Softwaretechnik / Software-Engineering
 Lecture 09: Live Sequence Charts

2015-06-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Scenarios and Anti-Scenarios
- User Stories, Use Cases, Use Case Diagrams
- LSC: abstract and concrete syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- Which are the cuts and firedsets of this LSC?
- Construct the TBA of a given LSC body.
- Given a set of LSCs, which scenario/anti-scenario/requirement is formalised by them?
- Formalise this positive scenario/anti-scenario/requirement using LSCs.
- Content:
- Excursion: automata accepting infinite words
- Cuts and Firedsets, automaton construction
- existential LSCs, pre-charts, universal LSCs
- Requirements Engineering: conclusions

Recall: LSC Body Syntax

LSC Body Example

- $\mathcal{L}: l_{1,0} \prec l_{1,1} \prec l_{1,2} \prec l_{1,3}, \quad l_{1,2} \prec l_{1,4}, \quad l_{2,0} \prec l_{2,1} \prec l_{2,2} \prec l_{2,3}, \quad l_{3,0} \prec l_{3,1} \prec l_{3,2}$, $l_{1,1} \prec l_{2,1}, \quad l_{2,2} \prec l_{1,2}, \quad l_{2,3} \prec l_{1,3}, \quad l_{3,2} \prec l_{1,4}, \quad l_{2,2} \sim l_{3,1}$,
- $\mathcal{I}=\left\{\left\{l_{1,0}, l_{1,1}, l_{1,2}, l_{1,3}, l_{1,4}\right\},\left\{l_{2,0}, l_{2,1}, l_{2,2}, l_{2,3}\right\},\left\{l_{3,0}, l_{3,1}, l_{3,2}\right\}\right\}$,
- Msg $=\left\{\left(l_{1,1}, A, l_{2,1}\right),\left(l_{2,2}, B, l_{1,2}\right),\left(l_{2,2}, C, l_{3,1}\right),\left(l_{2,3}, D, l_{1,3}\right),\left(l_{3,2}, E, l_{1,4}\right)\right\}$
- Cond $=\left\{\left(\left\{l_{2,2}\right\}, c_{2} \wedge c_{3}\right)\right\}$,
- Loclnv $=\left\{\left(l_{1,1}, \circ, c_{1}, l_{1,2}, \bullet\right)\right\}$

LSC Semantics

The Big Picture

- Recall: decision tables

- By the standard semantics, a decision table T is software, $\llbracket T \rrbracket=\left\{\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$ is a set of computation paths.

The Big Picture

- Recall: decision tables
- By the standard semantics, a decision table T is software, $\llbracket T \rrbracket=\left\{\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$ is a set of computation paths.
- Recall: Decision tables as software specification:

The Big Picture

- Recall: decision tables
- By the standard semantics, a decision table T is software, $\llbracket T \rrbracket=\left\{\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$ is a set of computation paths.
- Recall: Decision tables as software specification:

- We want the same for LSCs.

The Big Picture

- Recall: decision tables
- By the standard semantics, a decision table T is software, $\llbracket T \rrbracket=\left\{\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$ is a set of computation paths.
- Recall: Decision tables as software specification:

- We want the same for LSCs.
- We will give a procedure to construct for each LSC \mathscr{L} an automaton $\mathcal{B}(\mathscr{L})$. The language (or semantics) of \mathscr{L} is the set of comp. paths accepted by $\mathcal{B}(\mathscr{L})$. Thus an LSC is also software.

The Big Picture

- Recall: decision tables
- By the standard semantics, a decision table T is software, $\llbracket T \rrbracket=\left\{\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$ is a set of computation paths.
- Recall: Decision tables as software specification:

- We want the same for LSCs.
- We will give a procedure to construct for each LSC \mathscr{L} an automaton $\mathcal{B}(\mathscr{L})$. The language (or semantics) of \mathscr{L} is the set of comp. paths accepted by $\mathcal{B}(\mathscr{L})$. Thus an LSC is also software.
- Problem: computation paths may be infinite \rightarrow Büchi acceptance.

Excursion: Symbolic Büchi Automata

From Finite Automata to Symbolic Büchi Automata

$\mathcal{A}_{\text {sym }}: \underbrace{\operatorname{even}(x)}_{\text {odd }(x)} \sim_{\text {infinite }}^{\Sigma=(\{x\} \rightarrow \mathbb{N})}$

$$
\mathcal{B}_{\text {sym }}: \quad \operatorname{even}(x) \quad \Sigma=(\{x\} \rightarrow \mathbb{N})
$$

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$
\mathcal{B}=\left(\mathcal{C}, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)
$$

where

- \mathcal{C} is a set of atomic propositions,
- Q is a finite set of states,
- $q_{\text {ini }} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \Phi(\mathcal{C}) \times Q$ is the finite transition relation.

Each transitions $\left(q, \psi, q^{\prime}\right) \in \rightarrow$ from state q to state q^{\prime} is labelled with a formula $\psi \in \Phi(\mathcal{C})$.

- $Q_{F} \subseteq Q$ is the set of fair (or accepting) states.

Run of TBA

Definition. Let $\mathcal{B}=\left(\mathcal{C}, Q, q_{i n i}, \rightarrow, Q_{F}\right)$ be a TBA and

$$
w=\sigma_{1}, \sigma_{2}, \sigma_{3}, \cdots \in(\mathcal{C} \rightarrow \mathbb{B})^{\omega}
$$

an infinite word, each letter is a valuation of $\mathcal{C}_{\mathcal{B}}$.
An infinite sequence

$$
\varrho=q_{0}, q_{1}, q_{2}, \ldots \in Q^{\omega}
$$

of states is called run of \mathcal{B} over w if and only if

- $q_{0}=q_{i n i}$,
- for each $i \in \mathbb{N}_{0}$ there is a transition $\left(q_{i}, \psi_{i}, q_{i+1}\right) \in \rightarrow$ s.t. $\sigma_{i} \models \psi_{i}$.

Definition.

We say TBA $\mathcal{B}=\left(\mathcal{C}, Q, q_{i n i}, \rightarrow, Q_{F}\right)$ accepts the word $w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in(\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ if and only if \mathcal{B} has a run

$$
\varrho=\left(q_{i}\right)_{i \in \mathbb{N}_{0}}
$$

over w such that fair (or accepting) states are visited infinitely often by ϱ, i.e., such that

$$
\forall i \in \mathbb{N}_{0} \exists j>i: q_{j} \in Q_{F}
$$

We call the set $\operatorname{Lang}(\mathcal{B}) \subseteq(\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ of words that are accepted by \mathcal{B} the language of \mathcal{B}.

Example

LSC Semantics: TBA Construction

LSC Semantics: It's in the Cuts!

LSC Semantics: It's in the Cuts!

Definition. Let $((\mathcal{L}, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$ be an LSC body.
A non-empty set $\emptyset \neq C \subseteq \mathcal{L}$ is called a cut of the LSC body iff C

- is downward closed, i.e.

$$
\forall l, l^{\prime} \in \mathcal{L} \bullet l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C,
$$

- is closed under simultaneity, i.e.

$$
\forall l, l^{\prime} \in \mathcal{L} \bullet l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C \text {, and }
$$

- comprises at least one location per instance line, i.e.

$$
\forall I \in \mathcal{I} \bullet C \cap I \neq \emptyset .
$$

LSC Semantics: It's in the Cuts!

Definition. Let $((\mathcal{L}, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$ be an LSC body.
A non-empty set $\emptyset \neq C \subseteq \mathcal{L}$ is called a cut of the LSC body iff C

- is downward closed, i.e.

$$
\forall l, l^{\prime} \in \mathcal{L} \bullet l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C,
$$

- is closed under simultaneity, i.e.

$$
\forall l, l^{\prime} \in \mathcal{L} \bullet l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C \text {, and }
$$

- comprises at least one location per instance line, i.e.

$$
\forall I \in \mathcal{I} \bullet C \cap I \neq \emptyset .
$$

The temperature function is extended to cuts as follows:

$$
\Theta(C)= \begin{cases}\text { hot } & , \text { if } \exists l \in C \bullet\left(\nexists l^{\prime} \in C \bullet l \prec l^{\prime}\right) \wedge \Theta(l)=\text { hot } \\ \text { cold } & , \text { otherwise }\end{cases}
$$

that is, C is hot if and only if at least one of its maximal elements is hot.

Cut Examples

$\emptyset \neq C \subseteq \mathcal{L}$ - downward closed - simultaneity closed - at least one loc. per instance line

Cut Examples

$\emptyset \neq C \subseteq \mathcal{L}$ - downward closed - simultaneity closed - at least one loc. per instance line

Cut Examples

$\emptyset \neq C \subseteq \mathcal{L}$ - downward closed - simultaneity closed - at least one loc. per instance line

Cut Examples

$\emptyset \neq C \subseteq \mathcal{L}$ - downward closed - simultaneity closed - at least one loc. per instance line

Cut Examples

$$
\emptyset \neq C \subseteq \mathcal{L} \text { - downward closed - simultaneity closed - at least one loc. per instance line }
$$

Cut Examples

$$
\emptyset \neq C \subseteq \mathcal{L} \text { - downward closed - simultaneity closed - at least one loc. per instance line }
$$

Cut Examples

$$
\emptyset \neq C \subseteq \mathcal{L} \text { - downward closed - simultaneity closed - at least one loc. per instance line }
$$

Cut Examples

$$
\emptyset \neq C \subseteq \mathcal{L} \text { - downward closed - simultaneity closed - at least one loc. per instance line }
$$

A Successor Relation on Cuts

The partial order " \preceq " and the simultaneity relation " \sim " of locations induce a direct successor relation on cuts of \mathcal{L} as follows:

Definition.

Let $C \subseteq \mathcal{L}$ bet a cut of LSC body $((\mathcal{L}, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$.
A set $\emptyset \neq \mathcal{F} \subseteq \mathcal{L}$ is called fired-set \mathcal{F} of C if and only if

- $C \cap \mathcal{F}=\emptyset$ and $C \cup \mathcal{F}$ is a cut, i.e. \mathcal{F} is closed under simultaneity,
- all locations in \mathcal{F} are direct \prec-successors of the front of C, i.e.

$$
\forall l \in \mathcal{F} \exists l^{\prime} \in C \bullet l^{\prime} \prec l \wedge\left(\nexists l^{\prime \prime} \in C \bullet l^{\prime} \prec l^{\prime \prime}\right),
$$

- locations in \mathcal{F}, that lie on the same instance line, are pairwise unordered, i.e.

$$
\forall l \neq l^{\prime} \in \mathcal{F} \bullet\left(\exists I \in \mathcal{I} \bullet\left\{l, l^{\prime}\right\} \subseteq I\right) \Longrightarrow l \npreceq l^{\prime} \wedge l^{\prime} \npreceq l,
$$

- for each asynchronous message reception in \mathcal{F}, the corresponding sending is already in C,

$$
\forall\left(l, E, l^{\prime}\right) \in \operatorname{Msg} \bullet l^{\prime} \in \mathcal{F} \Longrightarrow l \in C .
$$

The cut $C^{\prime}=C \cup \mathcal{F}$ is called direct successor of C via \mathcal{F}, denoted by $C \rightsquigarrow \mathcal{F} C^{\prime}$.

Successor Cut Example

$C \cap \mathcal{F}=\emptyset-C \cup \mathcal{F}$ is a cut - only direct \prec-successors - same instance line on front pairwise unordered - sending of asynchronous reception already in

Successor Cut Example

$C \cap \mathcal{F}=\emptyset-C \cup \mathcal{F}$ is a cut - only direct \prec-successors - same instance line on front pairwise unordered - sending of asynchronous reception already in

Language of LSC Body: Example

The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} over C and \mathcal{E} is $\left(\mathcal{C}, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\mathcal{C}=C \cup \mathcal{E}_{!?}$, where $\mathcal{E}_{!?}=\{E!, E ? \mid E \in \mathcal{E}\}$,
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $Q_{F}=\{C \in Q \mid \Theta(C)=$ cold $\vee C=\mathcal{L}\}$ is the set of cold cuts and the maximal cut.

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of $\operatorname{LSC} \mathscr{L}$ is $\left(\mathcal{C}, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\mathcal{C}=C \cup\{E!, E ? \mid E \in \mathcal{E}\}$,
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow \mathcal{F}$), and legal exits (cold cond./local inv.),
- $\mathcal{F}=\{C \in Q \mid \Theta(C)=$ cold $\vee C=\mathcal{L}\}$ is the set of cold cuts.

$$
\rightarrow=\{(q, \quad, q) \mid q \in Q\} \cup\left\{\left(q, \quad, q^{\prime}\right) \mid q \rightsquigarrow_{\mathcal{F}} q^{\prime}\right\} \cup\{(q, \quad, \mathcal{L}) \mid q \in Q\}
$$

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of $\operatorname{LSC} \mathscr{L}$ is $\left(\mathcal{C}, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\mathcal{C}=C \cup\{E!, E ? \mid E \in \mathcal{E}\}$,
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F}=\{C \in Q \mid \Theta(C)=$ cold $\vee C=\mathcal{L}\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\{(q, \quad, q) \mid q \in Q\} \cup\left\{\left(q, \quad, q^{\prime}\right) \mid q \rightsquigarrow \mathcal{F} q^{\prime}\right\} \cup\{(q, \quad, \mathcal{L}) \mid q \in Q\}
$$

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of $\operatorname{LSC} \mathscr{L}$ is $\left(\mathcal{C}, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\mathcal{C}=C \cup\{E!, E ? \mid E \in \mathcal{E}\}$,
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F}=\{C \in Q \mid \Theta(C)=$ cold $\vee C=\mathcal{L}\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{\mathcal{F}} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), \mathcal{L}\right) \mid q \in Q\right\}
$$

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\mathcal{C}, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\mathcal{C}=C \cup\{E!, E ? \mid E \in \mathcal{E}\}$,
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F}=\{C \in Q \mid \Theta(C)=$ cold $\vee C=\mathcal{L}\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow \mathcal{F} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), \mathcal{L}\right) \mid q \in Q\right\}
$$

TBA Construction Principle

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{\mathcal{F}} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), \mathcal{L}\right) \mid q \in Q\right\}
$$

Loop Condition

$$
\psi_{\text {loop }}(q)=\psi^{\mathrm{Msg}}(q) \wedge \psi_{\text {hot }}^{\text {Loclnv }}(q) \wedge \psi_{\text {cold }}^{\text {Loclnv }}(q)
$$

- $\psi^{\mathrm{Msg}}(q)=\neg \bigvee_{1 \leq i \leq n} \psi^{\mathrm{Msg}}\left(q, q_{i}\right) \wedge\left(\right.$ strict $\left.\Longrightarrow \bigwedge_{\psi \in \mathcal{E}_{!? ~}^{?} \cap \mathrm{Msg}(\mathcal{L})} \neg \psi\right)$
- $\psi_{\theta}^{\text {Loclnv }}(q)=\bigwedge_{\ell=\left(l, \iota, \phi, l^{\prime}, \iota^{\prime}\right) \in \text { Loclnv, } \Theta(\ell)=\theta, \ell \text { active at } q} \phi$

A location l is called front location of cut C if and only if $\nexists l^{\prime} \in \mathcal{L} \bullet l \prec l^{\prime}$. Local invariant ($l_{0}, \iota_{0}, \phi, l_{1}, \iota_{1}$) is active at cut (!) q if and only if $l_{0} \preceq l \preceq l_{1}$ for some front location l of cut (!) q.

- $\operatorname{Msg}(\mathcal{F})=\left\{E!\mid\left(l, E, l^{\prime}\right) \in \operatorname{Msg}, l \in \mathcal{F}\right\} \cup\left\{E ? \mid\left(l, E, l^{\prime}\right) \in \operatorname{Msg}, l^{\prime} \in \mathcal{F}\right\}$
- $\operatorname{Msg}\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)=\bigcup_{1 \leq i \leq n} \operatorname{Msg}\left(\mathcal{F}_{i}\right)$

Progress Condition

$$
\psi_{\text {prog }}^{\mathrm{hot}}\left(q, q_{i}\right)=\psi^{\mathrm{Msg}}\left(q, q_{n}\right) \wedge \psi_{\mathrm{hot}}^{\mathrm{Cond}}\left(q, q_{n}\right) \wedge \psi_{\mathrm{hot}}^{\mathrm{Loclnv}, \bullet}\left(q_{n}\right)
$$

- $\psi^{\operatorname{Msg}}\left(q, q_{i}\right)=\bigwedge_{\psi \in \operatorname{Msg}\left(q_{i} \backslash q\right)} \psi \wedge \bigwedge_{j \neq i} \bigwedge_{\psi \in\left(\operatorname{Msg}\left(q_{j} \backslash q\right) \backslash \operatorname{Msg}\left(q_{i} \backslash q\right)\right)} \neg \psi$
$\wedge\left(\right.$ strict $\left.\Longrightarrow \bigwedge_{\psi \in\left(\mathcal{E}_{!?} \cap \operatorname{Msg}(\mathcal{L})\right) \backslash \operatorname{Msg}\left(\mathcal{F}_{i}\right)} \neg \psi\right)$
- $\psi_{\theta}^{\text {Cond }}\left(q, q_{i}\right)=\bigwedge_{\gamma=(L, \phi) \in \text { Cond, }, ~}(\gamma)=\theta, L \cap\left(q_{i} \backslash q\right) \neq \emptyset \phi$
- $\psi_{\theta}^{\text {Loclnv, } \bullet}\left(q, q_{i}\right)=\bigwedge_{\lambda=\left(l, \iota, \phi, l^{\prime}, \iota^{\prime}\right) \in \text { Loclnv, } \Theta(\lambda)=\theta, \lambda \text {-active at } q_{i}} \phi$

Local invariant $\left(l_{0}, \iota_{0}, \phi, l_{1}, \iota_{1}\right)$ is \bullet-active at q if and only if

- $l_{0} \prec l \prec l_{1}$, or
- $l=l_{0} \wedge \iota_{0}=\bullet$, or
- $l=l_{1} \wedge \iota_{1}=\bullet$
for some front location l of cut (!) q.

Example

Finally: The LSC Semantics

A full LSC $\mathscr{L}=\left(((\mathcal{L}, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, LocInv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consist of

- body ($(\mathcal{L}, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\right.$ cold $)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

Finally: The LSC Semantics

A full LSC $\mathscr{L}=\left(((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathrm{Msg}\right.$, Cond, LocInv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consist of

- body ($(\mathcal{L}, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\right.$ cold $)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

Concrete syntax:

Finally: The LSC Semantics

A full LSC $\mathscr{L}=\left(((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathrm{Msg}\right.$, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consist of

- body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, M s g$, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\right.$ cold $)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

A set of words $W \subseteq(\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
웅		
+		

where $a c=a c_{0} \wedge \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge \psi^{\mathrm{Msg}}\left(\emptyset, C_{0}\right) ; C_{0}$ is the minimal (or instance heads) cut.

Finally: The LSC Semantics

A full LSC $\mathscr{L}=\left(((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathrm{Msg}\right.$, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consist of

- body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, M s g$, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\right.$ cold $)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

A set of words $W \subseteq(\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
$\stackrel{\bar{O}}{\circ}$	$\exists w \in W \bullet w^{0} \models a c \wedge$ $w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L}))$	
$\stackrel{ }{\square}$		

where $a c=a c_{0} \wedge \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge \psi^{\mathrm{Msg}}\left(\emptyset, C_{0}\right) ; C_{0}$ is the minimal (or instance heads) cut.

Finally: The LSC Semantics

A full LSC $\mathscr{L}=\left(((\mathcal{L}, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consist of

- body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, M s g$, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\right.$ cold $)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

A set of words $W \subseteq(\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
$\frac{0}{0}$	$\begin{aligned} & \exists w \in W \bullet w^{0} \models a c \wedge \\ & w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \\ & w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$
+		

where $a c=a c_{0} \wedge \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge \psi^{\mathrm{Msg}}\left(\emptyset, C_{0}\right) ; C_{0}$ is the minimal (or instance heads) cut.

Finally: The LSC Semantics

A full LSC $\mathscr{L}=\left(((\mathcal{L}, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consist of

- body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, M s g$, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\right.$ cold $)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

A set of words $W \subseteq(\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
응	$\begin{aligned} & \exists w \in W \bullet w^{0} \models a c \wedge \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \\ & \quad w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$
+	$\begin{aligned} & \forall w \in W \bullet w^{0} \models a c \Longrightarrow \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	

where $a c=a c_{0} \wedge \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge \psi^{\mathrm{Msg}}\left(\emptyset, C_{0}\right) ; C_{0}$ is the minimal (or instance heads) cut.

Finally: The LSC Semantics

A full LSC $\mathscr{L}=\left(((\mathcal{L}, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consist of

- body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, M s g$, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\right.$ cold $)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

A set of words $W \subseteq(\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
$\overline{0}$	$\begin{aligned} & \exists w \in W \bullet w^{0} \models a c \wedge \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \\ & \quad w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$
+	$\begin{aligned} & \forall w \in W \bullet w^{0} \models a c \Longrightarrow \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \forall w \in W \forall k \in \mathbb{N}_{0} \bullet w^{k} \models a c \Longrightarrow \\ & \quad w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$

where $a c=a c_{0} \wedge \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge \psi^{\mathrm{Msg}}\left(\emptyset, C_{0}\right) ; C_{0}$ is the minimal (or instance heads) cut.

Activation Condition

LSCs vs. Software

LSCs vs. Software

Let S be a software with $\llbracket S \rrbracket=\left\{\pi=\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$.
S is called compatible with LSC \mathscr{L} over C and \mathcal{E} is if and only if

- $\Sigma=(C \rightarrow \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E !, E ?.

LSCs vs. Software

Let S be a software with $\llbracket S \rrbracket=\left\{\pi=\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$.
S is called compatible with LSC \mathscr{L} over C and \mathcal{E} is if and only if

- $\Sigma=(C \rightarrow \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E !, E ?.

Construct letters by joining σ_{i} and α_{i+1} (viewed as a valuation of $E!, E$?):

$$
w(\pi)=\left(\sigma_{0} \cup \alpha_{1}\right),\left(\sigma_{1} \cup \alpha_{2}\right),\left(\sigma_{2} \cup \alpha_{3}\right), \ldots
$$

LSCs vs. Software

Let S be a software with $\llbracket S \rrbracket=\left\{\pi=\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$.
S is called compatible with LSC \mathscr{L} over C and \mathcal{E} is if and only if

- $\Sigma=(C \rightarrow \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E !, E ?

Construct letters by joining σ_{i} and α_{i+1} (viewed as a valuation of $E!, E$?):

$$
w(\pi)=\left(\sigma_{0} \cup \alpha_{1}\right),\left(\sigma_{1} \cup \alpha_{2}\right),\left(\sigma_{2} \cup \alpha_{3}\right), \ldots
$$

We say S satisfies LSC \mathscr{L} (e.g. universal, invariant), denoted by $S \models \mathscr{L}$, if and only if $\forall \pi \in \llbracket S \rrbracket \forall k \in \mathbb{N}_{0} \bullet w(\pi)^{k} \models a c \Longrightarrow w(\pi)^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w(\pi) / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L}))$

LSCs vs. Software

Let S be a software with $\llbracket S \rrbracket=\left\{\pi=\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$. S is called compatible with LSC \mathscr{L} over C and \mathcal{E} is if and only if

- $\Sigma=(C \rightarrow \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E !, E ?

Construct letters by joining σ_{i} and α_{i+1} (viewed as a valuation of $E!, E$?):

$$
w(\pi)=\left(\sigma_{0} \cup \alpha_{1}\right),\left(\sigma_{1} \cup \alpha_{2}\right),\left(\sigma_{2} \cup \alpha_{3}\right), \ldots
$$

We say S satisfies LSC \mathscr{L} (e.g. universal, invariant), denoted by $S \models \mathscr{L}$, if and only if $\forall \pi \in \llbracket S \rrbracket \forall k \in \mathbb{N}_{0} \bullet w(\pi)^{k} \models a c \Longrightarrow w(\pi)^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w(\pi) / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L}))$

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
믕	$\begin{aligned} & \exists w \in W \bullet w^{0} \models a c \wedge \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \\ & \quad w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$
+	$\begin{aligned} & \forall w \in W \bullet w^{0} \models a c \Longrightarrow \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \forall w \in W \forall k \in \mathbb{N}_{0} \bullet w^{k} \models a c \Longrightarrow \\ & \quad w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$

LSCs vs. Software

Let S be a software with $\llbracket S \rrbracket=\left\{\pi=\sigma_{0} \xrightarrow{\alpha_{1}} \sigma_{1} \xrightarrow{\alpha_{2}} \sigma_{2} \cdots \mid \cdots\right\}$. S is called compatible with LSC \mathscr{L} over C and \mathcal{E} is if and only if

- $\Sigma=(C \rightarrow \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{1 \text { ? }}$, i.e. the events are of the form E !, E ?.

Construct letters by joining σ_{i} and α_{i+1} (viewed as a valuation of $E!, E$?):

$$
w(\pi)=\left(\sigma_{0} \cup \alpha_{1}\right),\left(\sigma_{1} \cup \alpha_{2}\right),\left(\sigma_{2} \cup \alpha_{3}\right), \ldots
$$

We say S satisfies LSC \mathscr{L} (e.g. universal, invariant), denoted by $S \models \mathscr{L}$, if and only if $\forall \pi \in \llbracket S \rrbracket \forall k \in \mathbb{N}_{0} \bullet w(\pi)^{k} \models a c \Longrightarrow w(\pi)^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w(\pi) / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L}))$

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
응	$\begin{aligned} & \exists w \in W \bullet w^{0} \models a c \wedge \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \\ & \quad w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$
+	$\begin{aligned} & \forall w \in W \bullet w^{0} \models a c \Longrightarrow \\ & \quad w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \forall w \in W \forall k \in \mathbb{N}_{0} \bullet w^{k} \models a c \Longrightarrow \\ & \quad w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \operatorname{Lang}(\mathcal{B}(\mathscr{L})) \end{aligned}$

Software S satisfies a set of $\operatorname{LSCs} \mathscr{L}_{1}, \ldots, \mathscr{L}_{n}$ if and only if $S \models \mathscr{L}_{i}$ for all $1 \leq i \leq n$.

Recall: The Crux of Requirements Engineering

One quite effective approach:
try to approximate the requirements with positive and negative scenarios.

- Dear customer, please describe example usages of the desired system.
"If the system is not at all able to do this, then it's not what I want."
- Dear customer, please describe behaviour that the desired system must not show.
"If the system does this, then it's not what I want."
- From there on, refine and generalise: what about exceptional cases? what about corner-cases? etc.

Example: Buy A Softdrink

Example: Get Change

Example: Don't Give Two Drinks

A full LSC $\mathscr{L}=\left(P C, M C, a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ actually consist of

- pre-chart $P C=\left(\left(\mathcal{L}_{P}, \preceq_{P}, \sim_{P}\right), \mathcal{I}_{P}, \operatorname{Msg}_{P}, \operatorname{Cond}_{P}, \operatorname{Loclnv}_{P}, \Theta_{P}\right)$ (possibly empty),
- main-chart $M C=\left(\left(\mathcal{L}_{M}, \preceq_{M}, \sim_{M}\right), \mathcal{I}_{M}, \operatorname{Msg}_{M}, \operatorname{Cond}_{M}, \operatorname{Loclnv}_{M}, \Theta_{M}\right)$ (non-empty),
- activation condition ac $\in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential ($\Theta_{\mathscr{L}}=$ cold) or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

Pre-Charts Semantics

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
$\frac{0}{0}$	$\begin{aligned} & \exists w \in W \exists m \in \mathbb{N}_{0} \bullet w^{0} \models a c \\ & \quad \wedge w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}^{P}\right) \\ & \quad \wedge w / 1, \ldots, w / m \in \operatorname{Lang}(\mathcal{B}(P C)) \\ & \quad \wedge w^{m+1} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}^{M}\right) \\ & \\ & \wedge w / m+1 \in \operatorname{Lang}(\mathcal{B}(M C)) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k<m \in \mathbb{N}_{0} \bullet w^{k} \models a c \\ & \quad \wedge w^{k} \models \psi_{\text {hond }}^{\text {Cond }}\left(\emptyset, C_{0}^{P}\right) \\ & \quad \wedge w / k+1, \ldots, w / m \in \operatorname{Lang}(\mathcal{B}(P C)) \\ & \quad \wedge w^{m+1} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}^{M}\right) \\ & \\ & \\ & \wedge w / m+1 \in \operatorname{Lang}(\mathcal{B}(M C)) \end{aligned}$
+	$\begin{aligned} & \forall w \in W \bullet w^{0} \models a c \\ & \quad \wedge w^{0} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w / 1, \ldots, w / m \in \operatorname{Lang}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \Longrightarrow w^{m+1} \models \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+1 \in \operatorname{Lang}(\mathcal{B}(M C)) \end{aligned}$	$\begin{aligned} & \forall w \in W \forall k \leq m \in \mathbb{N}_{0} \bullet w^{k} \models a c \\ & \wedge w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w / k+1, \ldots, w / m \in \operatorname{Lang}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}^{M}\right) \\ & \Longrightarrow w^{m+1} \models \psi_{\text {cold }}^{\text {Cond }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+1 \in \operatorname{Lang}(\mathcal{B}(M C)) \end{aligned}$

Note: Scenarios and Acceptance Test

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)

Note: Scenarios and Acceptance Test

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!

Note: Scenarios and Acceptance Test

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis! (Because they require that the software never ever exhibits the unwanted behaviour.)

Strenghening Scenarios Into Requirements

Strenghening Scenarios Into Requirements

Universal LSC: Example

Universal LSC: Example

Universal LSC: Example

Shortcut: Forbidden Elements

Modelling Idiom: Enforcing Order

Requirements on Requirements Specifications

A requirements specification should be

- correct
- it correctly represents the wishes/needs of the customer,
- complete
- all requirements (existing in somebody's head, or a document, or ...) should be present,
- relevant
- things which are not relevant to the project should not be constrained,
- consistent, free of contradictions
- each requirement is compatible with all other requirements; otherwise the requirements are not realisable,
- neutral, abstract
- a requirements specification does not constrain the realisation more than necessary,
- traceable, comprehensible
- the sources of requirements are documented, requirements are uniquely identifiable,
- testable, objective
- the final product can objectively be checked for satisfying a requirement.

Requirements on LSC Specifications

- correctness is relative to "in the head of the customer" \rightarrow still difficult;
- complete: we can at least define a kind of relative completeness in the sense of "did we cover all (exceptional) cases?";
- relevant also not analyseable within LSCs;
- consistency can formally be analysed!
- neutral/abstract is relative to the realisation \rightarrow still difficult;
But LSCs tend to support abstract specifications; specifying technical details is tedious.
- traceable/comprehensible are meta-properties, need to be established separately;
- a formal requirements specification, e.g. using LSCs, is immediately objective/testable.

For Decision Tables, we formally defined additional quality criteria:

- uselessness/vacuity,
- determinism may be desired,
- consistency wrt. domain model.

What about LSCs?

LSCs vs. MSCs

LSCs vs. MSCs

Recall: Most severe drawbacks of, e.g., MSCs:

- unclear interpretation: example scenario or invariant?
- unclear activation: what triggers the requirement?
- unclear progress requirement: must all messages be observed?
- conditions merely comments
- no means (in language) to express forbidden scenarios

(ITU-T, 2011)

Pushing It Even Further

(Harel and Marelly, 2003)

Requirements Engineering Wrap-Up

Recall: Software Specification Example

Alphabet:

- M - dispense cash only,
- C - return card only,
- $\quad \begin{gathered}M\end{gathered}$ - dispense cash and return card.
- Customer 1 "don't care"

$$
\left(\begin{array}{c|c|c}
M . C & C . M & M \\
C
\end{array}\right)
$$

- Customer 2 "you choose, but be consistent"

$$
(M . C) \text { or }(C . M)
$$

- Customer 3 "consider human errors"

Final Remarks

One sometimes distinguishes:

- Systems Engineering (develop software for an embedded controller)

Requirements typically stated in terms of system observables ("press WATER button"), needs to be mapped to terms of the software!

- Software Engineering (develop software which interacts with other software)

Requirements stated in terms of the software.
We touched a bit of both, aimed at a general discussion.

- Once again (can it be mentioned too often?):

Distinguish domain elements and software elements and (try to) keep them apart to avoid confusion.

Systems vs. Software Engineering

A Classification of Software

Lehmann (Lehman, 1980; Lehman and Ramil, 2001) distinguishes three classes of software (my interpretation, my examples):

- S-programs: solve mathematical, abstract problems; can exactly (in particular formally) be specified; tend to be small; can be developed once and for all.

Examples: sorting, compiler (!), compute π or $\sqrt{\cdot}$, cryptography, textbook examples, ...

- P-programs: solve problems in the real world, e.g. read sensors and drive actors, may be in feedback loop; specification needs domain model (cf. Bjørner (2006), "A tryptich software development paradigm"); formal specification (today) possible, in terms of domain model, yet tends to be expensive

Examples: cruise control, autopilot, traffic lights controller, plant automatisation, ...

- E-programs: embedded in socio-technical systems; in particular involve humans; specification often not clear, not even known; can grow huge; delivering the software induces new needs

Examples: basically everything else; word processor, web-shop, game, smart-phone apps,

Literature Recommendation

(Rupp and die SOPHISTen, 2014)

References

References

Harel, D. and Marelly, R. (2003). Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag. ITU-T (2011). ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 5 edition.
Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.
Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.

