Softwaretechnik / Software-Engineering

Lecture 09: Live Sequence Charts

2015-06-11

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Scenarios and Anti-Scenarios
- User Stories, Use Cases, Use Case Diagrams
- LSC: abstract and concrete syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Which are the cuts and firedsets of this LSC?
 - Construct the TBA of a given LSC body.
 - Given a set of LSCs, which scenario/anti-scenario/requirement is formalised by them?
 - Formalise this positive scenario/anti-scenario/requirement using LSCs.

Content:

- Excursion: automata accepting infinite words
- Cuts and Firedsets, automaton construction
- existential LSCs, pre-charts, universal LSCs
- Requirements Engineering: conclusions

Recall: LSC Body Syntax

LSC Body Example

- $\mathcal{L}: l_{1,0} \prec l_{1,1} \prec l_{1,2} \prec l_{1,3}, \quad l_{1,2} \prec l_{1,4}, \quad l_{2,0} \prec l_{2,1} \prec l_{2,2} \prec l_{2,3}, \quad l_{3,0} \prec l_{3,1} \prec l_{3,2}, \\ l_{1,1} \prec l_{2,1}, \quad l_{2,2} \prec l_{1,2}, \quad l_{2,3} \prec l_{1,3}, \quad l_{3,2} \prec l_{1,4}, \quad l_{2,2} \sim l_{3,1},$
- $\mathcal{I} = \{\{l_{1,0}, l_{1,1}, l_{1,2}, l_{1,3}, l_{1,4}\}, \{l_{2,0}, l_{2,1}, l_{2,2}, l_{2,3}\}, \{l_{3,0}, l_{3,1}, l_{3,2}\}\},\$
- $\mathsf{Msg} = \{(l_{1,1}, A, l_{2,1}), (l_{2,2}, B, l_{1,2}), (l_{2,2}, C, l_{3,1}), (l_{2,3}, D, l_{1,3}), (l_{3,2}, E, l_{1,4})\}$
- Cond = {($\{l_{2,2}\}, c_2 \land c_3$)},
- LocInv = $\{(l_{1,1}, \circ, c_1, l_{1,2}, \bullet)\}$

08 - 2015-06-08 - Slscsyn -

29/78

LSC Semantics

- Recall: decision tables
- By the standard semantics, a decision table T is **software**, $\llbracket T \rrbracket = \{ \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$ is a set of computation paths.

- Recall: decision tables
- By the standard semantics, a decision table T is **software**, $\llbracket T \rrbracket = \{ \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$ is a set of computation paths.
- **Recall**: Decision tables as software specification:

- Recall: decision tables
- By the standard semantics, a decision table T is **software**, $\llbracket T \rrbracket = \{ \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$ is a set of computation paths.
- **Recall**: Decision tables as software specification:

• We want **the same** for LSCs.

- Recall: decision tables
- By the standard semantics, a decision table T is **software**, $\llbracket T \rrbracket = \{ \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$ is a set of computation paths.
- **Recall**: Decision tables as software specification:

- We want **the same** for LSCs.
- We will give a procedure to construct for each LSC L an automaton B(L). The language (or semantics) of L is the set of comp. paths accepted by B(L). Thus an LSC is also software.

- Recall: decision tables
- By the standard semantics, a decision table T is **software**, $\llbracket T \rrbracket = \{ \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$ is a set of computation paths.
- **Recall**: Decision tables as software specification:

- We want **the same** for LSCs.
- We will give a procedure to construct for each LSC L an automaton B(L). The language (or semantics) of L is the set of comp. paths accepted by B(L). Thus an LSC is also software.
 - **Problem**: computation paths may be infinite \rightarrow Büchi acceptance.

Excursion: Symbolic Büchi Automata

From Finite Automata to Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

 $\mathcal{B} = (\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$

where

- \mathcal{C} is a set of atomic propositions,
- Q is a finite set of **states**,
- $q_{ini} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \Phi(\mathcal{C}) \times Q$ is the finite transition relation. Each transitions $(q, \psi, q') \in \rightarrow$ from state q to state q' is labelled with a formula $\psi \in \Phi(\mathcal{C})$.
- $Q_F \subseteq Q$ is the set of fair (or accepting) states.

Run of TBA

Definition. Let $\mathcal{B} = (\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ be a TBA and $w = \sigma_1, \sigma_2, \sigma_3, \dots \in (\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ an infinite word, each letter is a valuation of $\mathcal{C}_{\mathcal{B}}$. An infinite sequence $\varrho = q_0, q_1, q_2, \dots \in Q^{\omega}$

of states is called $\operatorname{\mathbf{run}}$ of ${\mathcal B}$ over w if and only if

- $q_0 = q_{ini}$,
- for each $i \in \mathbb{N}_0$ there is a transition $(q_i, \psi_i, q_{i+1}) \in \rightarrow \text{ s.t. } \sigma_i \models \psi_i$.

The Language of a TBA

Definition. We say TBA $\mathcal{B} = (\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ accepts the word $w = (\sigma_i)_{i \in \mathbb{N}_0} \in (\mathcal{C} \rightarrow \mathbb{B})^{\omega}$ if and only if \mathcal{B} has a run

$$\varrho = (q_i)_{i \in \mathbb{N}_0}$$

over w such that fair (or accepting) states are **visited infinitely often** by ϱ , i.e., such that

$$\forall i \in \mathbb{N}_0 \; \exists j > i : q_j \in Q_F.$$

We call the set $Lang(\mathcal{B}) \subseteq (\mathcal{C} \to \mathbb{B})^{\omega}$ of words that are accepted by \mathcal{B} the **language of** \mathcal{B} .

run: $\varrho = q_0, q_1, q_2, \ldots \in Q^{\omega}$ s.t. $\sigma_i \models \psi_i, i \in \mathbb{N}_0$.

LSC Semantics: TBA Construction

LSC Semantics: It's in the Cuts!

LSC Semantics: It's in the Cuts!

Definition. Let $((\mathcal{L}, \leq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$ be an LSC body. A non-empty set $\emptyset \neq C \subseteq \mathcal{L}$ is called a **cut** of the LSC body iff C

• is downward closed, i.e.

$$\forall l, l' \in \mathcal{L} \bullet l' \in C \land l \preceq l' \implies l \in C,$$

• is closed under simultaneity, i.e.

$$orall l, l' \in \mathcal{L} ullet l' \in C \wedge l \sim l' \implies l \in C$$
, and

• comprises at least one location per instance line, i.e.

 $\forall I \in \mathcal{I} \bullet C \cap I \neq \emptyset.$

LSC Semantics: It's in the Cuts!

Definition. Let $((\mathcal{L}, \leq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$ be an LSC body. A non-empty set $\emptyset \neq C \subseteq \mathcal{L}$ is called a **cut** of the LSC body iff C

• is downward closed, i.e.

$$\forall l, l' \in \mathcal{L} \bullet l' \in C \land l \preceq l' \implies l \in C,$$

• is closed under simultaneity, i.e.

$$orall l, l' \in \mathcal{L} ullet l' \in C \wedge l \sim l' \implies l \in C$$
, and

• comprises at least one location per instance line, i.e.

 $\forall I \in \mathcal{I} \bullet C \cap I \neq \emptyset.$

The temperature function is extended to cuts as follows:

$$\Theta(C) = \begin{cases} \mathsf{hot} & \text{, if } \exists \, l \in C \bullet (\nexists \, l' \in C \bullet l \prec l') \land \Theta(l) = \mathsf{hot} \\ \mathsf{cold} & \text{, otherwise} \end{cases}$$

that is, C is **hot** if and only if at least one of its maximal elements is hot.

A Successor Relation on Cuts

The partial order " \leq " and the simultaneity relation " \sim " of locations induce a **direct successor relation** on cuts of \mathcal{L} as follows:

Definition. Let $C \subseteq \mathcal{L}$ bet a cut of LSC body $((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta)$. A set $\emptyset \neq \mathcal{F} \subseteq \mathcal{L}$ is called **fired-set** \mathcal{F} of C if and only if

- $C \cap \mathcal{F} = \emptyset$ and $C \cup \mathcal{F}$ is a cut, i.e. \mathcal{F} is closed under simultaneity,
- all locations in \mathcal{F} are direct \prec -successors of the front of C, i.e.

 $\forall l \in \mathcal{F} \exists l' \in C \bullet l' \prec l \land (\nexists l'' \in C \bullet l' \prec l''),$

- locations in \mathcal{F} , that lie on the same instance line, are pairwise unordered, i.e. $\forall l \neq l' \in \mathcal{F} \bullet (\exists I \in \mathcal{I} \bullet \{l, l'\} \subseteq I) \implies l \not\preceq l' \land l' \not\preceq l,$
- for each asynchronous message reception in \mathcal{F} , the corresponding sending is already in C,

$$\forall (l, E, l') \in \mathsf{Msg} \bullet l' \in \mathcal{F} \implies l \in C.$$

The cut $C' = C \cup \mathcal{F}$ is called **direct successor of** C via \mathcal{F} , denoted by $C \rightsquigarrow_{\mathcal{F}} C'$.

Successor Cut Example

 $C \cap \mathcal{F} = \emptyset - C \cup \mathcal{F}$ is a cut — only direct \prec -successors — same instance line on front pairwise unordered — sending of asynchronous reception already in

Successor Cut Example

 $C \cap \mathcal{F} = \emptyset - C \cup \mathcal{F}$ is a cut — only direct \prec -successors — same instance line on front pairwise unordered — sending of asynchronous reception already in

Language of LSC Body: Example

The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} over C and \mathcal{E} is $(\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ with

- Q is the set of cuts of \mathscr{L} , q_{ini} is the instance heads cut,
- $\mathcal{C} = C \cup \mathcal{E}_{!?}$, where $\mathcal{E}_{!?} = \{E!, E? \mid E \in \mathcal{E}\}$,
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $Q_F = \{C \in Q \mid \Theta(C) = \text{cold} \lor C = \mathcal{L}\}$ is the set of cold cuts and the maximal cut.

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $(\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ with

- Q is the set of cuts of \mathscr{L} , q_{ini} is the instance heads cut,
- $\mathcal{C} = C \cup \{E!, E? \mid E \in \mathcal{E}\},\$
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F} = \{ C \in Q \mid \Theta(C) = \text{cold} \lor C = \mathcal{L} \}$ is the set of cold cuts.

$$\rightarrow = \{(q, \dots, q) \mid q \in Q\} \cup \{(q, \dots, q') \mid q \rightsquigarrow_{\mathcal{F}} q'\} \cup \{(q, \dots, \mathcal{L}) \mid q \in Q\}$$

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $(\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ with

- Q is the set of cuts of \mathscr{L} , q_{ini} is the instance heads cut,
- $\mathcal{C} = C \cup \{E!, E? \mid E \in \mathcal{E}\},\$
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F} = \{ C \in Q \mid \Theta(C) = \text{cold} \lor C = \mathcal{L} \}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

 $\rightarrow = \{(q, \dots, q) \mid q \in Q\} \cup \{(q, \dots, q') \mid q \rightsquigarrow_{\mathcal{F}} q'\} \cup \{(q, \dots, \mathcal{L}) \mid q \in Q\}$

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $(\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ with

- Q is the set of cuts of \mathscr{L} , q_{ini} is the instance heads cut,
- $\mathcal{C} = C \cup \{E!, E? \mid E \in \mathcal{E}\},\$
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F} = \{ C \in Q \mid \Theta(C) = \text{cold} \lor C = \mathcal{L} \}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

 $\rightarrow = \{(q, \psi_{loop}(q), q) \mid q \in Q\} \cup \{(q, \psi_{prog}(q, q'), q') \mid q \rightsquigarrow_{\mathcal{F}} q'\} \cup \{(q, \psi_{exit}(q), \mathcal{L}) \mid q \in Q\}$

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $(\mathcal{C}, Q, q_{ini}, \rightarrow, Q_F)$ with

- Q is the set of cuts of \mathscr{L} , q_{ini} is the instance heads cut,
- $\mathcal{C} = C \cup \{E!, E? \mid E \in \mathcal{E}\},\$
- \rightarrow consists of loops, progress transitions (from $\rightsquigarrow_{\mathcal{F}}$), and legal exits (cold cond./local inv.),
- $\mathcal{F} = \{ C \in Q \mid \Theta(C) = \text{cold} \lor C = \mathcal{L} \}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

 $\rightarrow = \{(q, \psi_{loop}(q), q) \mid q \in Q\} \cup \{(q, \psi_{prog}(q, q'), q') \mid q \rightsquigarrow_{\mathcal{F}} q'\} \cup \{(q, \psi_{exit}(q), \mathcal{L}) \mid q \in Q\}$

So in the following, we "only" need to construct the transitions' labels:

 $\rightarrow = \{(q, \psi_{loop}(q), q) \mid q \in Q\} \cup \{(q, \psi_{prog}(q, q'), q') \mid q \rightsquigarrow_{\mathcal{F}} q'\} \cup \{(q, \psi_{exit}(q), \mathcal{L}) \mid q \in Q\}$

Loop Condition

 $\psi_{loop}(q) = \psi^{\mathsf{Msg}}(q) \wedge \psi^{\mathsf{LocInv}}_{\mathsf{hot}}(q) \wedge \psi^{\mathsf{LocInv}}_{\mathsf{cold}}(q)$

•
$$\psi^{\mathsf{Msg}}(q) = \neg \bigvee_{1 \le i \le n} \psi^{\mathsf{Msg}}(q, q_i) \land \left(strict \implies \bigwedge_{\psi \in \mathcal{E}_{!?} \cap \mathsf{Msg}(\mathcal{L})} \neg \psi \right)$$

•
$$\psi_{\theta}^{\mathsf{LocInv}}(q) = \bigwedge_{\ell = (l, \iota, \phi, l', \iota') \in \mathsf{LocInv}, \ \Theta(\ell) = \theta, \ \ell \text{ active at } q \ \phi}$$

A location l is called **front location** of cut C if and only if $\nexists l' \in \mathcal{L} \bullet l \prec l'$. Local invariant $(l_0, \iota_0, \phi, l_1, \iota_1)$ is **active** at cut (!) q if and only if $l_0 \preceq l \preceq l_1$ for some front location l of cut (!) q.

- $\mathsf{Msg}(\mathcal{F}) = \{ E! \mid (l, E, l') \in \mathsf{Msg}, \ l \in \mathcal{F} \} \cup \{ E? \mid (l, E, l') \in \mathsf{Msg}, \ l' \in \mathcal{F} \}$
- $\mathsf{Msg}(\mathcal{F}_1, \dots, \mathcal{F}_n) = \bigcup_{1 \le i \le n} \mathsf{Msg}(\mathcal{F}_i)$

$$\psi_{prog}^{\mathsf{hot}}(q,q_i) = \psi^{\mathsf{Msg}}(q,q_n) \wedge \psi_{\mathsf{hot}}^{\mathsf{Cond}}(q,q_n) \wedge \psi_{\mathsf{hot}}^{\mathsf{LocInv},\bullet}(q_n)$$

•
$$\psi^{\mathsf{Msg}}(q,q_i) = \bigwedge_{\psi \in \mathsf{Msg}(q_i \setminus q)} \psi \land \bigwedge_{j \neq i} \bigwedge_{\psi \in (\mathsf{Msg}(q_j \setminus q) \setminus \mathsf{Msg}(q_i \setminus q))} \neg \psi$$

 $\land \left(strict \implies \bigwedge_{\psi \in (\mathcal{E}_{!?} \cap \mathsf{Msg}(\mathcal{L})) \setminus \mathsf{Msg}(\mathcal{F}_i)} \neg \psi \right)$

- $\psi_{\theta}^{\mathsf{Cond}}(q, q_i) = \bigwedge_{\gamma = (L, \phi) \in \mathsf{Cond}, \ \Theta(\gamma) = \theta, \ L \cap (q_i \setminus q) \neq \emptyset} \phi$
- $\psi_{\theta}^{\mathsf{LocInv},\bullet}(q,q_i) = \bigwedge_{\lambda = (l,\iota,\phi,l',\iota') \in \mathsf{LocInv}, \ \Theta(\lambda) = \theta, \ \lambda \text{ --active at } q_i} \phi$

Local invariant $(l_0, \iota_0, \phi, l_1, \iota_1)$ is \bullet -active at q if and only if

• $l_0 \prec l \prec l_1$, or

•
$$l = l_0 \wedge \iota_0 = \bullet$$
, or

• $l = l_1 \wedge \iota_1 = \bullet$

for some front location l of cut (!) q.

Example

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- $\bullet \ \, \mathbf{body} \ ((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta),\\$
- activation condition $ac_0 \in \Phi(C)$, strictness flag *strict* (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- $\bullet \ \, \mathbf{body} \ ((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta) \text{,} \\$
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

Concrete syntax:

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- $\bullet \ \, \mathbf{body} \ ((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta) \text{,} \\$
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

A set of words $W \subseteq (\mathcal{C} \to \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- $\bullet \ \, \mathbf{body} \ ((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta) \text{,} \\$
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

A set of words $W \subseteq (\mathcal{C} \to \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$\exists w \in W \bullet w^{0} \models ac \land \\ w^{0} \models \psi_{hot}^{Cond}(\emptyset, C_{0}) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	
hot		

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- $\bullet \ \, \mathbf{body} \ ((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta) \text{,} \\$
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

A set of words $W \subseteq (\mathcal{C} \to \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$\exists w \in W \bullet w^{0} \models ac \land \\ w^{0} \models \psi_{hot}^{Cond}(\emptyset, C_{0}) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	$ \exists w \in W \ \exists k \in \mathbb{N}_0 \bullet w^k \models ac \land \\ w^k \models \psi^{Cond}_{hot}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L})) $
hot		

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- $\bullet \ \, \mathbf{body} \ ((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta) \text{,} \\$
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

A set of words $W \subseteq (\mathcal{C} \to \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$\exists w \in W \bullet w^0 \models ac \land \\ w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	$\exists w \in W \ \exists k \in \mathbb{N}_0 \bullet w^k \models ac \land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L}))$
hot	$ \forall w \in W \bullet w^0 \models ac \implies \\ w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L})) $	

A full LSC $\mathscr{L} = (((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta), \mathit{ac}_0, \mathit{am}, \Theta_{\mathscr{L}})$ consist of

- $\bullet \ \, \mathbf{body} \ ((\mathcal{L}, \preceq, \sim), \mathcal{I}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv}, \Theta) \text{,} \\$
- activation condition $ac_0 \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

A set of words $W \subseteq (\mathcal{C} \to \mathbb{B})^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$\exists w \in W \bullet w^{0} \models ac \land \\ w^{0} \models \psi_{hot}^{Cond}(\emptyset, C_{0}) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	$\exists w \in W \ \exists k \in \mathbb{N}_0 \bullet w^k \models ac \land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L}))$
hot	$ \forall w \in W \bullet w^0 \models ac \implies \\ w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L})) $	$ \forall w \in W \ \forall k \in \mathbb{N}_0 \bullet w^k \models ac \implies \\ w^k \models \psi^{Cond}_{hot}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L})) $

Activation Condition

Let S be a software with $\llbracket S \rrbracket = \{\pi = \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$. S is called **compatible** with LSC \mathscr{L} over C and \mathscr{E} is if and only if

- $\Sigma = (C \to \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E!, E?.

Let S be a software with $\llbracket S \rrbracket = \{\pi = \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$. S is called **compatible** with LSC \mathscr{L} over C and \mathscr{E} is if and only if

- $\Sigma = (C \to \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E!, E?.

Construct letters by joining σ_i and α_{i+1} (viewed as a valuation of E!, E?):

 $w(\pi) = (\sigma_0 \cup \alpha_1), (\sigma_1 \cup \alpha_2), (\sigma_2 \cup \alpha_3), \dots$

Let S be a software with $\llbracket S \rrbracket = \{\pi = \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$. S is called **compatible** with LSC \mathscr{L} over C and \mathscr{E} is if and only if

- $\Sigma = (C \to \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E!, E?.

Construct letters by joining σ_i and α_{i+1} (viewed as a valuation of E!, E?):

 $w(\pi) = (\sigma_0 \cup \alpha_1), (\sigma_1 \cup \alpha_2), (\sigma_2 \cup \alpha_3), \dots$

We say S satisfies LSC \mathscr{L} (e.g. universal, invariant), denoted by $S \models \mathscr{L}$, if and only if $\forall \pi \in \llbracket S \rrbracket \forall k \in \mathbb{N}_0 \bullet w(\pi)^k \models ac \implies w(\pi)^k \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w(\pi)/k + 1 \in Lang(\mathcal{B}(\mathscr{L}))$

Let S be a software with $\llbracket S \rrbracket = \{\pi = \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$. S is called **compatible** with LSC \mathscr{L} over C and \mathscr{E} is if and only if

- $\Sigma = (C \to \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E!, E?.

Construct letters by joining σ_i and α_{i+1} (viewed as a valuation of E!, E?):

 $w(\pi) = (\sigma_0 \cup \alpha_1), (\sigma_1 \cup \alpha_2), (\sigma_2 \cup \alpha_3), \dots$

We say S satisfies LSC \mathscr{L} (e.g. universal, invariant), denoted by $S \models \mathscr{L}$, if and only if $\forall \pi \in \llbracket S \rrbracket \forall k \in \mathbb{N}_0 \bullet w(\pi)^k \models ac \implies w(\pi)^k \models \psi_{\mathsf{hot}}^{\mathsf{Cond}}(\emptyset, C_0) \land w(\pi)/k + 1 \in Lang(\mathcal{B}(\mathscr{L}))$

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$\exists w \in W \bullet w^0 \models ac \land \\ w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	$ \exists w \in W \ \exists k \in \mathbb{N}_0 \bullet w^k \models ac \land \\ w^k \models \psi^{Cond}_{hot}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L})) $
hot	$ \forall w \in W \bullet w^0 \models ac \implies \\ w^0 \models \psi^{Cond}_{hot}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L})) $	$ \forall w \in W \ \forall k \in \mathbb{N}_0 \bullet w^k \models ac \implies \\ w^k \models \psi^{Cond}_{hot}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L})) $

Let S be a software with $\llbracket S \rrbracket = \{\pi = \sigma_0 \xrightarrow{\alpha_1} \sigma_1 \xrightarrow{\alpha_2} \sigma_2 \cdots | \cdots \}$. S is called **compatible** with LSC \mathscr{L} over C and \mathscr{E} is if and only if

- $\Sigma = (C \to \mathbb{B})$, i.e. the states are valuations of the conditions in C,
- $A \subseteq \mathcal{E}_{!?}$, i.e. the events are of the form E!, E?.

Construct letters by joining σ_i and α_{i+1} (viewed as a valuation of E!, E?):

 $w(\pi) = (\sigma_0 \cup \alpha_1), (\sigma_1 \cup \alpha_2), (\sigma_2 \cup \alpha_3), \dots$

We say S satisfies LSC \mathscr{L} (e.g. universal, invariant), denoted by $S \models \mathscr{L}$, if and only if $\forall \pi \in \llbracket S \rrbracket \forall k \in \mathbb{N}_0 \bullet w(\pi)^k \models ac \implies w(\pi)^k \models \psi_{\mathsf{hot}}^{\mathsf{Cond}}(\emptyset, C_0) \land w(\pi)/k + 1 \in Lang(\mathcal{B}(\mathscr{L}))$

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$\exists w \in W \bullet w^0 \models ac \land \\ w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L}))$	$\exists w \in W \ \exists k \in \mathbb{N}_0 \bullet w^k \models ac \land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L}))$
hot	$ \forall w \in W \bullet w^0 \models ac \implies \\ w^0 \models \psi_{hot}^{Cond}(\emptyset, C_0) \land w/1 \in Lang(\mathcal{B}(\mathscr{L})) $	$ \forall w \in W \ \forall k \in \mathbb{N}_0 \bullet w^k \models ac \implies \\ w^k \models \psi^{Cond}_{hot}(\emptyset, C_0) \land w/k + 1 \in Lang(\mathcal{B}(\mathscr{L})) $

Software S satisfies a set of LSCs $\mathscr{L}_1, \ldots, \mathscr{L}_n$ if and only if $S \models \mathscr{L}_i$ for all $1 \le i \le n$.

One quite effective approach:

try to approximate the requirements with positive and negative scenarios.

• Dear customer, please describe example usages of the desired system.

"If the system is not at all able to do this, then it's not what I want."

- Dear customer, please describe behaviour that the desired system must not show.
 "If the system does this, then it's not what I want."
- From there on, refine and generalise: what about exceptional cases? what about corner-cases? etc.

Example: Buy A Softdrink

Example: Get Change

Example: Don't Give Two Drinks

Pre-Charts

A full LSC $\mathscr{L} = (PC, MC, ac_0, am, \Theta_{\mathscr{L}})$ actually consist of

- pre-chart $PC = ((\mathcal{L}_P, \preceq_P, \sim_P), \mathcal{I}_P, \mathsf{Msg}_P, \mathsf{Cond}_P, \mathsf{LocInv}_P, \Theta_P)$ (possibly empty),
- main-chart $MC = ((\mathcal{L}_M, \preceq_M, \sim_M), \mathcal{I}_M, \mathsf{Msg}_M, \mathsf{Cond}_M, \mathsf{LocInv}_M, \Theta_M)$ (non-empty),
- activation condition $ac \in \Phi(C)$, strictness flag strict (otherwise called permissive)
- activation mode am ∈ {initial, invariant},
- chart mode existential ($\Theta_{\mathscr{L}} = \text{cold}$) or universal ($\Theta_{\mathscr{L}} = \text{hot}$).

Pre-Charts Semantics

$\Theta_{\mathscr{L}}$	am = initial	am = invariant
cold	$ \exists w \in W \ \exists m \in \mathbb{N}_0 \bullet w^0 \models ac $ $ \land w^0 \models \psi^{Cond}_{hot}(\emptyset, C^P_0) $ $ \land w/1, \dots, w/m \in Lang(\mathcal{B}(PC)) $ $ \land w^{m+1} \models \psi^{Cond}_{hot}(\emptyset, C^M_0) $ $ \land w/m + 1 \in Lang(\mathcal{B}(MC)) $	$ \exists w \in W \ \exists k < m \in \mathbb{N}_0 \bullet w^k \models ac $ $ \land w^k \models \psi_{hot}^{Cond}(\emptyset, C_0^P) $ $ \land w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC)) $ $ \land w^{m+1} \models \psi_{hot}^{Cond}(\emptyset, C_0^M) $ $ \land w/m + 1 \in Lang(\mathcal{B}(MC)) $
hot	$ \begin{array}{l} \forall w \in W \bullet w^{0} \models ac \\ \land w^{0} \models \psi_{hot}^{Cond}(\emptyset, C_{0}^{P}) \\ \land w/1, \dots, w/m \in Lang(\mathcal{B}(PC)) \\ \land w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M}) \\ \Longrightarrow w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M}) \\ \land w/m + 1 \in Lang(\mathcal{B}(MC)) \end{array} $	$ \begin{array}{l} \forall w \in W \; \forall k \leq m \in \mathbb{N}_{0} \bullet w^{k} \models ac \\ \wedge w^{k} \models \psi_{hot}^{Cond}(\emptyset, C_{0}^{P}) \\ \wedge w/k + 1, \dots, w/m \in Lang(\mathcal{B}(PC)) \\ \wedge w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M}) \\ \Longrightarrow w^{m+1} \models \psi_{cold}^{Cond}(\emptyset, C_{0}^{M}) \\ \wedge w/m + 1 \in Lang(\mathcal{B}(MC)) \end{array} $

32/50

Note: Scenarios and Acceptance Test

• Existential LSCs* may hint at test-cases for the acceptance test!

(*: as well as (positive) scenarios in general, like use-cases)

Note: Scenarios and Acceptance Test

- Existential LSCs* may hint at test-cases for the acceptance test!
 (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!

Note: Scenarios and Acceptance Test

- Existential LSCs* may hint at test-cases for the acceptance test!
 (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis! (Because they require that the software never ever exhibits the unwanted behaviour.)

Strenghening Scenarios Into Requirements

Strenghening Scenarios Into Requirements

Universal LSC: Example

Universal LSC: Example

Universal LSC: Example

Shortcut: Forbidden Elements

Modelling Idiom: Enforcing Order

Requirements on Requirements Specifications

A requirements specification should be

- correct
 - it correctly represents the wishes/needs of the customer,

• complete

— all requirements (existing in somebody's head, or a document, or . . .) should be present,

- relevant
 - things which are not relevant to the project should not be constrained,

• consistent, free of contradictions

— each requirement is compatible with all other requirements; otherwise the requirements are **not realisable**,

- neutral, abstract
 - a requirements specification does not constrain the realisation more than necessary,

• traceable, comprehensible

- the sources of requirements are documented, requirements are uniquely identifiable,

• testable, objective

— the final product can **objectively** be checked for satisfying a requirement.

22/90

Sre

2015-05-11

05 –

Requirements on LSC Specifications

- correctness is relative to "in the head of the customer" → still difficult;
- complete: we can at least define a kind of relative completeness in the sense of "did we cover all (exceptional) cases?";
- relevant also not analyseable within LSCs;
- consistency can formally be analysed!
- neutral/abstract is relative to the realisation
 → still difficult;
 But LSCs tend to support abstract
 specifications; specifying technical details is
 tedious.
- traceable/comprehensible are meta-properties, need to be established separately;
- a formal requirements specification, e.g. using LSCs, is immediately objective/testable.

For Decision Tables, we formally defined **additional quality criteria**:

- uselessness/vacuity,
- determinism may be desired,
- **consistency** wrt. domain model.

What about LSCs?
LSCs vs. MSCs

LSCs vs. MSCs

Recall: Most severe drawbacks of, e.g., MSCs:

- unclear interpretation: example scenario or invariant?
- unclear activation: what triggers the requirement?
- unclear **progress** requirement: must all messages be observed?
- conditions merely comments
- no means (in language) to express forbidden scenarios

Pushing It Even Further

(Harel and Marelly, 2003)

Requirements Engineering Wrap-Up

Recall: Software Specification Example

Alphabet:

- dispense cash only, M
- return card only, C
- MC- dispense cash and return card.
- **Customer 1** "don't care"

 $\begin{pmatrix} M.C | C.M | & M \\ C & \end{pmatrix}$

Customer 2 "you choose, but be consistent"

(M.C) or (C.M)

Customer 3 "consider human errors"

Swrapup

2015-06-11

60

- 09 - 2015-06-11 - Swrapup

One sometimes distinguishes:

• **Systems Engineering** (develop software for an embedded controller)

Requirements typically stated in terms of **system observables** ("press WATER button"), needs to be mapped to terms of the software!

• **Software Engineering** (develop software which interacts with other software)

Requirements stated in terms of the software.

We touched a bit of both, aimed at a general discussion.

Once again (can it be mentioned too often?):
Distinguish domain elements and software elements and (try to) keep them apart to avoid confusion.

Systems vs. Software Engineering

Lehmann (Lehman, 1980; Lehman and Ramil, 2001) distinguishes three classes of software (my interpretation, my examples):

• **S-programs**: solve mathematical, abstract problems; can exactly (in particular formally) be specified; tend to be small; can be developed once and for all.

Examples: sorting, compiler (!), compute π or $\sqrt{\cdot}$, cryptography, textbook examples, ...

• **P-programs**: solve problems in the real world, e.g. read sensors and drive actors, may be in feedback loop; specification needs **domain model** (cf. Bjørner (2006), "A tryptich software development paradigm"); formal specification (today) possible, in terms of domain model, yet tends to be expensive

Examples: cruise control, autopilot, traffic lights controller, plant automatisation, ...

• **E-programs**: embedded in socio-technical systems; in particular involve humans; specification often not clear, not even known; can grow huge; delivering the software induces new needs

Examples: basically everything else; word processor, web-shop, game, smart-phone apps,

03

. . .

Swrapup

2015-06-11

60

32/77

Literature Recommendation

(Rupp and die SOPHISTen, 2014)

References

References

Harel, D. and Marelly, R. (2003). *Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine*. Springer-Verlag. ITU-T (2011). *ITU-T Recommendation Z.120: Message Sequence Chart (MSC)*, 5 edition.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2014). Requirements-Engineering und -Management. Hanser, 6th edition.