
Prof. Dr. A. Podelski, Dr. B. Westphal Sommersemester 2015
S. Feo Arenis

Softwaretechnik/Software Engineering

http://swt.informatik.uni-freiburg.de/teaching/SS2015/swtvl

Exercise Sheet 5

Early submission: Friday, 2015-07-03, 14:00 Regular submission: Monday, 2015-07-06, 14:00

Exercise 1 – (Object and Class Diagrams) (5/20 Points)

TreeNode

- key : int
- value : Object

leftChildrightChild

parent

0,1 0,1

0,1

inv: self.key < rightChild.key
&& self.key > leftChild.key

Figure 1: Class diagram for a binary search tree.

Consider the class diagram shown in Figure 1.

(i) Present the class diagram as a signature. Provide the abstract syntax of the diagram. (1)

(ii) Consider the formula

F := ∀ self : Node • key(self) > key(leftChild(self)) ∧ key(self) < key(rightChild(self))

shown in OCL-notation in Figure 1.

Give system states σ1, σ2, σ3 and their corresponding object diagrams such that

a) formula F evaluates to true for σ1,

b) formula F evaluates to false for σ2,

c) formula F evaluates to ⊥ (undefined) for σ3. (3)

(iii) Choose one of your system states from (ii) and prove, using the interpretation function as
defined in the lecture, that the formula actually evaluates to the value you claimed. (1)

Exercise 2 – (Object Diagrams for Documentation) (5 Bonus)

A binary search tree is a data structure that allows finding whether a key is contained and retrieve
the value associated to that key in O(log2 n), where n is the number of keys stored. Keys are
stored in the tree such that for every subtree, all the keys reachable through the left child are
strictly smaller than the key of the root and all the keys reachable trough the right child are
strictly larger than the key of the root.
Explain, using appropriate illustrative object diagrams, how the data structure defined by the
class diagram in Figure 1 is supposed to be used to implement binary search trees.
Provide in particular object diagrams which illustrate corner cases and give negative examples
that show how the data structure should not be used. (5 bonus)

1

http://swt.informatik.uni-freiburg.de/teaching/SS2015/swtvl

ControllerEnvironment Sensor

Motor

up_pressed

down_pressed

up_released

down_released

top_reached

bottom_reached

motor_up motor_downmotor_stop

Figure 2: Architecture diagram of the Uppaal model of the power window.

Exercise 3 – (Design Modeling) (10/20 Points)

In this exercise, you assume the role of a development engineer for the power window project of
the previous exercise sheets. The system architect gives you the task of designing a controller for
the power window.
You are given a model of the power window system (including an environment model). It consists
of four communicating finite automata (CFAs):

• Environment: sends events using the channels up pressed, up released, down pressed and
down released to notify the controller about the user’s interaction with the window button.

• Sensor: sends the events top reached and bottom reached to notify the controller about
the window reaching its extreme positions. The current position of the window can be
read from the variable sensor position that can take the values BOTTOM for the lowermost
position, BELOW THRESHOLD for a position above the bottom and below the auto full close
threshold, ABOVE THRESHOLD for a position above the auto full close threshold and TOP for
the uppermost position.

• Motor: accepts movement commands on the channels motor up, motor down and motor stop.
Issuing a movement command in a direction that exceeds the range of motion of the window
brings the motor to the broken state, where it ceases to operate.

• Controller: is empty; it just consists of one initial state. Your task is to design it and to
verify that your Controller CFA complies with the customer requirements.

The files necessary for this task are available for download together with this exercise sheet.

(i) Design a controller for the power window with auto full close using Uppaal. Use the
file powerwindow.xml and fill out the Controller template. Provide a thorough documen-
tation of your design. Convince your readers that your design satisfies the power windows
requirements discussed so far. Also submit the XML file of your model. (4)

Hint: In particular the (anti-)scenarios represented by the LSCs in the previous exercise sheet
are power window requirements. Creating and saving (and submitting) simulation traces (cf.
(ii) below) may also be useful for this task.

Hint: Uppaal provides options to export automata as pictures as, e.g., as PDF files, and to
color the states of automata. Consider to use these facilities to improve your documentation.

(ii) Demonstrate the auto full close function by providing a trace using the simulator module
of Uppaal. Document the trace while describing the strategy of your controller for the auto
full close function. Also save the trace file and submit it. (1)

(iii) Verify that your design allows reaching all sensor positions, does not break the motor and
that your model does not contain deadlocks. During development, you can import the queries

2

in the file powerwindow.q and use the verifier module of Uppaal. A good design should
satisfy all queries.

Document the verification process by using the command line Uppaal verifier (see usage
instructions below). Report the output (in appropriate, well-readable form) and discuss
the number of states explored during verification. What are the maximum and minimum
number of states explored? Why is the minimum so low and the maximum so high? Are
the numbers plausible to you? (1)

Now, perform the design, verification and demonstration tasks for a power window that also
supports obstacle detection. In the extended model, the Sensor CFA additionally sends events
obstacle detected and obstacle removed. Moving the motor up when an obstacle is present
breaks the motor.

(iv) Design a controller for the power window with auto full close using Uppaal. Use the file
powerwindow obstacle.xml and fill out the Controller template. Document your design,
possibly as an extension of the documentation provided for task (i). Also submit the XML
file of your model.

(v) Demonstrate the obstacle detection function by providing a trace using the simulator
module of Uppaal. Document the trace while describing the behavior of your controller
when an obstacle is detected. Also save the trace file and submit it. (1)

(vi) Verify that your design allows reaching all sensor positions, does not break the motor and
that your model does not contain deadlocks. During development, you can import the queries
in the file powerwindow.q and use the verifier module of Uppaal. A good design should
satisfy all queries.

Document and discuss the verification process similar to task (iii). (1)

Hint: If you want to reuse the controller of task (i), you can use the option File→ Import Template
from the menu bar of Uppaal. But note that you are supposed to submit two XML files, one for
(i) and one for (iv).

Uppaal Usage Instructions

• Editor and Simulator

Uppaal is installed in the Linux machines of the computer pool. To execute it, use the
following command line:

/usr/local/ufrb/uppaal/uppaal-4.0.14/uppaal

You can use it directly or by logging in remotely using Secure Shell (SSH), e.g.

ssh -X username@aschgabad.informatik.uni-freiburg.de

where username is your pool account name. Note that X11 forwarding (-X) is necessary for the
editor and simulator front-end; the verifier is a pure command line tool and does not require
this option.

• Stand-alone Verifier

To run the verifier from the command line on one of the pool’s Linux hosts, use, e.g., the
command

/usr/local/ufrb/uppaal/uppaal-4.0.14/bin-Linux/verifyta -u

powerwindow.xml powerwindow.q

(one line!).

3

Motor

-state: MotorState

+getSensor(): Sensor

Sensor

-position: SensorPosition

+getPosition(): SensorPosition

<<Enumeration>>

SensorPosition

+BOTTOM

+nextUp(): SensorPosition
+nextDown(): SensorPosition

+BELOW_THRESHOLD
+ABOVE_THRESHOLD
+TOP

sensor

<<abstract>>

Controller

+getSensor(): Sensor
+getMotor(): Motor
+takeEvent(EventType): void

motor

PowerWindow

+run(): void

controller

Environment

+getEvent(): EventType

environment

<<Enumeration>>

EventType

+TOP_REACHED
+BOTTOM_REACHED
+BUTTON_DOWN_RELEASED
+BUTTON_DOWN_PRESSED
+BUTTON_UP_RELEASED
+BUTTON_UP_PRESSED
+UPDATE_SENSOR

MyController

+executeCommand(MotorCommand): void

<<Enumeration>>

MotorCommand

+MOVE_UP
+MOVE_DOWN
+STOP

FRAMEWORK

IMPLEMENTATION

+getState(): MotorState

<<Enumeration>>

MotorState

+MOVING_UP
+MOVING_DOWN
+IDLE
+BROKEN

Main

+main()

implementedController

powerWindow

-updateSensor(): void

motor

+PowerWindow(Controller)

Figure 3: Partial class diagram of the simulator framework. You are required to provide the
implementation of MyController.

Exercise 4 – (From Design to Implementation) (5/20 Points)

In this exercise, you are required to implement in software the controller from exercise 3(i). For
that, we have provided a Java framework that simulates the power window with auto full close using
a controller implementation provided by you. For your reference, a class diagram of the framework
is shown on Figure 3. Additionally, an example interaction of the user with the simulator is shown
on Figure 4.

(i) Provide an implementation of the controller you designed in the previous exercise by
extending the class Controller. See, e.g. Figure 5. Also make sure to provide an entry
point for the simulator that initializes it using your controller implementation. For this,
create a main method that invokes the run() method of PowerWindow. See, e.g., Figure 6.
Submit the files containing the source code of your solution.

Convince your readers that you faithfully implemented your design from Exercise 3, i.e. that
your implementation can do what the design does and does not do anything else in addition.

Discuss: what (informal) definition of “program implements model” did you use in your
argumentation? (5)

Hint: concrete computation paths of your implementation (obtained from executing it) may
be useful for this task.

To assign the points, your (appropriately documented) solution code will be reviewed and tested
to check whether it fulfills the requirements of the power window, i.e., that your controller imple-

4

User MyController Motor

BUTTON_UP_PRESSED

MOVE_UP

Sensor

TOP_REACHED

STOP

UPDATE_SENSOR

TOP_REACHED

Environment/
PowerWindow

BUTTON_UP_PRESSED

UPDATE_SENSOR

Figure 4: Sequence diagram showing the expected behavior of the power window for an example
interaction with the simulator. The user sends event BUTTON UP PRESSED first, it is forwarded
by the simulation loop to the controller implementation, which correctly responds by sending
the command MOVE UP to the motor. Then, the user sends event UPDATE SENSOR. The event is
forwarded to the sensor. The sensor updates its state and replies with event TOP REACHED, which
is forwarded immediately to the controller. The controller responds by sending command STOP.

mentation moves the window according to the button commands and never breaks the motor.

Note: the easiest way to solve this task may be to use Java in the provided simulation framework.
It allows you (and your tutor) to compile, run, and test your solution.
Using Java is not required though. Yet if you choose to solve this task in any other programming
language, provide sufficient explanation and links to resources that allow your tutor to check that
your implementation runs. (It is at the discretion of your tutor to consider the effort too high; if
it must be as exotic as, e.g., “Turbo Pascal 3.0 for CP/M”, you may want to negotiate with your
tutor first.)
Plus, when not using Java, provide a very convincing explanation (including the used language
constructs) of your implementation — you can only assume that your tutor knows Java.

Usage Instructions

The simulator framework is found in the file powerwindow.jar, available together with this exercise sheet.
Make sure to read the documentation of the package which is found in the file powerwindow-doc.zip. To
read it, extract the contents of the file in a directory of your choice and open the file index.html.

We will assume that your solution consists of the files Main.java and MyController.java. To test your
solution on a Linux host in the computer pool, perform the following steps:

1. Make sure powerwindow.jar is in the current directory, along with your solution files.

2. Compile your files using the command

javac -cp powerwindow.jar Main.java MyController.java

3. Run your program using the command

java -cp "powerwindow.jar:." Main

On windows platforms, replace the colon ‘:’ with a semicolon ‘;’.

4. You will see the simulator prompt where you can enter a number to select the event you like to send
to your controller.

Motor state: IDLE

Window position: BELOW_THRESHOLD

Select an event to send

0: UPDATE_SENSOR

5

1: BUTTON_UP_PRESSED

2: BUTTON_UP_RELEASED

3: BUTTON_DOWN_PRESSED

4: BUTTON_DOWN_RELEASED

5: BOTTOM_REACHED

6: TOP_REACHED

Your choice: 0

The chosen event UPDATE SENSOR (number 0) causes the sensor to move to the next position according
to the state of the motor and send the appropriate events to your controller when reaching the ex-
treme positions. This particular event is never sent to your controller, it is only used to operate the
environment model.

After making a choice, the state of the simulator is updated by in particular calling the takeEvent
method of the controller implementation. You will see a new prompt indicating the new state of the
system.

>> Motor received command MOVE_UP

Motor state: MOVING_UP

Window position: BELOW_THRESHOLD

Select an event to send

0: UPDATE_SENSOR

1: BUTTON_UP_PRESSED

2: BUTTON_UP_RELEASED

3: BUTTON_DOWN_PRESSED

4: BUTTON_DOWN_RELEASED

5: BOTTOM_REACHED

6: TOP_REACHED

Your choice:

Figure 5: Sample file MyController.java

import de . un i f r e i bu r g . powerwindow . ∗ ;

public class MyControl ler extends Cont r o l l e r {

public void takeEvent (EventType event) {
// Read the po s i t i on o f the sensor
Senso rPos i t i on po s i t i o n = getSensor () . g e tPo s i t i on () ;

// Write the code to process the event s
switch (event) {
case TOPREACHED:
case BOTTOMREACHED:
case BUTTONDOWNRELEASED:
case BUTTON UP RELEASED:
case BUTTONDOWNPRESSED:
case BUTTON UP PRESSED:

// Send a command to the motor
getMotor () . executeCommand (MotorCommand .STOP) ;
break ;

default :
break ;

}
}

}

Figure 6: Sample file Main.java

import de . un i f r e i bu r g . powerwindow . ∗ ;

public class Main {
stat ic Cont r o l l e r implementedContro l l er = new MyControl ler () ;
public stat ic void main (St r ing [] a rgs) {

new PowerWindow(implementedContro l l er) . run () ;
}

}

