{15 { 2015-07-09 { main {

(20150709 (main

(1

Softwaretechnik / Software-Engineering

Lecture 15: Software Quality Assurance

2015-07-09

Prof. Dr. Andreas PodelskDr. Bernd Westphal

Albert-Ludwigs-Universi@at Freiburg, Germany

Introduction

Contents of the Block *

Quality Assurance”

{15 { 2015-07-09 { Scontents {

Introduction and Vocabulary
correctness illustrated
vocabulary: fault, error, failure
three basic approaches

i) Formal Veri cation

Hoare calculus
Verifying C Compiler (VCC)
over- / under-approximations

(Systematic) Tests
systematic test vs. experiment
classi cation of test procedures

model-based testing
glass-box tests: coverage measures

(iv) Runtime Veri cation
(v) Review
(vi) Concluding Discussion

Introduction

Development
Process, Metrics

Requirements
Engineering

2015-07-00 - Sverifvalid

7] = {(M.Ty C. [1) (CTe- M. [1)}

Development
Process/
Project
Management

Dependal
Wrap-Up
Recall: Formal Mu%:&qtimi
ooy
Requirements
[#] = {(MC.[-1h). (C.M.[-T1)} ?
?
Design

Implementation

{2015-07-09 (Sprelim

Contents & Goals

Last Lecture:

Completed the block \Architecture & Design”

This Lecture:

1al Objectives: C ilities for following q
When do we call a software correct?
.ﬂ_t_ﬂ error, failure? How are they related?
termal and partial correctness?
a Hoare triple (or correctness formula)?
Is this program (partially) correct?
Prove the (partial) correctness of this WHILE-program us@PD.
What can we conclude from the outcome of tools like VCC?

Content:
Introduction, Vocabulary
'WHILE-prog ics, partial & total
Correctness proofs with the calculus PD.
The Verifying C Compiler (VCC)

- 354
Recall: Formal Me%,\&atim\:
oY /F\cfag\.C\
Requirements
[#A] = {(rC.[-1n). (C-M.[-11)} ?
Development
Process,
validation The process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies specified
requirements. Contrast with: verification. IEEE 610.12 (1990)
A A~ J
. verification
2 (1) The process of evaluating a system or component to determine whether
H the products of a given development phase satisfy the conditions imposed at
i the start of that phase. Contrast with: validation.
g (2) Formal proof of program correctness. 1EEE 610.12 (1990)
4 5

Correctness Illustrated
= (M.C) or (C.M)

software doing Software doing neither software doing
(at most) M.C M.C nor C (at most) C.M
imaginable

[softwares

softwares which
s , -

/ consider al

’ necessary inputs

W

©ar

the allowed ones? g,

2015-07-09 { Svintro {

Vocabulary

software quality assurance | See: quality assurance. |Egg 610.12 (1990)

quality assurance | (1) A planned and systematic pattern of all actions

necessary to provide adequate con dence that an item or pridionforms to
i technical requil 3

(2) A set of activities designed to evaluate the process bychtproducts are

developed or manufactured. IEEE 610.12 (1990)

Note: in order to trust a product, it can beuilt well, or proven to be good
(at best: both) | both is QA in the sense of (1).

Back To Lecture No. 1

De nition. A software speci cation is a nite description S of a (possibly
in nite) set JS Kof softwares, i.e.

IS K= f(S1;d K

The (possibly partial) functiond K: S 7! JS Kis calledinterpretation of S .
We de ne :
SoftwaresS is correct wrt. software specication S if and only if(S;J K 2 JS K

Note: no speci cation, no correctness. Without speci catiol§ is neither correct
nor not correct | it's just some software then.

vintro

15 {2015.07-09

Concepts of Software Quality Assurance

software quality

assurance
— 7 ~
analytic
oect fware T~ constructive
menagement camination softuare
o \m w_ ! o/ engineering
n ech. ser nec mechanical
e / o~ .. code
examination by comp. aided examination generation
humans human exam. with computer
7
! eg static
inspectionreview Mm@ interactive checking
; proof (test)
- prover \ /
’ check quantitative
= consistency
] against examina-
checks
5 rules tion

(Ludewig and Lichter, 2013)

1054

So, What Do We Do? IEII

Fault, Error, Failure
If we are lucky, the requirement speci cation

is a constraint oncomputation paths .

fault | abnormal condition that can cause an element or an item to fal.
nt faults (especially soft-errors) are considered.
LSC “buywater' is such a software speci catio8 .

Note: Permanent, intermittent and trans

Note: An intermittent fault ~ occurs time and time again, then disappears. This type of
fault can occur when a component is on the verge of breaking dan or, for example, due It denotes all controller softwares which \faithfully" seNater.
to a glitch in a switch. Some systematic faults (e.g. timing marginalities) could lead to (Or which refuse to accept C50 coins, or block the "WATER' button).
intermittent faults.
1SO 26262 (2011) Formally
Jouy waterpe: = fS j ISKsatis es “buywater'g:
error | between a observed or vawor condition,
and the true, speci ed, or theoretically correct value or awdition. In pictures:
Note: An error can arise as a result of unforeseen operating contions or due to a fault - -
within the system, subsystem or, component being considerd. all computation A C A JsKor
of one not
Note: A fault can manifest itself as an error within the considered element and the error paths satisfying acceptable
can ultimately cause afailure. 1SO 26262 (2011) “buy.water T software S
X . X g JISKof one \.
failure | termination of the ability of an element, to perform a funct ion as required. H acceptable
Note: Incorrect speci cation is a source of failure. 150 26262 (2011) software S
Then we can check correctness of a given softwére
~ by examining its computation path3SK
o 1354

~ We want to avoidfailures, thus we try to detectfaults, e.g. by looking forerrors.
1lss

Three Basic Directions

all computation
paths satistying
specication —__

Formal Veri cation

0709 { Svintro
2015-07-09 { main {

1454

Deterministic Programs

Correctness Formulae (“Hoare Triples”) Example
. Computing squares (of numbers0; :::;27).
One style of requirements speci cations : pre- and post-conditions N Syntax:
Pre-condition: p 0 x X2,

(on whole programs or on procedures).
S:=skipju:=1tjS;;S;jif B then S;elseS, jwhile B do S; do

Let S be a program with states from and letp and q be formulae Program Sy:
such that there is asatisfaction relation f piag comebass t«#tﬁ\ / R whereu is a variablet a type-compatible expressioB, a Boolean expression.
Howe #ople F"1pgSifag, Fix fpg S fag”
v Semantics: (is induced by the following transition relation)
. . . NP . Program Sz: int y = x: ©
S is calledpartially correct wyt. p andq, denoted by = fpg S fqg, if and only if ¢ 2 /f uninitialised @) skip; ith E; i
~ Y= 1) x+y) vzl
- n f = f @iy u:=1t ith E; [u:= (1))
8 = !t 1t o, ﬁw..mx oFP=) nFQ T.EwNEVMIsG@miﬁ i

(if,_S terminates from a state satisfying p, then the nal state of that computation satis es ~q") Program Sa: . i

c\zt@ Il P : (iv) hif B then Sielse S; ; ith Sy F B,
S is calledtotally correct wrt. p andq, denoted by Fi: fpg S fqg, if and only if v/ X ot fesminatec () hif Bthen SielseS; ; i'h Sy 6B,

F71pgSs fag, Fio fPYSs fag

fpy S fag (S is partially correct), and g y 7 (vi) hwhile B doSdo; ith Swhie B doSdo; i,if F B,
238K %kpo)i i2N % Program Sa: inty = xi ¢ z
8 23K “Epa)j j2No 3 gram = s 2 i uniniviatisea Vo s S (i) hie B do S do; E; i,if &8,
(S terminates from all states satisfying; length of paths: j ! Nol[f?g). < YE(x 1) x+y)+z: £
& .\ Ve while (2); 2 E denotes the empty program; de ngE; S, S:E _W;
= E’fpgSsifag Fi fpgSs fag = Note: the rst component of hS; i is a program (structural operational semantics).
- 1654 - 1754 o 1854
Computations of Deterministic Programs Example i ee EiS SE S Example o E:iS w“mvm
u= () = ()i
i °
[th S5S; i 1 th Sy;s; i
De nition (V) hf B then S; else S, ; (iv) hif B then Syelse Sz ; iit FB,
() A transition sequence of S (starting in) is a nite or in nite sequence (v) hif B then SyelseS; ; () i B iz & clsa & g sl G,
i i ith S;whie B do Sdo; iif FB, (vi) hwhile B do Sdo; ilh S;whie B do S do;
; i=MSo; oilh Si; (vi) hwhile B do Sdo; ith E; iif 6B, (vii) hwhile B do Sdo; ilh E; i 6B,
(thatis, 1Si; i and hSisy v i are in transition relation for al s
- . Sy -
A computation (path) of S (starting in) is a maximal transition se- . _ - . AR PR —
quence ofS (starting in), i.e. in nite or not extendible. Considerprogram S = a[x]60 do x := x+1 do Consideprogram S a[0] := 1; a[1] := 0; while a[x] 6 0 do x := x +1 do
. and astate with F x=0. and astate with FX=0 —
A computation of S is said to
a) terminate in if and only if it is nite and ends with hE; (WG
b) diverge if and only if itis in nite. S can diverge from if and only 1S, | 5 KE;S, of alt)1]S
if there is a diverging computation starting in .
(iv) We use! to denote the transitive, re exive closure of
w Lemma. For each deterministic progrant and each state ,
] there is exactly one computation o6 which starts in . 8
‘ 195 ‘ 205 2054

EiS SIE S

th E; i EiS SE S Example
ith € [u= (i
th Spi i
S1;S; i'h S:S; i
(iv) hf B then S else S,

_mxmg_u_m () hskip; ith E; i E;S SE S _mxm_.j_u_m

hf B then SjelseS;
hf B then Sy else S; ;

hf B then Sy else S ; F B,
hf B then Sy else S, ; B, (v) hif Bthen SyelseS, ;
twhile B do Sdo; i'h S;while B do Sdo; i (vi) hwhile B do Sdo; ilh Swhile B do S do; hwhile B do Sdo; ilh S;w iif FB,
hwhile B do Sdo; ilh E; 6 B, (vi)) hwhile B do Sdo; i'h E; B, hwhile B do S do;
Considerprogram S a[0] = 1; a[1] := O; while a[x] 6 0 do x := x +1 do Consideprogram S a[0] := 1; a[1] := 0; while a[x] 60 do x := x +1 do Consideprogram S a[0] := 1; a[1] := 0; while a[x] 60 do x := x +1 do
and astate with FX=0. and astate with F x=0. and astate with F x=0.
rs; i 1“H") a[1):=0;while ajx]60 do x:= x +1 do; [a[0] := 1]i rs; i H™) a[1]:=0;while a[x]60 do x = x+1 do; [a[0] := 1]i i a[1] := 0; while a[x] 60 do x := x+1 do; [a[0] := 1]i
K™ while a[x]60 do x:= x+1 do; 9 while a[x]60 do x:= x+1 do; G
1M h X = x+1; while a[x]60 do x:= x+1 do; 9 x = x+1; while a[x]60 do x:=x+1 do; §
z a while a[x] 60 do x := x+1 do;_ 9x:=1]i
i g x = 1]i s
: : W=
E 2 -6"
= = where °= [a[0] := 1][a[1] := 0]. = where guﬂ [a[0] := HWmE :=0].
- - 2054 2 2054
Input/Output Semantics of Deterministic Programs Correctness of Deterministic Programs Example: Correctness
By the previous exampleye have shown
De nition. De nition.
Ffx=0gSfx=1gand F« fX=0gSfx=1g:
LEi® e & GRS e e, (i) A correctness formulefpg S fqg holds in the sense of partial n
(i) The semantics of partial correctness is the function correctness, denoted by fpg S fqg, if and only if (because we only assumed = x = 0 for the example, which is exactly the precondition.)
MJSK: | 2 M JSKJpK E%\’uﬁu’\q\uww We have also shownt
withMJISK)= f jhS; il hE; ig: We sayS is partially correct wrt.p and g. Ffx=0gSfx=17ax]=0g:
U2 SEGENTES 6 il CEisEnEss (5 ER e A correctness formuld pg S fqg holds in the sense of total cor- The following correctness formulaoes for S:
o o rectness, denoted by« fpg S fqg, if and only if
M JSK: ! 2 [f2g o . K =205 finueg
with M 4 JSK)= M JSK) [2] S can diverge from g e SR 5, (eg.if F ali]80 foralli> 2)
_ ? is an error state representing divergence. ; e S by s e _
i In the sense opartial correctness,
2 g g —ongi i=
© Note: M o JSK) has exactly one elemenid JSK) at most one. g fx=2781 2 ali]=1gS ffalsg
< < also holds.
z 2254 2354

15
N
I

Proof-System P[Qor sequential

deterministic programs)

Axiom 1: Skip-Statement

fpg skip fpg

Axiom 2: Assignment

fplu:= tlgu:= t fpg

Rule 3: Sequential Composition

fpg Si frgifrgS; fag
fpg S11'S: fag

Rule 4: Conditional Statement
fp"Bg S fagfp": BgS: fag
fpgif B then SielseS; fag

Rule 5: While-Loop

fp” Bg S fpy
fpg while B do Sdo fp”: Bg

Rule 6: Consequence

Pifpg S fagia
fpgSfag

Soveck

{20150

1

Example Proof

(A1) pg skip fpg (Ra)

(#2) fplu = tlg

fpg S frg;frg Sz fag 9«\.\«.

fp" BgS: fagifp”: BgS: fag:
??lv/m,. Bthen Syelse S, fag
tp" BgSfpg

tipg R fpguhile B do S do fph: Bg

p! pifpgSfaga! q
) igsi s fag &2 fpgSfag
Assume:

() fx 0~y 0gq:=0; r:=xfPg,

@ fPrr

@ P (r Yl qy+r=xrr<y.

By rule (R5), we obtain, using (2), s

—_—

“f Pgwl

r oydor:=r y,q:=q+ldofP": (r y)g

- - @ @ OO O O O

w@d.

Substitution

In PD usessubstitution of the form p[u := t].
(In formula. p, replace all (free) occurences of (program or logical) varable u by term t.)

Usually straightforward, but indexed and bound variable®d to be treated specially:

Expressions (Formulae:

t ,fx=u boolean expressiorp s:

! ble: X[u := t
plain variable: xu =t omerise plu=1] sl

constantc: cfu:=1] ¢ negation:

constant op, terms s; : CQu=1] : (qu:=1t)

afu
quanti er.
isnfu:=t]) (8x:g)u
8 yiqx:=ylu:=1]
y fresh (not in q;t,u),
same type asx.

indexed variable,u
(alsy;ijzisn]lu
if "7 sifu=t]=t then t
else a[sy[u = tf;:::;sn[u = t]]
conditional expression:
if B then s elses; [u:= (]
it B[u:=t]then si[u:= t] else spu = 1]

255
Example Proof ot sk 1o (Rey 1P BIS: (aGifp: BaS: fag
fpgif B then Sielse S, fag
fprBgSfpy
(A2) fplu:=tlgu =t fpg ®RS) o while B do'S do fpn: By
fpgS: frg;frgs; fag p! pifpgStaga! q
R s st /o) TrgS Tag
Assume: =R S P L)
@ fx ory ogg=0 r=xlPg

@ fPAr ygri=r yiq:=q+lfPg and
@ PA (T y)! qy+r=xAr<y.
r i R3
By rule (RS), Em\n“ew:_. using (2),
“f Pgwhile r ydor:=r vy,

q+1ldofP": (r y)g

By rule (R3), we obtain, using (1), v

“fx 0My 0gDIV fP”: (r y)g
-

By rule (R6), we obtain, using Aw\w

Example Proof

DIV q:=0; r:==x; while r ydor:=r y;q:=q+1do

[l [A b R
Sa Sz
(The rst (textually represented) program that has been for mally veri ed (Hoare, 1969)
We want to prove =R
A
Ffx 0~y O0gDIV fqg y+r=x~"r<yg

— — ~
Note: writing a program S which satis es this correctness formula="
is much easier ifS may change x andy...

The proof needs doop invariant, we choose (reative act!):
P qgqy+r=x"r 0

We prove

N ~—— 1

(1) fx 0~y 0gqg:=0; r:=xfPgand
Sa

@fPArr ydTi=r Y, q= fPgin PD, and
@) P (r y)! gy+r=x"r<y \byhand"
== _"0

®R 2654

Proof: ANV A1)\ o =Kin 1 hg (Re) 'PA BIS: fag(pn: BYS, fag;
fpgif B then Syelse S, fag
fprBgS fpg
(A2) fplu:= tigu = t fpg ®9) g while 8 do S do fpn: Bg
fpgS: rgifra s: fag p! pifmgStaga! q
R s, fag ®6) Tpg S fag

P qy+r=x~r 0
@):fPrr ygri=r y; q:=q+lfPg
t

e
q:= q+ 1 fPgby (A2),

:m+: y+r=x"x 0g
t

20150709 { Spsq

“fx 0%y 0gDIV fg y+r=x~r<yg

2854

2754 .

Proof: (2)
: p" BgS fqgifpr: BgS; fag:
(A1) fpg skip fpg (R4) FL57 B then S, ese S, Tag
fprBgSt
(A2) fplu = tlgu =t fpg RS) (o0 while B do S o fph: By
P9 S froifrgS; fag p! pifpgStaga! g
) s s w &3 oSt
P gqy+r=x~r 0
@:fP~r ygr:=r vy q:=q+lfPg
-
fq+1) y+r=x"R 0gq:= q+1 fPgby (A2),
-~ 0 0000 -
fla+1) y+(r _y)=x"(_y) 0gr:=r yf(q+l) y+r=x"® 0gby(A2),
S8 Y A S & <
e T 7 Y a
285
Once Again 41) Tpg skip Tpg

015-07-08 { Spsq

(82) fplu = tlgu = tipg
P qgqy+r=x~r 0 (Re) [PISL 10119 S: fog

fx 07y 0Og oS S: fag

fO y+x=x"x O 1p7 By, fagip”: BgS: fag:
«m 9 ®9 o9t B then S, else S, fag

q:=0;

fp"BgSfpg

fq y+x=x"x 0g (R%) Fogwhie B do S do p7 Bg

r=x;

fayer-xnx og
fPg

while r ydo

fPArr yg

fa+1) y+(r y)=x"(r y) 0g

r=roy; A2
f(q+1) y+r=x~x 0g & ks
qi=g+1 A2

fq y+r=x~x 0g

fPg

do

fPAL(r y)g

fqy+r=x~r<yg
3054

Proof: ANV) i (e [P BASL (@D BOS: fag
fpgif B then S;elseS; fag

p"BgSfpg
(A2) fplu:=tigu =t fpg (RS (g while B do S do fpA: Bg

{20150

1pyS: froifrgs: fag

) P! PufpoSfagial g
fpg Si; S: fag

®3) o Tpg S Tag

P gqy+r=x~r
@:fPrr ygr:=r vy, q:=q+lfPg

f(q+1) y+r=x2x 0gq:= q+1fPgby (A2),
f(a+1) y+(r y)=x"(r y) 0gr:=r yf(q+l) y+r=x"x 0gby(A2),

Eﬁﬁ_ =r1 y; q=q+1fPgby(R3),
N

(2) by (R6), using AN

PAroyl (q+1) y+(r y)=x"(y)

. 2854
Modular Reasoning
We can add a rule for function calls (simplest case: only glokariables):
fpgf fog
R7) ———r
®D o570 Tag
\If we have " f pg f fqg for the implementation of function f ,
then if f is called in a state satisfyingp, the state after return of f will satisfy q.
p is calledpre-condition of f, q is calledpost-condition .
Example: if we have
ftrueg read numberf0 ret < 10°g
f0 x~0 ygaddf(old(x)+ old(y) < 10°~ ret = old(x)+ old(y)) _ ret < Og
ftrueg display (0 old(x) < 10° =) "old(x)") ~ (old(x) < 0 =) "-E-")g
we may be able to prove our!(later) pocket calculator correct.
-)
g nt sum = ada x. y)
= aispiay (sum)
o
. 0 3lsa

Proof: (1) A oo skin £ (Re) (P BOS (D™ ByS; fag
Pg skip tpg Tpgil B then S, else S; fag
fpABgS fpg
(82) fplu:= tgu:= t fpg 69) s G S Tt (B
1pg S: fraifrg s: fag p! pufpgSfaga! g
) rgsi s o) oS T

—
(1) by (R6) using T—_ —
x O0My 0! 0y+x=x"x O
294
Assertions
We add another rule fomssertions:
(A3) fpg assert (p) fpg
That is, if p holdsbefore the assertion, then we canontinue with the proof.
Otherwise weget stuck”
So wecannot even prove
ftrueg x := 0; assert (x =27) ftrueg:
to hold (it is not derivable).
Which is exactly what we want
z hassert (B); i!'h E;
2 to the transition relation.
g (If the assertion does not hold, the empty program is not rehed;
o the assertion remains in the rst al program
3254

P gy+r=x~r 0

(1) fx 0~y 0gq:=0; r:=xfPg

fg y+x=x"x 0gr:=xfPgby (A2),

f0 y+x=xAx 0gq:=0fqy+x=x"x 0gby (A2),

fo y+x=x"x 0gq:=0; r:=xfPgby (R3),

Why Assertions?

Why Assertions?
Available in standard libraries of many programming langes, e.g. C: Available in standard libraries of many programming langes, e.g. C:
. ASSERT() Linux Programmer's Manual ASSERT() T ———
NAME

assertabort the program if assertion is false

SYNOPSIS
#include < asserthr

P The Verifying C Compiler

B void assert(scalar expression);

DESCRIPTION
[.] the macro assen() prints an efror message (o stan
dard error and terminates the program by calling abori(3) if exgsion

¢ isfalse (ie., compares equal to zero), Assertions at work:
The purpose of this macro i to help the programmer nd bugs in i int square(int x) e 1
progiam.The message "assertion falled in e foo.c, function ! assert(p
doLbar(), line 1287" 5 of no help at all 10 a user. assert(x< sart(x));
; ¢ assert(q);
S e x x B
B 338 ° 330 : 3454
VCC VCC Syntax Example VCC Web-Interface
r (VCC) basically implements Hoare-style reasoning. sinclude <vee.
Special syntax: int q, r:
#include <vee.h> void div(int x, int y)
_(requires x>= 0 && y >= 0)
_(requires p) | pre-condition, pis a C expression _(ensures q y+r=x&r <y)
(writes &q)
ensures q) | post-condition, ¢ is a C expression 9| ~(writes &r)
f
(invariant expr) | looop invariant, expr is a C expression ul q=o
vl or=x
(assert p) | intermediate invariant, pis a C expression 13 while (r >=y)
. 14 (invariant ¢y +r=x2&r >=0)
_(writes &) | VCC considers concurrent C programs; we need to declare for each d s
procedure which global variables it is allowed to write to lgo checked by VCC) 16| r=roy;
17 q=q+1;
Special expressions 9
nthread _local(&v) | no other thread writes to variable v (in pre-conditions) = L b
nold(v) [the value of v when procedure was called (useful for post-condi 8 @
V nresult | return value of procedure (useful for post-conditions) DIV q:=0; r:=x; while r ydor r q:=q+1 do t
g 8 fx 07y 0gDIV fq y+r=xAr<yg
‘ 365 ‘ 3654

3754

VCC Architecture

3854

(Automatic) Formal Veri cation Techniques

nite-state software

all computation
paths satisfying
specication ~__

Investigate All Paths
ke Uppaal; possible for
no false
positives or negatives)

A4lLsa

VCC Features

For the exercises, we use VCC only feequential, single-thread programs.
VCC checks a number ofmplicit assertions :
no arithmetic over ow in expressions (according to C-standard),
array-out-of-bounds access,
NULL-pointer dereference ,
and many more.

VCC also supports:
concurrency: di erent threads may write to shared global variables; VCC can check whether
concurrent access to shared variables is properly managed;
data structure invariants : we may declare invariants that have to hold for, e.g., recods (e.g
the length eld | is always equal to the length of the string eld sir); those invariants may
temporarily be violated when updating the data structure.
and much more.

Veri cation does not always succeed
The backend SMT-solver may not be able to discharge proofiagations (in particular
non-linear multiplication and division are challenging);

In many cases, we need to provideop invariants manually.

(Automatic) Formal Veri cation Techniques

201507-09 { Soverunder

all computation
paths satisfying
speci cation ||

Investigate All Paths

ke Uppaal; possible for
nite-state software; no false
positives or negatives)

1

i

3954

4ls4

Interpretation of Results

15 {2015.07-09

VCC says: Veri cation succeeded

y hclude that the tool |

under its interpretation of the C-standard,

under its platform assumptions (32-bit), etc.

| \thinks" that it can prove = fpg DIV fqg. Can be due to an error in the tool

Yet we can askfor a printout of the proof and check it manually (hardly possible in practice) or

with other tools like interactive theorem provers.

Note: f ffalseg f fqg
| so a mistake in writing down the pre-condition can provoke afalse negative.

VCC says: Veri cation failed
One case: \timeout" etc. | completely inconclusive outcome.

vide cc ex < in the form of a computation path.

It (only) gives hints on input values satisfyi

May be afalse negative if these inputs are actually never used.
Make pre-conditionp stronger, and try again.

gp and causing a violation o,

40:

{201507.09 (main {

(15

References

5354

{15 {2015.07-09 { main {

References

Hoare, C. A. R. (1969). An axiomatic basis for computer progmming. Commun. ACM,
12(10):576{580.

IEEE (1990). IEEE Standard Glossary of Software Engineering TerminojogStd 610.12-1990.

I1SO (2011). Road vehicles { safety { Part 1: 1:2011.

Ludewig, J. and Lichter, H. (2013). Software Engineering dpunkt.verlag, 3. edition.

5454

