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Lecture 13: Behavioural Software Modelling

2015-06-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
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(i) Introduction and Vocabulary

(ii) Principles of Design

a) modularity

b) separation of concerns

c) information hiding and data encapsulation

d) abstract data types, object orientation

(iii) Software Modelling

a) views and viewpoints, the 4+1 view

b) model-driven/based software engineering

c) Unified Modelling Language (UML)

d) modelling structure

1. (simplified) class diagrams

2. (simplified) object diagrams

3. (simplified) object constraint logic (OCL)

e) modelling behaviour

1. communicating finite automata

2. Uppaal query language

3. basic state-machines

4. an outlook on hierarchical state-machines

(iv) Design Patterns

L 1: 20.4., Mo
Introduction T 1: 23.4., Do

L 2: 27.4., Mo
L 3: 30.4., Do
L 4: 4.5., Mo

Development
Process, Metrics

T 2: 7.5., Do
L 5: 11.5., Mo
- 14.5., Do
L 6: 18.5., Mo
L 7: 21.5., Do
- 25.5., Mo
- 28.5., Do

Requirements
Engineering

T 3: 1.6., Mo
- 4.6., Do
L 8: 8.6., Mo
L 9: 11.6., Do
L 10: 15.6., Mo
T 4: 18.6., Do
L 11: 22.6., Mo
L 12: 25.6., Do
L 13: 29.6., Mo
L 14: 2.7., Do

Architecture &
Design, Software

Modelling
T 5: 6.7., Mo
L 15: 9.7., Do

Quality Assurance
L 16: 13.7., Mo

Invited Talks L 17: 16.7., Do
T 6: 20.7., Mo

Wrap-Up L 18: 23.7., Do
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Last Lecture:

• Class diagrams, object diagrams, (Proto-)OCL

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a communicating finite automaton?

• Which two kinds of transitions are considered in the CFA semantics?

• Given a network of CFA, what are its computation paths?

• Is this configuration / location reachable in the given CFA?

• Content:

• Networks of Communicating Finite Automata

• Uppaal Demo

• Implementable CFA

Communicating Finite Automata

presentation follows (Olderog and Dierks, 2008)
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To define communicating finite automata, we need the following sets of symbols:

• A set (a, b ∈) Chan of channel names or channels.

• For each channel a ∈ Chan, two visible actions:
a? and a! denote input and output on the channel (a?, a! /∈ Chan).

• τ /∈ Chan represents an internal action, not visible from outside.

• (α, β ∈) Act := {a? | a ∈ Chan} ∪ {a! | a ∈ Chan} ∪ {τ} is the set of actions.

• An alphabet B is a set of channels, i.e. B ⊆ Chan.

• For each alphabet B, we define the corresponding action set

B?! := {a? | a ∈ B} ∪ {a! | a ∈ B} ∪ {τ}.

Note: Chan?! = Act .

Integer Variables and Expressions, Resets
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• Let (v, w ∈) V be a set of ((finite domain) integer) variables.

By (ϕ ∈) Ψ(V ) we denote the set of integer expressions over V using
function symbols +,−, . . .

• A modification on v is

v := ϕ, v ∈ V, ϕ ∈ Ψ(V ).

By R(V ) we denote the set of all modifications.

• By ~r we denote a finite list 〈r1, . . . , rn〉, n ∈ N0, of modifications
ri ∈ R(V ); 〈〉 is the empty list (n = 0).

• By R(V )∗ we denote the set of all such finite lists of modifications.
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Definition. A communicating finite automaton is a structure

A = (L,B, V,E, ℓini)

where

• (ℓ ∈) L is a finite set of locations (or control states),

• B ⊆ Chan,

• V : a set of data variables,

• E ⊆ L×B!? ×Φ(V )×R(V )∗ ×L: a set of directed edges such that

(ℓ, α, ϕ,~r, ℓ′) ∈ E ∧ chan(α) ∈ U =⇒ ϕ = true.

Edges (ℓ, α, ϕ,~r, ℓ′) from location ℓ to ℓ′ are labelled with an action

α, a guard ϕ, and a list ~r of modifications.

• ℓini is the initial location.

Example
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half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?ChoicePanel:
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Definition. Let Ai = (Li, Bi, Vi, Ei, ℓini,i), 1 ≤ i ≤ n, be communicat-
ing finite automata.

The operational semantics of the network of FCA C(A1, . . . ,An) is the
labelled transition system

T (C(A1, . . . ,An)) = (Conf ,Chan ∪ {τ}, {
λ
−→| λ ∈ Chan ∪ {τ}}, Cini)

where

• V =
⋃n

i=1
Vi,

• Conf = {〈~ℓ, ν〉 | ℓi ∈ Li, ν : V → D(V )},

• Cini = 〈~ℓini , νini〉 with νini(v) = 0 for all v ∈ V .

The transition relation consists of transitions of the following two types.

Helpers: Extended Valuations and Effect of Resets
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• ν : V → D(V ) is a valuation of the variables,

• A valuation ν of the variables canonically assigns an integer value ν(ϕ) to each
integer expression ϕ ∈ Φ(V ).

• |= ⊆ (V → D(V ))×Φ(V ) is the canonical satisfaction relation between valuations
and integer expressions from Φ(V ).



Helpers: Extended Valuations and Effect of Resets
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• ν : V → D(V ) is a valuation of the variables,

• A valuation ν of the variables canonically assigns an integer value ν(ϕ) to each
integer expression ϕ ∈ Φ(V ).

• |= ⊆ (V → D(V ))×Φ(V ) is the canonical satisfaction relation between valuations
and integer expressions from Φ(V ).

• Effect of modification r ∈ R(V ) on ν, denoted by ν[r]:

ν[v := ϕ](a) :=

{

ν(ϕ), if a = v,

ν(a), otherwise

• We set ν[〈r1, . . . , rn〉] := ν[r1] . . . [rn] = (((ν[r1])[r2]) . . . )[rn].

That is, modifications are executed sequentially from left to right.

Operational Semantics of Networks of FCA
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• An internal transition 〈~ℓ, ν〉
τ
−→ 〈~ℓ′, ν′〉 occurs if there is i ∈ {1, . . . , n} and

• there is a τ -edge (ℓi, τ, ϕ, ~r, ℓ
′

i) ∈ Ei such that

• ν |= ϕ,

• ~ℓ′ = ~ℓ[ℓi := ℓ′i],

• ν′ = ν[~r],

• A synchronisation transition 〈~ℓ, ν〉
b
−→ 〈~ℓ′, ν′〉 occurs if there are i, j ∈ {1, . . . , n}

with i 6= j and

• there are edges (ℓi, b!, ϕi, ~ri, ℓ
′

i) ∈ Ei and (ℓj , b?, ϕj , ~rj , ℓ
′

j) ∈ Ej such that

• ν |= ϕi ∧ ϕj ,

• ~ℓ′ = ~ℓ[ℓi := ℓ′i][ℓj := ℓ′j ],

• ν′ = ν[~ri][~rj ],

This style of communication is known under the names “rendezvous”,
“synchronous”, “blocking” communication (and possibly many others).
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• A transition sequence of C(A1, . . . ,An) is any (in)finite sequence of the form

〈~ℓ0, ν0〉
λ1−→ 〈~ℓ1, ν1〉

λ2−→ 〈~ℓ2, ν2〉
λ3−→ . . .

with

• 〈ℓ0, ν0〉 = Cini ,

• for all i ∈ N, there is
λi+1

−−−→ in T (C(A1, . . . ,An)) with 〈ℓi, νi〉
λi+1

−−−→ 〈ℓi+1, νi+1〉.

• A configuration 〈ℓ, ν〉 is called reachable (in C(A1, . . . ,An)) if and only if there
is a transition sequence of the form

〈ℓ0, ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

λn−−→ 〈ℓn, νn〉 = 〈ℓ, ν〉

• A location ℓ is called reachable if and only if any configuration 〈ℓ, ν〉 is reachable,
i.e. there exists a valuation ν such that 〈ℓ, ν〉 is reachable.

• The network C(A1, . . . ,An) is said to have a deadlock if and only if there is a
configuration 〈ℓ, ν〉 such that

∄
λ
−→ ∈ T (C(A1, . . . ,An)), 〈ℓ

′, ν′〉 ∈ Conf • 〈ℓ, ν〉
λ
−→ 〈ℓ′, ν′〉.
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half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

C50!

E1!
TEA!

SOFT!

WATER!

ChoicePanel:

User:
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CoinValidator User

ChoicePanel

WaterDispenser SoftDispenser TeaDispenser Service

C50, E1

WAT
ER

, SO
FT

, T
EA

OK

DWATER
DSOFT

DTEA

DOK

broadcast

FILLUP

• Note: Uppaal does not support the definition of scopes for channels — that is, ‘Service’
could send ‘WATER’ if the modeler wanted to. . .

A CFA Model Is Software
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Definition. Software is a finite description S of a (possibly
infinite) set JSK of (finite or infinite) computation paths of
the form

σ0
α
1−→ σ1

α
2−→ σ2 · · ·

where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and

• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called in-

terpretation of S.

• Let C(A1, . . . ,An) be a network of CFA.

• Σ = Conf

• A = Chan ∪ {τ}

• JCK = {π = 〈~ℓ0, ν0〉
λ1−→ 〈~ℓ1, ν1〉

λ2−→ 〈~ℓ2, ν2〉
λ3−→ · · · | π is a computation path of C}.

• Note: the structural model just consists of the set of variables and the locations of C.



Uppaal

(Larsen et al., 1997; Behrmann et al., 2004)
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CFA Model-Checking
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Definition. The model-checking problem for a network C of commu-
nicating finite automata and a query F is to decide whether

(C, F ) ∈ |=.

Proposition. The model-checking problem for communicating finite au-
tomata is decidable.
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half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?ChoicePanel:

w > 0

Uppaal Architecture
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LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !

water in stock

dWATER

OK
¬(dSoft ! ∨ dTEA!)

Implementing Communicating Finite Automata
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Implementing CFA
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half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

st : { idle, wsel, ssel, tsel, reqs, half };

take event( E : { TAU, WATER, SOFT, TEA, ... } ) {

bool stable = 1;

switch (st) {

case idle :

switch (E) {

case WATER :

if (water enabled) { st := wsel; stable := 0; }

;;

case SOFT :

...

}

case wsel:

switch (E) {

case TAU :

send DWATER(); st := reqs;

;;

} }

Would be Too Easy...
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l3l2l1l0

E!

x == 1x == 0

E!

‖
m2m1m0

x := 1

E?

〈l0,m0;x = 0〉

〈l1,m1;x = 0〉

〈l1,m2;x = 1〉 〈l2,m1;x = 0〉

〈l2,m2;x = 1〉

〈l3,m2;x = 1〉

E

E

τ
τ

τ

τ

• How are we supposed to implement that?

• There is non-determinism in the upper automaton,

• internal transitions can interleave, one interleaving leads
to a deadlock.

• We are not!

• We define

• deterministic CFA,

• a greedy semantics for internal transitions.

and only implement deterministic CFA using the greedy semantics.



Deterministic CFA
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• The communicating finite automaton A = (L,B, V,E, ℓini)
is called deterministic if and only if

• for each location ℓ,

• either all edges with ℓ as source location have pairwise different input actions,

• or there is no edge with an input action starting at ℓ,
and all edges starting at ℓ have pairwise (logically) disjoint guards.

Deterministic CFA
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• The communicating finite automaton A = (L,B, V,E, ℓini)
is called deterministic if and only if

• for each location ℓ,

• either all edges with ℓ as source location have pairwise different input actions,

• or there is no edge with an input action starting at ℓ,
and all edges starting at ℓ have pairwise (logically) disjoint guards.

• Let each automaton in the network C(A1, . . . ,An) be marked as
either environment or controller.

We call C implementable if and only if, for each controller A in C,

(i) A is deterministic,

(ii) A reads/writes only its local variables,
may also read variables written by environment automata,
but only in modification vectors of edges with input synchronisation,

(iii) A is locally deadlock-free, i.e. enabled edges with output-actions are not blocked forever.

• Note: implementable (i) and (ii) can be checked syntactically.

Property (iii) is a property of the whole network.

Can be checked with Uppaal:
(A.ℓ ∧ ϕ) −→ (A.ℓ

′)

for each edge (ℓ, α, ϕ, ~r, ℓ′) of A.
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• Greedy semantics:

• each input synchronisation transition (plus: system start) of automaton A is followed
by a maximal sequence of internal transitions or output transitions of A.

• Maximal: cannot be extended by an internal transition.

There may still be interleaving of the internal transitions, but (by forbidding shared
variables for controllers) cannot be observed outside of an automaton.

Example:

G?F!

n := n + 1

E?

v := v_env

E!

v_env > -10
v_env := v_env - 1

v_env < 10
v_env := v_env + 1

G!F? F!G!

A1:

A2,1:
A2,2:

E:

• A1 is implementable in C(A1,A2,1, E) (environment: only E)

• deterministic: ✔,

• only local variables, environment variables with input: ✔,

• locally deadlock-free: ✔.

• A1 is not implementable in C(A1,A2,2, E).

Model vs. Implementation
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• Now an implementable model C(A1, . . . ,An) has two semantics:

• JCKstd — standard semantics.

• JCKgrd — greedy semantics.

• Are they related in any way?
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