downward closed, i.e.

Vijlle Lol cCNI=I = |€(C,

e is closed under simultaneity, i.e.

Vil e Lol cCNI~I = 1€ (C, and

e comprises at least one location per instance line, i.e.

VieZeCNI#D.

13/50

LSC Semantics: It’s in the Cuts!

— 09 — 2015-06-11 — Scutfire —

Definition. Let ((£,=,~),Z,Msg, Cond, Loclnv,©®) be an LSC body.
A non-empty set () £ C' C L is called a cut of the LSC body iff C

e is downward closed, i.e.

Vijlle Lol cCNI=I = |€(C,

e is closed under simultaneity, i.e.

Vil e Lol cCNI~I = 1€ (C, and

e comprises at least one location per instance line, i.e.

VieZeCNI#D.

The temperature function is extended to cuts as follows:

6(C) = hot ,ifdleCe(Bl'cCel=<1")NO(l)=hot
| cold , otherwise

that is, C is hot if and only if at least one of its maximal elements is hot.

13/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

0 # C C L — downward

closed — simultaneity closed — at least one loc. per instance line

I/:Z-:I\\ I/J-Q\\ /J‘g\\
I\\ /I' l\\ ,Il R | ,l’
l1.0 l2.0 T [3.0
|
/, \\ |
1 AY
I\\ ,/l I/' \\\ :
RGN RN |
(\\ 4
\ &l;,{ |
b |
|
|
l,’ \\\ |
l\\ ,I /‘+\\\
122 =
RS
|
|
28l IS SN RN |
1 \ .I \
I\\ 4’; \\ II :
9 93 |
|
|
|

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

0 # C C L — downward

closed — simultaneity closed — at least one loc. per instance line

I/J--I\\ I’/J:Z\\ /J‘3\\
I\\ /I' l\\ ,Il < | ,I’
1" li0 1o Tl?,,o
|
/, \\ |
1 AY
I\\ ,/l I/' \\\ :
RGN RN |
(\\ 4
\ &l;,{ |
b |
|
|
l,’ \\\ |
l\\ ,I /‘+\\\
122 =
RS
|
|
28l IS SN RN |
1 \ .I \
I\\ 4’; \\ II :
9 93 |
|
|
|

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

0 # C C L — downward

closed — simultaneity closed — at least one loc. per instance line

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

0 # C C L — downward

closed — simultaneity closed — at least one loc. per instance line

A3,
U
1l
|
|
|
|
|
|
|
|
|
A |
7 /’+\\
~ al2,2 |\\ | lll
AR
| b
-)
o 93

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

) # C C L — downward closed — simultaneity closed — at least one loc. per instance line

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

) # C C L — downward closed — simultaneity closed — at least one loc. per instance line

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

) # C C L — downward closed — simultaneity closed — at least one loc. per instance line

14/50

Cut Examples

— 09 — 2015-06-11 — Scutfire —

) # C C L — downward closed — simultaneity closed — at least one loc. per instance line

14/50

A Successor Relation on Cuts

— 09 — 2015-06-11 — Scutfire —

The partial order “<" and the simultaneity relation “~" of locations
induce a direct successor relation on cuts of £ as follows:

Definition.
Let C' C L bet a cut of LSC body ((£, <,~),Z, Msg, Cond, Loclnv, ©).

A set) # F C L is called fired-set F of C if and only if

o CNF=0and CUF is a cut, i.e. F is closed under simultaneity,

e all locations in F are direct <-successors of the front of C, i.e.

VieFIleCol' <INBI" €Ceol <1"),

e locations in F, that lie on the same instance line, are pairwise unordered, i.e.

Vi£l e Fe(3I €T {l,IYCI) = LAUNI £A1,

o for each asynchronous message reception in F, the corresponding sending is
already in C,

V(I,E,l'Yye Msgel' ¢ F — 1€ C.
The cut C' = CUF is called direct successor of C via F, denoted by C' ~ = C".

15/50

Successor Cut Example

— 09 — 2015-06-11 — Scutfire —

CNF=0—CUJFis acut — only direct <-successors — same instance line on front
pairwise unordered — sending of asynchronous reception already in

,/I“I\ ,"]“2\ ,/]:3\\
I\ I' l\ /l \ | /'
1l 1o Tl?,,o
|
|
I\ /l E 2 RS |
P N |
1,1 2NN

? N ’ |
(\ él;,{ |
b |
|
|
l,’ \\\ |

l\ 7 F /’+\\

a0 |

Tl3,1

|
28l IS SN RN |
Ce— |
9 93 :
|
|
|

16/50

Successor Cut Example

— 09 — 2015-06-11 — Scutfire —

CNF=0—CUJFis acut — only direct <-successors — same instance line on front
pairwise unordered — sending of asynchronous reception already in

/J-:I\\ ,lf[’?\‘ ,/J-:g\\
\ I' l\ lI \ | /'
17l 1720 Tl3,o
|
SN RN |
I\ /l E 2 IS |
\\ ’I l[L \ |
1,1 2AIGN
’ Y 7/ |
(~,
N ¢’ l;,'i |
I |
|
|
II’-\\\ ’j |
l\ \ll\l.‘{ /‘+\\
\"’,l \I/| \'
2,2 \\ /I
T l31
|
/,’ \\\ G /’/ \\\ |
I\ <I’ .\ II |
9 93 :
|
|
|

16/50

Language of LSC Body: Example

— 09 — 2015-06-11 — Scutfire —

l31

1

-

10 o

1l 3

— 3 — B

.
1
—_— e — - — — — =
\

The TBA B(.Z) of LSC £ over C and &€ is (C, Q, ¢ini, —, QF) with

QQ is the set of cuts of ., q;,; is the instance heads cut,

C=CU&p, where &2 ={FE\E? | E € £},
— consists of loops, progress transitions (from ~»r), and legal exits (cold cond./local inv.),
Qr ={C € Q| O(C) =coldV C = L} is the set of cold cuts and the maximal cut.

E!
E?7NA =
p ¢ ‘3 ~E?
E?N &
@ -
F!
~(F?V GV G?)
GI'NG? N —F?
F? A —(GIAG?)
-F7?
-(G'NG?)
o

17/50

TBA Construction Principle

— 09 — 2015-06-11 — Scutfire —

Recall: The TBA B(.Z) of LSC Z is (C,Q, qini, —, QF) with

e () is the set of cuts of .Z, ¢;,; is the instance heads cut,

e C=CU{E,E?| E €&},

e — consists of loops, progress transitions (from ~»), and legal exits (cold cond./local inv.),
F={CeQ]|O6(C)=coldVv C = L} is the set of cold cuts.

= {(g @) laeQ}U{(a) g7 d}U{ L)]q€Q}

18/50

TBA Construction Principle

— 09 — 2015-06-11 — Scutfire —

Recall: The TBA B(.Z) of LSC Z is (C,Q, qini, —, QF) with

e () is the set of cuts of .Z, ¢;,; is the instance heads cut,

e C=CU{E,E?| E €&},

e — consists of loops, progress transitions (from ~»), and legal exits (cold cond./local inv.),
F={CeQ]|O6(C)=coldVv C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

= {(g @) laeQ}U{(a) g7 d}U{ L)]q€Q}

18/50

TBA Construction Principle

— 09 — 2015-06-11 — Scutfire —

Recall: The TBA B(.Z) of LSC Z is (C,Q, qini, —, QF) with

e () is the set of cuts of .Z, ¢;,; is the instance heads cut,

e C=CU{E,E?| E €&},

e — consists of loops, progress transitions (from ~»), and legal exits (cold cond./local inv.),
F={CeQ]|O6(C)=coldVv C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

—={(¢, Yioop (@), @) | ¢ € QY U{(q; Yprog(a,d"),d") | ¢ ~F ¢’} U{(q, Yexit(a), L) | g € Q}

18/50

TBA Construction Principle

— 09 — 2015-06-11 — Scutfire —

Recall: The TBA B(.Z) of LSC Z is (C,Q, qini, —, QF) with

e () is the set of cuts of .Z, ¢;,; is the instance heads cut,

e C=CU{E,E?| E €&},

e — consists of loops, progress transitions (from ~» x), and legal exits (cold cond./local inv.),
F={CeQ]|O6(C)=coldVv C = L} is the set of cold cuts.

So in the following, we “only” need to construct the transitions’ labels:

—={(¢, Yioop (@), @) | ¢ € QY U{(q; Yprog(a,d"),d") | ¢ ~F ¢’} U{(q, Yexit(a), L) | g € Q}

Yi00p(q): “what I I Is

allows us to stay |

t cut q” !

/ ¢ - A I

Vewit (Q) 3 4 L E— I
“what allows us to Yprog(q,q"): e |
legally exit” ~—~| “ ..F1”7— — “characterisation B T(J»{

of firedset Fp” WM@A o |

D __ | |

18/50

TBA Construction Principle

So in the following, we “only” need to construct the transitions’ labels:

—={(2,V100p(20),0) | 1 € QY U{(, ¥prog(0,4'),d") | ¢ ~F @'} U{(q, ewit (),

Yewit (Q) =

(Vros, (@) A =ed™ (a))

Vv \/1§z‘§n ¢2%g (q7 qz) A

Loclnv,
(=g (q,q:) V9

— 09 — 2015-06-11 — Slscsem —

Cond
cold

hot

Vroop (4) = UM (g) A L™ (g) A

\

A

Lodnv()

wcold

VYprog(q; qn) =

¢2?~Eg (q,qn) N
hot
prog

Cond
hot

Cond
cold

(q,qn) =

(g, qn) N

WME(q, qn)

Locl
(@5 qn) AN pas 2 (q, an)

Lochv,o(

L)|qeQ}

q,qn)

I

I

19/50

Loop Condition

— 09 — 2015-06-11 — Slscsem —

Dioop (@) = VM8 (q) A hpoe™ (@) A beod™ (@)

¢ ¢Msg(Q) — vlgign ¢Msg(Q7 qi) N (Stht — Aweel?ﬂMsg(ﬁ) _'77b)

Loclnv

0 (q) — /\Ez(l,b,qb,l’,b’)ELoclnv, ©(£)=80, £ active at q ¢

A location [is called front location of cut C if and only if 3’ € L el <[’

Local invariant (lo, to, ¢, l1,t1) is active at cut (!) ¢ if and only if [p <[< 1; for some
front location [of cut (!) g.

o Msg(F)={E!|(,E,l')eMsg, l € F}U{E?|(l,E,l') € Msg, I' € F}
o Msg(F1,...,Fn) =Uicic,, Msg(Fi)
I I Is
[
(161_/\/{ B C :
D__| |

20/50

Progress Condition

— 09 — 2015-06-11 — Slscsem —

Loclnv,
Phot (4, ai) = YMB(q, qn) AP (q, an) A g " (an)

Msg N\
o V8(q,q:) = /\ngMsg(qi\q) P A /\j;éz' /\we(Msg(qj\q)\Msg(qu\Q)) Y
A (stmct — /\we(g!?ﬂMsg(ﬁ))\MSg(]:i) ﬂb)

Cond
® ¢9 (Q>ql) — /\fy:(L,qb)GCond, ©(v)=6, LN(q;\q)#0 ¢

Loclnv,e N
° Py (9,q:) = /\)\:(l,b,qb,l’,L’)ELoclnv, ©(N\)=0, X\ e-active at ¢; ¢
Local invariant (lo, to, ¢,l1,t1) is e-active at ¢ if and only if

o [p <1<y, or
o l=IlgNtg=, or

e l=0l1 Nty =e I Iy I|3
. I
for some front location [of cut (!) g. S — |
s TN |
<« cr)
xJI B C '
rCana >
|
D __ [

21/50

Example

=) -
o e
P N ~
< QN
N
o Py N el
(o] [2\N [q\] [q\]
Bl \7,./4_ > =
& \ y N L
~ JW_ b
N .
N\ \x
N
=) — N
i — —
JPE s ~ \:i[
h \ ’ A,.|||||
T
N

22/50

— w9s3s|S — TT-90-GT0Z — 60 —

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC Z = (((L,<,~),Z,Msg, Cond, Loclnv,©), acy, am, © &) consist of

body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),
activation condition aco € ®(C'), strictness flag strict (otherwise called permissive)
activation mode am € {initial, invariant},

chart mode existential (© ¢ = cold) or universal (0.« = hot).

23/50

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC . = (((L, =,~),Z,Msg, Cond, Loclnv, ©), acy, am, ©) consist of
e body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),

e activation condition aco € ®(C'), strictness flag strict (otherwise called permissive)
e activation mode am € {initial, invariant},

e chart mode existential (0 ¢ = cold) or universal (0% = hot).

Concrete syntax:

LSC: »3”1
AC: c1
AM: initial |: permissive
|
|
I]1]2 I3 :
| | |
| o
| I I
l * | |
I I I
| | I
| I I
| I I
|) | |
M |
| |
| G |
| |
I
| I

23/50

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC . = (((L, =,~),Z,Msg, Cond, Loclnv, ©), acy, am, ©) consist of

e body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),

e activation condition aco € ®(C'), strictness flag strict (otherwise called permissive)

e activation mode am € {initial, invariant},

e chart mode existential (0 ¢ = cold) or universal (0% = hot).

A set of words W C (C — B)“ is accepted by .Z if and only if

Oy am = initial

am = invariant

cold

hot

where ac = aco A N4 (0, Co) A pME(D, Cp); Cp is the minimal (or instance heads) cut.

cold

23/50

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC . = (((L, =,~),Z,Msg, Cond, Loclnv, ©), acy, am, ©) consist of

e body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),

e activation condition aco € ®(C'), strictness flag strict (otherwise called permissive)

e activation mode am € {initial, invariant},

e chart mode existential (0 ¢ = cold) or universal (0% = hot).

A set of words W C (C — B)“ is accepted by .Z if and only if

Oy am = initial am = invariant
5 | JweWe w® = ac A
S w’ = et (0, Co) A w/1 € Lang(B(£))

hot

where ac = aco A N4 (0, Co) A pME(D, Cp); Cp is the minimal (or instance heads) cut.

cold

23/50

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC . = (((L, =,~),Z,Msg, Cond, Loclnv, ©), acy, am, ©) consist of
e body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),

e activation condition aco € ®(C'), strictness flag strict (otherwise called permissive)
e activation mode am € {initial, invariant},

e chart mode existential (0 ¢ = cold) or universal (0% = hot).

A set of words W C (C — B)“ is accepted by .Z if and only if

O am = initial am = invariant
s | JweWeuw’ EacA Jw € W 3k € Nogew" |= ac A
S w’ = et (0, Co) Aw/1 € Lang(B(.L)) w” = per?(0, Co) Aw/k+1 € Lang(B(.L))

hot

where ac = aco A PS40, Co) A pME(D,Co); Cop is the minimal (or instance heads) cut.

23/50

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC . = (((L, =,~),Z,Msg, Cond, Loclnv, ©), acy, am, ©) consist of
e body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),

e activation condition aco € ®(C'), strictness flag strict (otherwise called permissive)
e activation mode am € {initial, invariant},

e chart mode existential (0 ¢ = cold) or universal (0% = hot).

A set of words W C (C — B)“ is accepted by .Z if and only if

O am = initial am = invariant
s | JweWeuw’ EacA Jw € W 3k € Nogew" |= ac A
S w’ = et (0, Co) Aw/1 € Lang(B(.L)) w” = per?(0, Co) Aw/k+1 € Lang(B(.L))

VweWeuw’ | ac =
w’ | Yy (0, Co) Aw/1 € Lang(B(.Z))

hot

where ac = aco A PS40, Co) A pME(D,Co); Cop is the minimal (or instance heads) cut.

23/50

Finally: The LSC Semantics

— 09 — 2015-06-11 — Slscsem —

A full LSC . = (((L, =,~),Z,Msg, Cond, Loclnv, ©), acy, am, ©) consist of
e body ((£,=<,~),Z,Msg, Cond, Loclnv, ©),

e activation condition aco € ®(C'), strictness flag strict (otherwise called permissive)

e activation mode am € {initial, invariant},

e chart mode existential (0 ¢ = cold) or universal (0% = hot).

A set of words W C (C — B)“ is accepted by .Z if and only if

O am = initial am = invariant

s | JweWeuw’ EacA Jw € W 3k € Nogew" |= ac A

3 w” | Yoy (0, Co) Aw/1 € Lang(B(Z)) w® | et (0, Co) ANw/k+1 € Lang(B(£))

. VweWeuw’ | ac = VweE W Vk € Nog ew” = ac =

2 w’ | Yy (0, Co) Aw/1 € Lang(B(.Z)) w® | Yrer(0, Co) ANw/k+1 € Lang(B(£))
Cond

where ac = acg A Y

cold

(0, Co) A YMs&((, Cp); Co is the minimal (or instance heads) cut.

23/50

Activation Condition

LSC: ‘,?1
AC:

C1

permissive

initial

AM:

24/50

—_———_— - — — —- —- — — — — —_— — ——_—— — —

_] _
_ _ _
_ _ _
|| < f——— — — - ————— = _
_ _ _
_ _ _
_ _ _
_ &, _
_ _
o _ _
T | |
B P _
E)|~] O | B
[_ _
o | |
.. _ _
- g G) _
— _ _
.m | _
— _ [
J | |
H= | _
||||||||||||||| —1< _ N 7 |
— e N
_
_
_
~ - ———— — = |
_
_
_
i, _
_
_
_
~ _
~ -7
_
_
_
& O _
_
_
— |
=~ _
_
_
_

—_——— —_- —_— — —_— —_— — — —_— —_— —_— —_— —_ —_— —_— ——

— wesds|S — TT1-90-GT0C — 60 —

LSCs vs. Software

25/50

— utew — 17-90-910¢ — 60 —

LSCs vs. Software

— 09 — 2015-06-11 — Sswlsc —

Let S be a software with [S] = {7 = oy o oy |- b
S is called compatible with LSC £ over C and £ is if and only if

o ¥ = (C — B), i.e. the states are valuations of the conditions in C,
o A C &9, i.e. the events are of the form E!, E7.

26/50

LSCs vs. Software

— 09 — 2015-06-11 — Sswlsc —

Let S be a software with [S] = {7 = oy o oy |- b
S is called compatible with LSC £ over C and £ is if and only if

o ¥ = (C — B), i.e. the states are valuations of the conditions in C,
o A C &9, i.e. the events are of the form E!, E7.

Construct letters by joining o; and a;+1 (viewed as a valuation of E!, E?):

w(m) = (6o Uar), (01 Uaz),(02Uas),...

26/50

LSCs vs. Software

— 09 — 2015-06-11 — Sswlsc —

Let S be a software with [S] = {7 = oy o oy |- b
S is called compatible with LSC £ over C and £ is if and only if

o ¥ = (C — B), i.e. the states are valuations of the conditions in C,

o A C &9, i.e. the events are of the form E!, E7.

Construct letters by joining o; and a;+1 (viewed as a valuation of E!, E?):

w(m) = (6o Uar), (01 Uaz),(02Uas),...

We say S satisfies LSC .Z (e.g. universal, invariant), denoted by S = %, if and only if

Vre[S]Vk € Noow(n)® Eac = w(r)"

Cond
hot

(0,Co) Nw(m)/k+1 € Lang(B(Z))

26/50

LSCs vs. Software

— 09 — 2015-06-11 — Sswlsc —

Let S be a software with [S] = {7 = oy o oy |- b
S is called compatible with LSC £ over C and £ is if and only if

o ¥ = (C — B), i.e. the states are valuations of the conditions in C,

o A C &9, i.e. the events are of the form E!, E7.

Construct letters by joining o; and a;+1 (viewed as a valuation of E!, E?):

w(m) = (6o Uar), (01 Uaz),(02Uas),...

We say S satisfies LSC .Z (e.g. universal, invariant), denoted by S = %, if and only if

Vre[S]Vk € Noow(n)® Eac = w(r)"

@

am = initial

ot (D, Co) ANw(m)/k +1 € Lang(B(Z))

am = invariant

£
= Jw € W ew? |= ac A Jw e W 3k € Ng e w® = ac A
3 w” E Pre (0, Co) Aw/1 € Lang(B(.Z)) w* [Yy (0, Co) Aw/k+1 € Lang(B(2))
» VwecWeuw’ = ac = VweW VEk € Ngow" = ac =
2 w” E Yo (0, Co) Aw/1 € Lang(B(.Z)) w* [Yoy (0, Co) Aw/k+1 € Lang(B(2))

26/50

LSCs vs. Software

— 09 — 2015-06-11 — Sswlsc —

Let S be a software with [S] = {7 = oy o oy |- b
S is called compatible with LSC £ over C and £ is if and only if

o ¥ = (C — B), i.e. the states are valuations of the conditions in C,

o A C &9, i.e. the events are of the form E!, E7.

Construct letters by joining o; and a;+1 (viewed as a valuation of E!, E?):

w(m) = (6o Uar), (01 Uaz),(02Uas),...

We say S satisfies LSC .Z (e.g. universal, invariant), denoted by S = %, if and only if

Vre[S]Vk € Noow(n)® Eac = w(r)"

ot (D, Co) ANw(m)/k +1 € Lang(B(Z))

O » am = initial am = invariant

= Jw € W ew? |= ac A Jw e W 3k € Ng e w® = ac A

S w® f= Yot (D, Co) Aw/1 € Lang(B(Z)) w* = (0, Co) Aw/k+1 € Lang(B(ZL))
» VwecWeuw’ = ac = VweW VEk € Ngow" = ac =

2 w’ = per? (0, Co) Aw/1 € Lang(B(£)) w® = P (0, Co) Aw/k+1 € Lang(B(Z))

Software S satisfies a set of LSCs .Z;,..., %, ifand only if S =% for all 1 < i < n.

26/50

Recall: TWuirements Engineering

— 09 — 2015-06-11 — Sswlsc —

(2 x A

O O
:‘
Customer Analyst

requirements analysis

One quite effective approach:
try to approximate the requirements with positive and negative scenarios.

e Dear customer, please describe example usages of the desired system.

“If the system is not at all able to do this, then it’s not what | want.”

e Dear customer, please describe behaviour that the desired system must not show.

“If the system does this, then it’s not what | want.”

e From there on, refine and generalise:
what about exceptional cases? what about corner-cases? etc.

27/50

Example: Buy A Softdrink

— 09 — 2015-06-11 — Sswlsc —

LSC: buy softdrink

AC: true

AM: invariant | permissive
|

| User Vend. Ma.
|

: E1l o

|

i pSOFT

|

|

| <« SOFT

|

e o o — —— — — — — — — — — — — — — — — —]

HEE =

~ LIGOLDENBURG

L_

28/50

29/50

(EIEED

9¥NaN1a10

get change

true

LSC:
AC:

|: permissive

Invariant

AM:

Example: Get Change

C50
E1
pSOF'T
SOFT
chg-C50

N\ N N\ N N\ N\ NN N NN NN\

User
v
v
V
V
v
v
v
v
v

— ISIMSS — TT1-90-9T0C — 60 —

(EIEED

QUNEN1010

Example: Don’t Give Two Drinks

30/50

— 1eya1ds — 11-90-GT0C — 60 —

Example: Don’t Give Two Drinks

— 09 — 2015-06-11 — Sprechart —

—
= ®
=
=

LSC: only one drink =
AC: true
AM: invariant |: permissive U]
/ R
,/ User Vend. Ma. \\ k, . ./
/ y \
\
// /, £l - \

/ g% \\

// /: pSOFT o \

\ je /

\ 1 //

\\ ;:< SOFT @ -oeenn //
\ 1 I<ﬁ C50\ N —E11Y
\ ;/< SOFT) /’
\ je /
\
< false >
2

30/50

Pre_ChartS LSC: only one drink

— 09 — 2015-06-11 — Sprechart —

AC: true
AM: invariant |: permissive
/ \
// User Vend. Ma. \\
// E1l _ \\
/ > \
/ \
/ pSOFT \
\ /
\ /
\ . SOFT /
\
\\ . SOFT
\ /
false
" |
A full LSC . = (PC, MC, acy, am, 0) consist of

pre-chart PC = ((Lp,=<p,~p),Zp,Msgp,Condp, Loclnvp,©p) (possibly empty),

main-chart MC = ((Lar, 2, ~n), Zar, Msg,,, Condas, Loclnvys, ©) (non-empty),
activation condition ac € ®((C'), strictness flag strict (otherwise called permissive)
activation mode am € {initial, invariant},

chart mode existential (O = cold) or universal (0. = hot).

31/50

Pre-Charts Semantics e

— 09 — 2015-06-11 — Sprechart —

@

only one drink

AC: true
AM: invariant |: permissive
/ \
,/ User Vend. Ma. \\
/
/ Bl \
/ > \
/ \
/
; pSOFT _ \\
\ /
\ /
\ SOFT !
\ -C50!' N —FE1!
\ SOFT
\ /
\ /
false

am = initial

am = invariant

cold

JweW Im € Ny e w? | ac
N (0, CF)
ANw/l,...,w/m € Lang(B(PC))
N a0, C3)

ANw/m+1 € Lang(B(MC))

Jw e W Fk<m € Ngewr = ac
AP = i (0, CF)
ANw/k+1,...,w/m € Lang(B(PC))
A | 0, 031

Nw/m+ 1€ Lang(B(MC))

hot

VweWeuw = ac
Aw® (0, CF)
ANw/l,...;,w/m € Lang(B(PC))
A G0, 03)

cold

S— wm—i—l): ¢Cond (@7 C(])\J)

cold

Nw/m+ 1€ Lang(B(MC))

VweEWVEk<meNgewF = ac
A (0,0

hot

Nw/k+1,...,w/m € Lang(B(PC))
A b g0, O

cold

E— wm—|—1 IZ ,¢Cond ((Z), Cé%)

cold

ANw/m+ 1€ Lang(B(MC))

32/50

Note: Scenarios and Acceptance Test

— 09 — 2015-06-11 — Sprechart —

LSC: buy softdrink
AC: true
AM: invariant |: permissive
I I
I User | | Vend. Ma. :
I
I
: F1 _ |
I I
| |
I pSOFT I
> I
l .
| SOFT |
I I
I I

LSC: get change

AC: true
AM: invariant |: permissive
I I
: User | | Vend. Ma. :
I
| cs0
| |
! E1 |
I -
| |
i pSOFT :
. l
: . SOFT !
I I
I
: chg-C50 :
- I
| 4 | |

LSC: only one drink
AC: true
AM: invariant |: permissive 7
\
User | | Vend. Ma. \\
Fl _ \\
> \
\
pSOFT \
o /
/
> SOFT //
= C50! N —FE1!
SOFT 7
I
false
Y I

o Existential LSCs* may hint at test-cases for the acceptance test!

(x: as well as (positive) scenarios in general, like use-cases)

33/50

Note: Scenarios and Acceptance Test

— 09 — 2015-06-11 — Sprechart —

LSC: buy softdrink

AC: true

AM: invariant |: permissive
I

I User | | Vend. Ma.
I

: F1 _

I

| pSOFT

| -

I

l SOFT

I

I

LSC: get change
AC: true
AM: invariant |I:

permissive

User | | Vend. Ma.
C50

LSC:

only one drink

AC: true
AM: invariant |: permissive 7
\
User | | Vend. Ma. \\
Fl _ \\
> \
\
pSOFT \
o /
/
> SOFT //
= C50! N —FE1!
SOFT 7
/
false
” I

o Existential LSCs* may hint at test-cases for the acceptance test!

(x: as well as (positive) scenarios in general, like use-cases)

e Universal LSCs (and negative/anti-scenarios) in general need

33/50

Note: Scenarios and Acceptance Test

— 09 — 2015-06-11 — Sprechart —

LSC: buy softdrink

AC: true

AM: invariant |: permissive
I

I User | | Vend. Ma.
I

: F1 _

I

| pSOFT

| -

I

l SOFT

I

I

LSC: get change
AC: true
AM: invariant |: permissive
I I
: User | | Vend. Ma. :
I
: C'50 |
| |
! E1 |
I -
| |
i pSOFT :
. l
: . SOFT !
! |
I
: chg-C50 :
- I
| 4 | |

LSC: only one drink
AC: true
AM: invariant |: permissive
/ N
/ User | | Vend. Ma. \
/
/ Fl _ \\
/ v \
/ \
/
; pSOFT _ \\
\ /
\ /
\\ > SOFT //
\ = C50' N —E1!
\\ SOFT 7
\ I
false

o Existential LSCs* may hint at test-cases for the acceptance test!

(x: as well as (positive) scenarios in general, like use-cases)

e Universal LSCs (and negative/anti-scenarios) in general need

(Because they require that the software

exhibits the unwanted behaviour.)

33/50

Strenghening Scenarios Into Requirements

— 09 — 2015-06-11 — Sprechart —

Customer Analyst

requirements analysis

34/50

Strenghening Scenarios Into Requirements

— 09 — 2015-06-11 — Sprechart —

Customer Analyst

requirements analysis

34/50

Universal LSC: Example

— 09 — 2015-06-11 — Sprechart —

HEE =

~ LI OLDENBURG

L_

LSC: buy water
AC: true
AM: invariant |: strict
/
// User CoinValidator ChoicePanel Dispenser
/ v [[|
/ | [I
, 7 C50 | |
/ ; | |
\ PWATE '
\ W l |
\ |
\ < water_in_stock > [
[
\\ | |
dWATER

NN\

35/50

Universal LSC: Example

— 09 — 2015-06-11 — Sprechart —

LSC:
AC:
AM:

buy water
frue_
Invariant

[: strict

water_in_stock

~ LI OLDENBURG

HEE =

L_

~(C50!v E1'V pSOFT!
V pTEA!V pFILLUP!

AN NN NN QN

35/50

Universal LSC: Example

— 09 — 2015-06-11 — Sprechart —

LSC: buy water
AC: true
AM: invariant |: strict

HEE =

~ LI OLDENBURG

L_

\ .
\ water_in_stock
\

~(C50!v E1'V pSOFT!
V pTEA!V pFILLUP!

NN\

—(dSoft! v dTEA!)>

35/50

Shortcut: Forbidden Elements

— 09 — 2015-06-11 — Sprechart —

LSC: buy water
AC: true
AM: invariant |: strict
,,,,,,,,,,,,,,,,,,,,,,,, .
/
/) User ‘ ’CoinVaIidator‘ ’ ChoicePanel ‘ ’ Dispenser ‘ \\
/ 7 I T T \\
// %\ : :
! 2 | \ | ~(C50!V E11V pSOFT!
Y % PWATER | | V pTEA!V pFILLUP!
\ 1 - :
\\ water_in_stock } /
v 1 /
4 dw,
7 ATE;g
v ! —(dSoft! v dTEA)
7 0 |
Z | i
/ I 1
LSC: buy water
AC: true)
AM: invariant | strict
/
/ User CoinValidator ChoicePanel Dispenser
I I T
/
F—C50 | |
/ s | |
/ | |
| |
7
z PWATER | |
| L :
water_in_stock |
\ [
\ | |
7 aw,
7 ATER
/ |
7 0 |
/ | '
[
/ I I

36/50

Modelling Idiom

: Enforcing Order

— 09 — 2015-06-11 — Sprechart —

LSC:. Z
AM: invariant |: permissive

]1]2]3 [4

| |
| |
| | F -
| |
o N]
LSC:. Z
AM: invariant |: permissive
|
|
1! Iy I3 Iy]
|
| E :
I I < true > :
		I
		-

—_——_— — — —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_——_——_——_——_——— —_——_— —_— 4]

37/50

— 09 — 2015-06-11 — Sprechart —

Requirements on Requirements Specifications

— 05 — 2015-05-11 — Sre —

A requirements specification should be

correct
— it correctly represents the wishes/needs of the customer,

complete
— all requirements (existing in somebody's head, or a document, or ...) should be
present,

relevant
— things which are not relevant to the project should not be constrained,

consistent, free of contradictions
— each requirement is compatible with all other requirements; otherwise the requirements
are not realisable,

neutral, abstract
— a requirements specification does not constrain the realisation more than necessary,

traceable, comprehensible
— the sources of requirements are documented, requirements are uniquely identifiable,

testable, objective
— the final product can objectively be checked for satisfying a requirement.

22/90

38/50

Requirements on LSC Specifications

— 09 — 2015-06-11 — Sprechart —

correctness is relative to “in the head of the
customer” — still difficult;

complete: we can at least define a kind of
relative completeness in the sense of “did
we cover all (exceptional) cases?”;

relevant also not analyseable within LSCs;
consistency can formally be analysed!

neutral /abstract is relative to the realisation
— still difficult;

But LSCs tend to support abstract
specifications; specifying technical details is
tedious.

traceable/comprehensible are
meta-properties, need to be established
separately;

a formal requirements specification, e.g.
using LSCs, is immediately
objective/testable.

For Decision Tables, we formally defined
additional quality criteria:

e uselessness/vacuity,

e determinism may be desired,

e consistency wrt. domain model.

What about LSCs?

39/50

LSCs vs. MSCs

40/50

— utew — 17-90-910¢ — 60 —

LSCs vs. MSCs

— 09 — 2015-06-11 — Sdrawbacks —

Recall: Most severe drawbacks of, e.g., MSCs:

conditions merely comments

unclear interpretation: example scenario or invariant?
unclear activation: what triggers the requirement?

unclear progress requirement: must all messages be observed?

no means (in language) to express forbidden scenarios

kSCC: buy water
. : true
msc event_ordering AM: invariant |1 strict
,,,,,,,,,,,,,,,,,,,,,,,, \
/ \
b proc_c // ’ User ‘ CoinValidator ‘ ’ ChoicePanel ‘ ’ Dispenser ‘ \
proc a proc _ , T T T \
[. . | / PR | ! :
/ 7 ~| | | ~(C501V E11V pSOFT!
ml > | % PWATER | ‘ V pTEA!N pFILLUP!
\ I i ! :
m2 \ water_in_stock } /
> \\ | //
m3 7
> ; IWATER
md ; O\ ‘ —(dSoft! vV dTEA!)
< / |
/ | :
I]] 7 ! !
(ITU-T, 2011)

41/50

Pushing It Even Further

— 09 — 2015-06-11 — Sdrawbacks —

(Harel and Marelly, 2003)

42/50

— 09 — 2015-06-11 — main —

Requirements Engineering Wrap-Up

43/50

Recall: Software Specification Example

@ @
S Geldautomat &5 |

———
Alphabet:
e M - dispense cash only,
e (C —return card only,
° 5 - dispense cash and return card.

e Customer 1 “don’t care”

http://commons.wikimedia.org (CC-by-sa 4.0, Dirk Ingo Franke)

M
(M.C‘C.M‘ C)
e Customer 2 “you choose, but be consistent”

(M.C) or (C.M)

e Customer 3 “consider human errors”

(C.M)
44 /50

— 09 — 2015-06-11 — Swrapup —

Recall: Formal Softwimih Development

— 09 — 2015-06-11 — Swrapup —

45/50

Recall: Formal Softwiwah, Development

C.
O Software!

Requirements

[Al ={(M.C,[-11), (C.M, [-]1)} :) ?

Development

Process/
= o
-
elicit . . formalise verify
req.(in.) req.(in.) req.(fo.) req.(fo.) req.(fo.)
/ | |
/ | | S
analyst customer analyst analyst
elicitation formalisation verification
I
o
3
o
@®
2
v fix validate [
I req.(fo.) req.(fo.) req.(fo.) req.(in.)
—
| /
o = | :
Lo
—
o
(\Il analyst analyst customer
o repair validation
o
I g

15 /50

Final Remarks

— 09 — 2015-06-11 — Swrapup —

One sometimes distinguishes:

o Systems Engineering (develop software for an embedded controller)

Requirements typically stated in terms of system observables (“press WATER button™),
needs to be mapped to terms of the software!

o Software Engineering (develop software which interacts with other software)

Requirements stated in terms of the software.

We touched a bit of both, aimed at a general discussion.

o (can it be mentioned too often?):

Distinguish domain elements and software elements
and (try to) keep them apart to avoid confusion.

46/50

Systems vs. Software Engineering

— 09 — 2015-06-11 — Swrapup —

A Classification of Software

Lehmann (Lehman, 1980; Lehman and Ramil, 2001) distinguishes three classes of
software (my interpretation, my examples):

e S-programs: solve mathematical, abstract problems; can exactly (in particular formally)
be specified; tend to be small; can be developed once and for all.

e P-programs: solve problems in the real world, e.g. read sensors and drive actors, may be
in feedback loop; specification needs domain model (cf. Bjgrner (2006), “A tryptich
software development paradigm”); formal specification (today) possible, in terms of
domain model, yet tends to be expensive

Examples: cruise control, autopilot, traffic lights controller, plant automatisation, ...

E-programs: embedded in socio-technical systems; in particular involve humans;
specification often not clear, not even known; can grow huge; delivering the software
induces new needs

Examples: basically everything else; word processor, web-shop, game, smart-phone apps,

— 03 — 2015-04-30 — Sprocedure —

Examples: sorting, compiler (!), compute 7 or /-, cryptography, textbook examples, ...

32/77

47/50

Literature Recommendation

Aus der Praxis
von klassisch bis agil

HANSER

SOPHIST)

(Rupp and die SOPHISTen, 2014)

— 09 — 2015-06-11 — Swrapup —

48/50

References

49/50

— utew — 17-90-910¢ — 60 —

References

— 09 — 2015-06-11 — main —

Harel, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.
ITU-T (2011). ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 5 edition.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

50/50

	Contents & Goals
	Recall: LSC Body Syntax
	LSC Semantics
	The Big Picture

	Excursion: Symbolic Büchi Automata
	From Finite Automata to Symbolic Büchi Automata
	Symbolic Büchi Automata
	Run of TBA
	The Language of a TBA
	Example

	LSC Semantics: TBA Construction
	LSC Semantics: It's in the Cuts!
	Cut Examples
	A Successor Relation on Cuts
	Successor Cut Example
	Language of LSC Body: Example
	TBA Construction Principle
	TBA Construction Principle
	Loop Condition
	Progress Condition
	Example
	Finally: The LSC Semantics
	Activation Condition

	LSCs vs. Software
	LSCs vs. Software
	Recall: The Crux of Requirements Engineering
	Example: Buy A Softdrink
	Example: Get Change
	Example: Don't Give Two Drinks
	Pre-Charts
	Pre-Charts Semantics
	Note: Scenarios and Acceptance Test
	Strenghening Scenarios Into Requirements
	Universal LSC: Example
	Shortcut: Forbidden Elements
	Modelling Idiom: Enforcing Order
	
	Requirements on LSC Specifications

	LSCs vs. MSCs
	LSCs vs. MSCs
	Pushing It Even Further

	Requirements Engineering Wrap-Up
	Recall: Software Specification Example
	Recall: Formal Software Development
	Final Remarks
	Systems vs. Software Engineering
	Literature Recommendation

	References
	References

