
–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

Softwaretechnik / Software-Engineering

Lecture 18: The Rest & Wrapup

2015-07-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents of the Block “Quality Assurance”
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
co

n
te
n
ts

–

2/35

(i) Introduction and Vocabulary

• correctness illustrated
• vocabulary: fault, error, failure
• three basic approaches

(ii) Formal Verification

• Hoare calculus
• Verifying C Compiler (VCC)
• over- / under-approximations

(iii) (Systematic) Tests

• systematic test vs. experiment
• classification of test procedures
• model-based testing
• glass-box tests: coverage measures

(iv) Runtime Verification

(v) Review

(vi) Concluding Discussion

• Dependability Cases

L 1: 20.4., Mo
Introduction T 1: 23.4., Do

L 2: 27.4., Mo
L 3: 30.4., Do
L 4: 4.5., Mo

Development
Process, Metrics

T 2: 7.5., Do
L 5: 11.5., Mo
- 14.5., Do
L 6: 18.5., Mo
L 7: 21.5., Do
- 25.5., Mo
- 28.5., Do

Requirements
Engineering

T 3: 1.6., Mo
- 4.6., Do
L 8: 8.6., Mo
L 9: 11.6., Do
L 10: 15.6., Mo
T 4: 18.6., Do
L 11: 22.6., Mo
L 12: 25.6., Do
L 13: 29.6., Mo
L 14: 2.7., Do

Architecture &
Design, Software

Modelling
T 5: 6.7., Mo
L 15: 9.7., Do

Quality Assurance
L 16: 13.7., Mo

Invited Talks L 17: 16.7., Do
T 6: 20.7., Mo

Wrap-Up L 18: 23.7., Do

Contents & Goals
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
p
re
li
m

–

3/35

Last Lecture:

• Testing (test case, test suite, testing notions, coverage, etc.)

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Give test cases for edge (location) coverage of a given CFA model.

• What is runtime verification? What are examples?

• How to conduct a review?

• What are strengths and weaknesses of different quality assurance approaches
(testing, formal verification, runtime verification, review, etc.)

• Content:

• Model-based testing

• Runtime-Verification

• Review

• Discussion of considered techniques

• Dependability Cases

Model-Based Testing

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

4/35

Model-based Testing
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
m
b
t
–

5/35

idle have c50

have e1

have c100 have c150

drink ready

E1?

soft enabled := (s > 0)

C50?

water enabled := (w > 0)

C50?

soft enabled := (s > 0)

C50?

tea enabled := (t > 0)

E1?

tea enabled := (t > 0)

C50?

water enabled := (w > 0)
tea enabled := (t > 0)

OK?

OK?

• Does some software implement the given CFA model of the CoinValidator?

• One approach: check whether each state of the model
has some reachable corresponding configuration in the software.

• T1 = (C50,C50,C50;
{π | ∃ i < j < k < ℓ • πi ∼ idle, πj ∼ h c50, πk ∼ h c100, πℓ ∼ h c150})

checks: can we reach ‘idle’, ‘have c50’, ‘have c100’, ‘have c150’?

• T2 = (C50,C50,C50; . . .) checks for ‘have e1’.

• To check for ‘drink ready’, more interaction is necessary.

• Or: Check whether each edge of the model has corresponding behaviour in the software.

• Advantage: input sequences can automatically be generated from the model.

Existential LSCs as Test Driver & Monitor (Lettrari and Klose, 2001)

–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
m
b
t
–

6/35

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

q1

q2

q3

q4

q5

q6

send C50

send E1

send pSOFT

¬ SOFT

SOFT

¬ chg-C50

chg-C50

true

!

Software

• If the LSC has designated environment instance lines, we can distinguish:

• messages expected to originate from the environemnt (driver role),

• messages expected adressed to the environemnt (monitor role).

• Adjust the TBA-construction algorithm to construct a test driver & monitor and have it
(possibly with some glue logic in the middle) interact with the software (or a model of it).

• Test passed (i.e., test unsuccessful) if and only if TBA state q6 is reached.

• We may need to refine the LSC by adding an activation condition, or communication
which drives the system under test into the desired start state.

Statistical Testing

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

7/35

Another Approach: Statistical Tests
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
te
st
re
st

–

8/35

One proposal to deal with the uncertainty of tests, and to avoid bias
(people tend to choose expected inputs): classical statistical testing.

• Randomly choose and apply test cases T1, . . . , Tn,

• if an error is found: good, we certainly know there is an error,

• if no error is found:
refuse hypothesis “program is not correct” with a certain confidence interval.

(Significance niveau may be unsatisfactory with small numbers tests.)

(Ludewig and Lichter, 2013) name the following objections against statistical testing:

• E.g., for interactive software: primary goal is often that does no failures are experienced
by the “typical user”. Statistical testing (in general) also cover a lot of “untypical user
behaviour”, unless user-models are used.

• Statistical testing needs a method to compute “soll”-values for the randomly chosen
inputs; that is easy for “does not crash” but can be difficult in general.

• There is a high risk for not finding point or small-range errors — if they live in their
“natural habitat”, carefully crafted test cases would probably uncover them.

Findings in the literature can at best be called inconclusive.

General “Do’s” and “Don’ts”
–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

9/35

• Do not use special examination versions for examination.
(Test-harness, stubs, etc. can be used; yet may have errors which may undermine results.)

• Do not stop examination when first error is detected.

Clear: Examination can (and should) be aborted if the examined program is not executable at all.

• Do not modify the artefact under examination during examinatin.

• changes/corrections during examination:
in the end unclear what exactly has been examined (“moving target”),
(results need to be uniquely traceable to one artefact version.)

• fundamental flaws sometimes easier to detect
with a complete picture of unsuccessful/successful tests,

• changes are particularly error-prone, should not happen “en passant” in examination,

• fixing flaws during examination may cause them to go uncounted in the statistics
(which we need for all kinds of estimation),

• roles developer and examinor are different anyway:
an examinor fixing flaws would violate the role assignment.

• Do have at least one (systematic) test for each feature — otherwise (grossly?) negligent.

(Without at least one test for each feature, can it be called software engineering. . . ?)

Run-Time Verification

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

10/35

Run-Time Verification
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ru
n
ti
m
e
–

11/35

12345678
+ 27

7 8 9 0

4 5 6 +

1 2 3 =1 i n t main () {
2

3 whi l e (t r u e) {
4 i n t x = read number () ;
5 i n t y = read number () ;
6

7 i n t sum = add (x , y) ;
8

9 v e r i f y s um (x , y , sum) ;
10

11 d i s p l a y (sum) ;
12 }
13 }

1 vo id v e r i f y s um (i n t x , i n t y ,
2 i n t sum)
3 {
4 i f (sum != (x+y)
5 | | (x + y > 99999999
6 && ! (sum < 0)))
7 {
8 f p r i n t f (s t d e r r ,
9 ” v e r i f y s um : e r r o r \n”) ;

10 abo r t () ;
11 }
12 }

• If we have an implementation for checking
whether an output is correct wrt. a given input (according to requirements),

• we can just embed this implementation into the actual software, and

• thereby check satisfaction of the requirement during each execution.

→ run-time verification.

Simplest Case: Assertions
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ru
n
ti
m
e
–

12/35

• Maybe the simplest instance of runtime verification: Assertions.

• Available in standard libraries of many programming languages, e.g. C:

1 ASSERT(3) Linux Programmer’s Manual ASSERT(3)
2

3 NAME
4 assert − abort the program if assertion is false
5

6 SYNOPSIS
7 #include <assert.h>
8

9 void assert(scalar expression);
10

11 DESCRIPTION
12 [...] the macro assert() prints an error message to stan
13 dard error and terminates the program by calling abort(3) if expression
14 is false (i.e., compares equal to zero).
15

16 The purpose of this macro is to help the programmer find bugs in his
17 program. The message ”assertion failed in file foo.c, function
18 do bar(), line 1287” is of no help at all to a user.

Simplest Case: Assertions
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ru
n
ti
m
e
–

12/35

• Maybe the simplest instance of runtime verification: Assertions.

• Available in standard libraries of many programming languages, e.g. C:

1 ASSERT(3) Linux Programmer’s Manual ASSERT(3)
2

3 NAME
4 assert − abort the program if assertion is false
5

6 SYNOPSIS
7 #include <assert.h>
8

9 void assert(scalar expression);
10

11 DESCRIPTION
12 [...] the macro assert() prints an error message to stan
13 dard error and terminates the program by calling abort(3) if expression
14 is false (i.e., compares equal to zero).
15

16 The purpose of this macro is to help the programmer find bugs in his
17 program. The message ”assertion failed in file foo.c, function
18 do bar(), line 1287” is of no help at all to a user.

• Assertions at work:

1 i n t s qua r e (i n t x)
2 {
3 a s s e r t (x < s q r t (x)) ;
4

5 re turn x ∗ x ;
6 }

1 vo id f (. . .) {
2 a s s e r t (p) ;
3 . . .
4 a s s e r t (q) ;
5 }

1

2 i n t p r o g r e s s b a r w i d t h (i n t p r og r e s s , i n t window l e f t , i n t window r i gh t)
3 {
4 . . .
5 a s s e r t (0 < p r o g r e s s && p r o g r e s s < 100) ; // e x t r ema l c a s e s a l r e a d y t r e a t e d
6 . . .
7 }

westphal
Bleistift

More Complex Case: LSC Observer
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ru
n
ti
m
e
–

13/35

half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

ChoicePanel:
LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !

water in stock

dWATER

OK

¬(dSoft ! ∨ dTEA!)

st : { idle, wsel, ssel, tsel, reqs, half };

take event(E : { TAU, WATER, SOFT, TEA, ... }) {

bool stable = 1;

switch (st) {

case idle :

switch (E) {

case WATER :

if (water enabled) { st := wsel; stable := 0; }

;;

case SOFT :

...

}

case wsel:

switch (E) {

case TAU :

send DWATER(); st := reqs;

hey observer I just sent DWATER();

;;

} }

hey observer I just sent DWATER();

q1

q2

q3 q4

q5

q6

¬C50 !

C50 !

¬C50?∧ϕ1 ∧
¬WATER!

C50? ∧ ϕ1 ∧
¬WATER!

¬C50? ∧
WATER! ∧
ϕ1

¬C50?
∧ϕ1

C50? ∧ ϕ1

C50? ∧
WATER! ∧

ϕ1

¬WATER!
∧ϕ1

WATER! ∧ ϕ1

¬WATER? ∧ ϕ1

WATER?∧
ϕ1 ∧
water in stock

q1

q2

q3

q4

¬dWATER!∧
ϕ2

dWATER! ∧ ϕ2

¬dWATER?∧
¬OK ! ∧ ϕ2

dWATER? ∧
OK ! ∧ ϕ2 ∧
¬output blocked

¬OK?∧
ϕ2

OK? ∧ ϕ2

true

dWATER? ∧
OK ! ∧ ϕ2 ∧

output blocked

Run-Time Verification: Discussion
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ru
n
ti
m
e
–

14/35

• Experience:

During development, assertions for pre/post conditions and intermediate invariants are
an extremely powerful tool with very good gain/effort ratio (low effort, high gain).

• Effectively work as safe-guard against unexpected use of functions and regression,
e.g. during later maintenance or efficiency improvement.

• Can serve as formal (support of) documentation:
“Dear reader, at this point in the program, I expect this condition to hold, because. . . ”.

• Usually:

Development version with (cf. assert(3)) / release version without run-time verification.

If run-time verification enabled in release version,

• software should terminate as gracefully as possible (e.g. try to save data),

• save information from assertion failure if possible.

• Run-time verification can be arbitrarily complicated and complex, e.g., construction of
observers for LSCs or temporal logic, e.g., expensive checking of data, etc.

• Drawback: development and release software have different computation paths — with
bad luck, the software only behaves well because of the run-time verification code. . .

Recall: Three Basic Directions
–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

15/35

(Σ×A)ω

all computation
paths satisfying
specification

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !

water in stock

dWATER

OK

¬(dSoft ! ∨ dTEA!)

Reviewer

×
××

×

×

review

?

→ →input output

J · K

?

Review Testing Formal Verification

prove S |= S ,
conclude

JSK ∈ JS K

Review

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

16/35

Reviews
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
re
vi
ew

–

17/35

• Review item: can be every closed, human-readable part of software
(document, module, test data, installation manual, etc.)

Social aspect: it is an artefact which is examined, not the human (who created it).

• Input to Review Session:

• the review item, and reference documents which enable an assessment
(requirements specification, guidelines (e.g. coding conventions), catalogue of
questions (“all variables initialised?”), etc.)

• Roles:

Moderator: leads session, responsible for properly conducted procedure.

Author: (representative of the) creator(s) of the artefact under review; is present to listen
to the discussions, can answer questions; does not speak up if not asked.

Reviewer(s): person who is able to judge the artefact under review; maybe different
reviewers for different aspects (programming, tool usage, etc.), at best experienced in
detecting inconsistencies or incompleteness.

Transcript Writer: keeps minutes of review session, can be assumed by author.

The review team consists of everybody but the author(s).

westphal
Bleistift

Review Procedure
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
re
vi
ew

–

18/35

t

Planning

Analysis

Preparation (2w)

Review

Session (2 h)

“3rd hour” (1 h)

Postparation (2w)

Initiation

review organisation
under guidance of

moderator

Approval of review item

• review triggered, e.g., by submission to revision control system:
moderator invites (include review item in invitation), state review missions,

• preparation: reviewers investigate review item,

• review session: reviewers report, evaluate and document issues; solve open questions,

• “3rd hour”: time for informal chat, reviewers may state proposals for solutions or improvements,

• postparation, rework: responsibility of author(s),

• reviewers re-assess reworked review item (until approval).

• planning: reviews need time in project plan; analysis: improve development and review process.

Review Rules (Ludewig and Lichter, 2013)
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
re
vi
ew

–

19/35

(i) moderator organises, invites to, conducts review,

(ii) the review session is limited to 2 hours — if needed: more sessions

(iii) moderator may terminate review if conduction not possible
(inputs, preparation, or people missing),

(iv) the review item is under review, not the author(s),
reviewers choose their wording accordingly,
authors neither defend themselves nor the review item,

(v) roles are not mixed up, the moderator does not act as reviewer,

(vi) style issues (outside fixed conventions) are not discussed,

(vii) the review team is not supposed to develop solutions,
issues are not noted in form of tasks for the author(s),

(viii) each reviewer gets the opportunity to present her/his findings appropriately,

(ix) reviewers need to reach consensus on issues, consensus is noted down,

(x) issues are classified as: critical (review unusable for purpose), major (usability
severely affected), minor (usability hardly affected), good (no problem).

(xi) review team declares: accept without changes, accept with changes, do not accept.

(xii) protocol is signed by all participants.

Weaker and Stronger Variants
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
re
vi
ew

–

20/35

• Careful Reading (‘Durchsicht’)

• done by developer,
• recommendation: “away from screen” (use print-out or different device and situation)

• Comment (‘Stellungnahme’)

• colleague(s) of developer read artefacts,
• developer considers feedback,

advantage: low organisational effort; disadvantages: choice of colleagues may be biased; no

protocol; consideration of comments at discretion of developer.

• Structured Walkthrough

• simple variant of review: developer moderates walkthrough-session, presents artefact, reviewer
pose (prepared or spontaneous) questions, issues are noted down,

• variants: with or without preparation (do reviewers see the artefact before the session?)
• less effort, less effective.

disadvantages: unclear reponsibilities; “salesman”-author may trick reviewers.

• Review
XP’s pair programming

(“on-the-fly review”?)

. . .

✘

coding

. . .

tests for . . .spec. of . . .

programmerprogrammer

• Design and Code Inspection (Fagan, 1976, 1986)

• deluxe variant of review,
• approx. 50% more time, approx. 50% more faults found.

Quality Assurance — Concluding Discussion

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

21/35

Techniques Revisited
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
d
ep

en
d
–

22/35

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

Review

Static
Checking

Verification

Strengths:
• can be fully automatic (yet not easy for GUI programs);

• negative test proves “program not completely broken”, “can run” (or positive scenarios);

• final product is examined, thus toolchain and platform considered;

• one can stop at any time and take partial results;

• few, simple test cases are usually easy to obtain;

• provides reproducible counter-examples (good starting point for repair).

Weaknesses:
• (in most cases) vastly non-exhaustive, thus no proofs of correctness;

• creating test cases for complex functions (or complex conditions) can be difficult;

• maintaining many, complex test cases be challenging.

• executing many tests may need substantial time (but: can be run in parallel);

Techniques Revisited
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
d
ep

en
d
–

22/35

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review

Static
Checking

Verification

Strengths:
• fully automatic (once observers are in place);

• provides counter-example, not necessarily reproducible;

• (nearly) final product is examined, thus toolchain and platform considered;

• one can stop at any time and take partial results;

• assert-statements have a very good effort/effect ratio.

Weaknesses:
• may negatively affect performance;

• code is changed, program may only run because of the observers;

• completeness depends on usage, may also be vastly incomplete, so no correctness proofs;

• constructing observers for complex properties may be difficult, one needs to learn how to
construct observers.

Techniques Revisited
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
d
ep

en
d
–

22/35

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static
Checking

Verification

Strengths:

• human readers can understand the code, may spot point errors;

• reported to be highly effective;

• one can stop at any time and take partial results;

• intermediate entry costs; good effort/effect ratio achievable.

Weaknesses:

• no tool support;

• no results on actual execution, toolchain not reviewed;

• human readers may overlook errors; usually not aiming at proofs.

• does (in general) not provide counter-examples, developers may deny existence of error.

Techniques Revisited
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
d
ep

en
d
–

22/35

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static
Checking

✔ (✘) ✘ ✔ (✔) ✔ (✘)

Verification

Strengths:

• there are (commercial), fully automatic tools (lint, Coverity, Polyspace, etc.);

• some tools are complete (relative to assumptions on language semantics, platform, etc.);

• can be faster than testing (at the price of many false positives);

• one can stop at any time and take partial results.

Weaknesses:

• no results on actual execution, toolchain not reviewed;

• can be very resource consuming (if few false positives wanted);

• many false positives can be very annoying to developers (if fast checks wanted);

• distinguish false from true positives can be challenging;

• configuring the tools (to limit false positives) can be challenging.

Techniques Revisited
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
d
ep

en
d
–

22/35

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static
Checking

✔ (✘) ✘ ✔ (✔) ✔ (✘)

Verification (✔) ✘ ✘ ✔ ✔ (✘) ✘

Strengths:
• some tool support available (few commercial tools);

• complete (relative to assumptions on language semantics, platform, etc.);

• thus can provide correctness proofs;

• can prove correctness for multiple language semantics and platforms at a time;

• can be more efficient than other techniques.

Weaknesses:
• no results on actual execution, toolchain not reviewed;

• not many intermediate results: “half of a proof” may not allow any useful conclusions;

• entry cost high: significant training is useful to know how to deal with tool limitations;

• proving things is difficult: failing to find a proof does not allow any useful conclusion;

• false negatives (broken program “proved” correct) hard to detect.

Proposal: Dependability Cases (Jackson, 2009)
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
d
ep

en
d
–

23/35

• A dependable system is one you can depend on — that is, you can place your trust in it.

• Proposed Approach:

• identify the critical requirements, and determine what level of confidence is needed.

Most systems do also have non-critical requirements.

• Construct a dependability case:

• an argument, that the software, in concert with other components,
establishes the critical properties.

• The case should be

• auditable: can (easily) be evaluated by third-party certifier.

• complete: no holes in the argument, any assumptions that are not justified should be noted
(e.g. assumptions on compiler, on protocol obeyed by users, etc.)

• sound: e.g. should not claim full correctness [...] based on nonexhaustive testing; should not
make unwarranted assumptions on independence of component failures; etc.

• IOW: “Developers [should] express the critical properties
and make an explicit argument that the system satisfies them.”

(As opposed to, e.g. requiring term coverage (which is usually not exhaustive), or requiring only

coding conventions and procedure models, which may support, but do not prove dependability.)

Looking Back:

17.5 Lectures on Software Engineering

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

24/35

Contents of the Lecture
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
co

n
ta
ll
–

25/35

L 1: 20.4., Mo
Introduction T 1: 23.4., Do

L 2: 27.4., Mo
L 3: 30.4., Do
L 4: 4.5., Mo

Development
Process, Metrics

T 2: 7.5., Do
L 5: 11.5., Mo
- 14.5., Do
L 6: 18.5., Mo
L 7: 21.5., Do
- 25.5., Mo
- 28.5., Do

Requirements
Engineering

T 3: 1.6., Mo
- 4.6., Do
L 8: 8.6., Mo
L 9: 11.6., Do
L 10: 15.6., Mo
T 4: 18.6., Do
L 11: 22.6., Mo
L 12: 25.6., Do
L 13: 29.6., Mo
L 14: 2.7., Do

Architecture &
Design, Software

Modelling
T 5: 6.7., Mo
L 15: 9.7., Do

Quality Assurance
L 16: 13.7., Mo

Invited Talks L 17: 16.7., Do
T 6: 20.7., Mo

Wrap-Up L 18: 23.7., Do

Evalution Results
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ev
a
l
–

26/35

����� �����

����� �����

����� ����

����� ��

!�� ��

Anzahl Fachsemester (bezogen auf den aktuellen Studiengang)
(71.4% B.Sc., 25% M.Sc.)

]X�KRFK ��

KRFK �����

DQJHPHVVHQ �����

QLHGULJ ����

]X�QLHGULJ ����

Das inhaltliche Niveau der Veranstaltung ist. . .

WULIIW�JDU�QLFKW�]XWULIIW�YROO�]X

�����

�

�����

�

���

�

���

�

�����

�

����

�

Ich habe in dieser Lehrveranstaltung viel gelernt.

WULIIW�JDU�QLFKW�]XWULIIW�YROO�]X

�����

�

�����

�

���

�

�����

�

�����

�

�����

�

Ich habe meine Fähigkeiten im wissenschaftlichen Problemlösen verbessert.

westphal
Bleistift

westphal
Bleistift

–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ev
a
l
–

27/35

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

Conclusion?
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ev
a
l
–

28/35

[...] in the end it’s anyway only a lot of “blabla” without real right or wrong.

What Did We Do?
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
re
su
m
e
–

29/35

Deadlines, Project Leader, Process Model

–
1
–
2
0
1
5
-0
4
-2
0
–
m
a
in

–

16/37

72.01

24.73

2.45

kept

early

late

deadline (368 responses)

29.67

15.38

5.49

9.89

20.88

< 20%

20-49%

50-99%

100-199%

≥ 200%

deadline missed by (91 responses)

77.51

3.17

19.31

leader responded

appointed

not appointed

existence of project leader (378 responses)

2.68

39.95

57.41

not spec.

used

not used

use of process model (378 responses)

By the Way: Decision Tables as Business Rules

–
0
7
–
2
0
1
5
-0
5
-2
1
–
S
et

–

12/54

T1: cash a cheque r1 r2 else

c1 credit limit exceeded? × ×
c2 payment history ok? × -

c3 overdraft < 500 e? - ∗

a1 cash cheque × - ×

a2 do not cash cheque - × -

a3 offer new conditions × - -

(Balzert, 2009)

• One customer session at the bank:

σ
{a1,a3}
−−−−−→ σ

′

if σ = {c1 7→ 1, c2 7→ 1, c3 7→ 0}.

• clerk checks database state σ,

• database says: credit limit exceeded over 500 e, but payment history ok,

• clerk cashes cheque but offers new conditions.

And The Other Way Round

–
1
2
–
2
0
1
5
-0
6
-2
5
–
S
u
m
ls
ig

–

8/38

C

D

x : Int

f(Int) : Bool

get x () : Int

•
p

0..1
×

•
p 0..1

×

•
n

0..∗
×

More Interesting Example

–
1
2
–
2
0
1
5
-0
6
-2
5
–
S
o
cl

–

33/38

σ :
u: C

x = 13
|

n C
x : Int

n

0..1

∀ c : C • x(n(c)) 6= 27

• Similar to the previous slide, we need the value of

σ (σ(IJcK(σ, β))(n)) (x)

• IJcK(σ, β) = β(c) = u

• σ(IJcK(σ, β))(n) = σ(u)(n) = ⊥

• σ (σ(IJcK(σ, β))(n)) (x) = σ(⊥)(x) = ⊥

Example

–
1
4
–
2
0
1
5
-0
7
-0
2
–
S
u
m
ls
tm

–

21/51

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser
->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

Coverage Example

–
1
6
–
2
0
1
5
-0
7
-1
3
–
S
co

ve
r
–

35/65

int f(int x, int y, int z)
{
i1: if (x > 100 ∧ y > 10)

s1: z = z ∗ 2;
else

s2: z = z/2;
i2: if (x > 500 ∨ y > 50)

s3: z = z ∗ 5;
s4: return z;

}

i1

s1 s2

i2

s3

s4

true false

true false

• Requirement: {true} f {true} (no abnormal termination)

% % i2/%

x, y, z i1/t i1/f s1 s2 i2/t i2/f c1 c2 s3 s4 stm cfg term

501, 11, 0 ✔ ✔ ✔ ✔ ✔ ✔ 75 50 25

501, 0, 0 ✔ ✔ ✔ ✔ ✔ ✔ 100 75 25

0, 0, 0 ✔ ✔ ✔ ✔ 100 100 75

0, 51, 0 ✔ ✔ ✔ ✔ ✔ 100 100 100

V-Modell XT: Decision Points

–
0
5
–
2
0
1
5
-0
5
-1
1
–
S
vx
t
–

13/49

%''����
��(��1�2�����-.&5.�
������������
��-.����
��+�
�����
��1������

Example: Illustrative Object Diagram (Schumann et al., 2008)

–
1
2
–
2
0
1
5
-0
6
-2
5
–
S
o
d
a
tw

o
rk

–

25/38

: Iterator : Forest : Iterator

A : Node E : Node end : BaseNode

B : Node C : Node F : Node

D : Node

begin it end it

node node

firstChild

parent firstChild

parent

nextSib

prevSib
lastChild

firstChild
parent

nextSib

prevSib

lastChild firstChild
parent

nextSib

prevSib

BaseNode
+ parent : BaseNode∗
+ prevSibling : BaseNode∗
+ nextSibling : BaseNode∗
+ firstChild : BaseNode∗
+ lastChild : BaseNode∗

Node
+ data : T
+ Node(data : T)

Iterator

+ operator++() : Iterator
+ operator−−() : Iterator
+ operator∗() : BaseNode

Forest

+ appendTopLevel(data: T)
+ appendChild(parent : Iterator, data : T)
+ remove(it : Iterator)
+ depth(it : Iterator) : int
+ end() : Iterator
+ begin() : Iterator
+ empty() : bool
+ size() : int

− node

− begin it − end it

Implementing CFA

–
1
3
–
2
0
1
5
-0
6
-2
9
–
S
im

p
l
–

29/46

half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

st : { idle, wsel, ssel, tsel, reqs, half };

take event(E : { TAU, WATER, SOFT, TEA, ... }) {

bool stable = 1;

switch (st) {

case idle :

switch (E) {

case WATER :

if (water enabled) { st := wsel; stable := 0; }

;;

case SOFT :

...

}

case wsel:

switch (E) {

case TAU :

send DWATER(); st := reqs;

;;

} }

VCC Web-Interface

–
1
5
–
2
0
1
5
-0
7
-0
9
–
S
vc
c
–

37/54

Intro. Process Management Requirements Engineering Architecture & Design QA Res. QA

VL1 VL 2 VL 3 VL 4 VL 5 VL 6 VL 7 VL 8 VL 9 VL 10 VL 11 VL 12 VL 13 VL 14 VL 15 VL 16 VL 17 VL 18

em
pi
ri
ca
l
da
ta

de
fin
it
io
n
S
W

co
st
s

D
el
ph
i
m
et
ho
d

co
st
es
ti
m
at
io
n

C
O
C
O
M
O

pr
oc
ed
ur
e
/
pr
oc
es
s
m
od
el

w
at
er
fa
ll
m
od
el

ri
sk

va
lu
e,
sp
ir
al
m
od
el

sc
al
es

m
et
ri
cs

V
-m

od
el

X
P

S
cr
um

pr
op
er
ti
es

of
re
qu
ir
em

en
ts

di
ct
io
na
ry

et
c.

la
ng
ua
ge

pa
tt
er
ns

D
ec
is
io
n
T
ab
le
s

co
m
pl
et
en
es
s,
co
nfl
ic
t

F
M

an
d
cu
st
om

er
s

sc
en
ar
io
s

us
e
ca
se
s
&

di
ag
ra
m
s

L
S
C
sy
nt
ax

T
B
A

cu
ts

an
no
ta
ti
on
s

L
S
C
se
m
an
ti
cs

L
S
C
vs
.
M
S
C

lit
er
at
ur
e

de
si
gn

pr
in
ci
pl
es

ex
am

pl
es

S
W

m
od
el
lin
g

C
la
ss

D
ia
gr
am

s

sy
st
em

st
at
es
,
O
D
s

(P
ro
to
-)
O
C
L

C
FA

U
pp
aa
l

im
pl
em

en
ti
ng

C
FA

qu
er
y
la
ng
ua
ge

U
M
L
S
tm

.
&

R
ha
ps
od
y

pa
tt
er
ns

H
oa
re

tr
ip
le
s

w
hi
le
pr
og
ra
m
s

ca
lc
ul
us

P
D

ex
am

pl
e
pr
oo
f

V
C
C

te
st
ca
se

co
ve
ra
ge

fir
e
al
ar
m

sy
st
em

s

S
W

an
d
la
w

U
lt
im
at
e

m
od
el
-b
as
ed

te
st
in
g

Q
A
su
m
m
ar
y

That’s Today’s Software Engineering — More or Less. . .

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

30/35

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

31/35

The Exam
–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
ex
a
m

–

32/35

Intro. Process Management Requirements Engineering Architecture & Design QA Res. QA

VL1 VL 2 VL 3 VL 4 VL 5 VL 6 VL 7 VL 8 VL 9 VL 10 VL 11 VL 12 VL 13 VL 14 VL 15 VL 16 VL 17 VL 18

em
pi
ri
ca
l
da
ta

de
fin
it
io
n
S
W

co
st
s

D
el
ph
i
m
et
ho
d

co
st
es
ti
m
at
io
n

C
O
C
O
M
O

pr
oc
ed
ur
e
/
pr
oc
es
s
m
od
el

w
at
er
fa
ll
m
od
el

ri
sk

va
lu
e,
sp
ir
al
m
od
el

sc
al
es

m
et
ri
cs

V
-m

od
el

X
P

S
cr
um

pr
op
er
ti
es

of
re
qu
ir
em

en
ts

di
ct
io
na
ry

et
c.

la
ng
ua
ge

pa
tt
er
ns

D
ec
is
io
n
T
ab
le
s

co
m
pl
et
en
es
s,
co
nfl
ic
t

F
M

an
d
cu
st
om

er
s

sc
en
ar
io
s

us
e
ca
se
s
&

di
ag
ra
m
s

L
S
C
sy
nt
ax

T
B
A

cu
ts

an
no
ta
ti
on
s

L
S
C
se
m
an
ti
cs

L
S
C
vs
.
M
S
C

lit
er
at
ur
e

de
si
gn

pr
in
ci
pl
es

ex
am

pl
es

S
W

m
od
el
lin
g

C
la
ss

D
ia
gr
am

s

sy
st
em

st
at
es
,
O
D
s

(P
ro
to
-)
O
C
L

C
FA

U
pp
aa
l

im
pl
em

en
ti
ng

C
FA

qu
er
y
la
ng
ua
ge

U
M
L
S
tm

.
&

R
ha
ps
od
y

pa
tt
er
ns

H
oa
re

tr
ip
le
s

w
hi
le
pr
og
ra
m
s

ca
lc
ul
us

P
D

ex
am

pl
e
pr
oo
f

V
C
C

te
st
ca
se

co
ve
ra
ge

fir
e
al
ar
m

sy
st
em

s

S
W

an
d
la
w

U
lt
im
at
e

m
od
el
-b
as
ed

te
st
in
g

Q
A
su
m
m
ar
y

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

–
1
8
–
2
0
1
5
-0
7
-2
3
–
S
b
la
n
k
–

33/35

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Pencil

westphal
Pencil

References

–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

34/35

References
–
1
8
–
2
0
1
5
-0
7
-2
3
–
m
a
in

–

35/35

Fagan, M. (1976). Design and code inspections to reduce errors in program development. IBM
Systems Journal, 15(3):182–211.

Fagan, M. (1986). Advances in software inspections. IEEE Transactions On Software

Engineering, 12(7):744–751.

Jackson, D. (2009). A direct path to dependable software. Comm. ACM, 52(4).

Lettrari, M. and Klose, J. (2001). Scenario-based monitoring and testing of real-time UML
models. In Gogolla, M. and Kobryn, C., editors, UML, number 2185 in Lecture Notes in
Computer Science, pages 317–328. Springer-Verlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

	Contents of the Block ``Quality Assurance''
	Contents & Goals
	Model-Based Testing
	Model-based Testing
	Existential LSCs as Test Driver & Monitor LettrariKlose2001

	Statistical Testing
	Another Approach: Statistical Tests
	General ``Do's'' and ``Don'ts''

	Run-Time Verification
	Run-Time Verification
	Simplest Case: Assertions
	More Complex Case: LSC Observer
	Run-Time Verification: Discussion
	Recall: Three Basic Directions

	Review
	Reviews
	Review Procedure
	Review Rules LudewigLichter2013
	Weaker and Stronger Variants

	Quality Assurance — Concluding Discussion
	Techniques Revisited
	Proposal: Dependability Cases Jackson2009

	Looking Back:17.5 Lectures on Software Engineering
	Contents of the Lecture
	Evalution Results
	
	Conclusion?
	What Did We Do?

	That's Today's Software Engineering — More or Less…
	
	The Exam
	

	References
	References

