
i

Zusammenfassung

Graphische Spezifikation von Kommunikationsabläufen mittels Szenarien er-
freut sich großer Beliebtheit, vor allem wegen ihrer Einfachheit und Intu-
itivität. Die beiden in diesem Bereich existierenden Standards, Message
Sequence Charts (MSC) und Sequence Diagrams (SD), schöpfen aufgrund
von mangelnder Ausdruckskraft und fehlender semantischer Fundierung ihre
Möglichkeiten im Hinblick auf den erzielbaren Nutzen nicht voll aus. Zudem
sind sowohl MSCs als auch SDs in erster Linie auf den Einsatz in einem in-
formellen, exemplarischen Kontext ausgerichtet. Ziel dieser Arbeit ist es, die
Grundlage für einen weitergehenden Einsatz von Sequence Charts, insbeson-
dere in der formalen Verifikation, zu schaffen. Ein Ansatz in diese Richtung
sind die von Damm und Harel vorgestellten Live Sequence Charts (LSC).

Kernpunkt von LSCs ist die Unterscheidung zwischen möglichem und
geforderten Verhalten. Auf oberster Ebene erlaubt dies die Spezifikation
von einzuhaltenden Abläufen, zusätzlich zu exemplarischen Abläufen in
MSCs und SDs. Weiterhin ist es in LSCs möglich Lebendigkeitseigen-
schaften zu formulieren, wie etwa das Ankommen einer Nachricht. Andere
wichtige Neuerungen sind die Aufwertung von Bedingungen zu booleschen
Ausdrücken, sowie die Möglichkeit, den Aktivierungszeitpunkt einer Chart
mittels einer Bedingung zu charakterisieren.

Der von Damm und Harel vorgeschlagene Sprachumfang wird im Rahmen
dieser Arbeit um weitere essentielle Konstrukte ergänzt, wie Zeitbedingun-
gen, Gleichzeitigkeit von Ereignissen, sowie die Möglichkeit, die Aktivierung
einer Chart durch Nachrichtensequenzen auszulösen. Des weiteren wird die
Spezifikation von Annahmen über das Umgebungsverhalten innerhalb der
LSC, die das gewünschte Systemverhalten ausdrückt, ermöglicht.

Neben der Festlegung des LSC-Sprachumfangs ist die Definition der for-
malen Semantik von LSCs zentraler Punkt dieser Dissertation. Die Seman-
tik wird konstruktiv definiert durch Abbildung einer LSC in einen endliche
Automaten (zeitbehaftete Büchi-Automaten), unter Berücksichtigung der in
der LSC ausgedrückten partiellen Ordnung zwischen den einzelnen LSC El-
ementen.

Das Sprachdesign wird abgerundet durch eine Einordnung von LSCs in
einen modellbasierten Entwicklungsprozeß, wobei das Ziel ist, Wissen in
Form von einmal spezifizierten LSCs soweit möglich in späteren Phasen
des Entwurfs wiederzuverwenden. Abschließend erfolgt eine Untersuchung
der praktischen Anwendbarkeit der entwickelten Spezifikationssprache am

ii

Beispiel der formalen Verifikation von Statemate-Modellen. Hierbei wer-
den die zu überprüfenden Anforderungen als LSCs spezifiziert.

iii

Abstract

Graphical description of message exchange by means of scenarios is a popu-
lar specification technique, especially due to the intuiveness provided. The
prevalent standards in this area, Message Sequence Charts (MSC) und Se-
quence Diagrams (SD), are lacking both expressiveness and formal founda-
tion. Additionally, they are used almost exclusively in an exemplary fashion
describing typical system interactions. The goal of this thesis is the cre-
ation of a sound basis for the application of sequence charts to other, more
advanced use cases like formal verification. An approach along this line of
thought has been presented by Damm and Harel in the form of Live Sequence
Charts (LSC).

The basic idea of LSCs is the distinction between possible and mandatory
elements allowing, at the level of an entire chart, the specification of required
behavior in addition to the sample interactions of MSCs and SDs. At a
more fine-grained level this feature creates the possibility to express liveness
properties like the mandatory receipt of a message. Other novel features are
the upgrade of conditions to boolean expressions and the characterization —
via an activation condition — of when the chart is to be activated.

This thesis extends the LSC language as proposed by Damm and Harel
by several missing, but essential features like time constraints, simultaneity
of events as well as activation of an LSC by a sequence of interactions. An-
other important new feature is the possibility to specify assumptions about
environment behavior directly within the LSC describing the desired system
behavior.

The definition of the formal semantics of LSCs is the second major part of
this thesis. The semantics is defined in a constructive fashion by transforming
an LSC into a timed Büchi automaton capturing the partial order prescribed
by the LSC elements.

The language design is completed by a presenting a methodology which
embeds LSCs into a model-based development process. The goal is to reuse
knowledge about the system, recorded in the form of LSCs, in later phases
of development. The rear of this thesis is brought up by an evaluation of the
applicability of the developed specification language. The formal verification
of Statemate models is chosen as a sample field of application, where the
properties to be verified are specified by LSCs.

iv

Acknowledgments

A major piece of work, like this thesis, is seldom created in isolation. At this
point I therefore would like to gratefully acknowledge those people, which
have helped me to achieve this success.

First of all I would like to thank Werner Damm, who provided me with the
opportunity to write this thesis. I have greatly benefitted from his encour-
agement and the creative working environment he created. His knowledge
and support have been an invaluable resource during the last five years. I
furthermore thank Ernst-Rüdiger Olderog, who was kind enough to act as
the second reviewer for my thesis. Additional thanks go to David Harel for
the vivid discussions on issues of design and semantics of the LSC language.

Another key ingredient for the existence of this thesis is the working group
in which I have been working in Oldenburg. I have had many interesting and
helpful discussions with the people in this working group and have profited
from their expertise and experience. I especially thank Hartmut Wittke, with
whom I have shared many thoughts and ideas on the subjects of this thesis.
He also contributed to a substantial degree in the integration of the LSC
tools into the existing Statemate verification environment, thus helping to
make the verification of LSCs become a reality. He was the most assidious
proof readers, as well. I furthermore thank Tom Bienmüller and Alexander
Metzner. They not only have contributed to this thesis by discussing seman-
tical details, proof reading and general comments, but also shared an office
with me. The congenial atmosphere of this “center of knowledge” was ex-
tremely motivating and enjoyable. Further thanks go to Martin Fränzle, who
gave valuable comments on the automata-theoretic part, and Hans Jürgen
Holberg, who provided me with feedback regarding the methodology and ap-
plication of LSCs. I also thank Olaf Bär, Uwe Higgen and Rainer Koopmann,
who carried out the initial implementation of the tools supporting the formal
verifiction of LSCs. Moreover, I thank Andreas Thums for his collaboration
on the Statemate case study.

Last, but certainly not least, I thank my parents for their support, not
only in this endeavor. They have always encouraged me in what I was doing,
for which I am deeply grateful.

Contents

1 Introduction 1

2 Sample Application: A Radio-based Signaling System 23

2.1 General Description . 23
2.2 STATEMATE Model . 26

2.2.1 Activity Chart SYSTEM 26
2.2.2 Activity Chart TRAIN 28
2.2.3 Activity Chart COMMUNICATION 36
2.2.4 Activity Chart CROSSING 37

3 Message Sequence Charts and Sequence Diagrams 45

3.1 Message Sequence Charts . 45
3.1.1 MSC-93 . 46
3.1.2 MSC-96 . 49
3.1.3 MSC-2000 . 55
3.1.4 Shortcomings of MSCs 57

3.2 Sequence Diagrams . 60

4 Live Sequence Charts: The Kernel Language 65

4.1 Basic LSC Features . 66
4.1.1 Instances and Messages 66
4.1.2 Conditions . 70
4.1.3 Local Invariants . 72
4.1.4 Simultaneous Regions and Coregions 74

4.2 Activation and Quantification 75

5 Automata-Theoretic Foundation 81

5.1 Büchi-Automata . 82

v

vi CONTENTS

5.2 Timed Büchi Automata . 84

5.3 Symbolic Automata . 87

6 Semantics of the LSC Kernel Language 93

6.1 Formal Syntax . 94

6.2 Formal Semantics . 103

6.2.1 Basic Automaton Construction 103

6.2.2 Self Loop Annotation 114

6.2.3 Location Temperatures 117

6.2.4 Semantics of Conditions 118

6.2.5 Message Temperatures 123

6.2.6 Local Invariants . 128

6.2.7 The Unwinding Algorithm 131

6.3 Activation and Quantification 141

6.3.1 Reference System . 141

6.3.2 Complete Semantics 144

6.3.3 Implications on the Interpretation 146

6.3.4 Well-formedness Rules 148

6.4 Related Work . 149

7 Adding Time 153

7.1 Time Constraints in LSCs . 153

7.2 Formal Semantics . 156

7.2.1 Formal Syntax . 156

7.2.2 The Timed Unwinding Algorithm 159

7.3 Related Work . 167

8 Integrated Assumption Treatment 171

8.1 Internal Assumptions . 173

8.1.1 Adjustment of the Formal Semantics 176

8.1.2 Unwinding Algorithm for Internal Assumptions 177

8.2 External Assumptions . 194

8.2.1 Extracting Assumptions from LSCs 195

8.2.2 User Specified Assumptions 200

8.3 Semantics of External Assumptions 201

8.4 Related Work . 203

CONTENTS vii

9 Upgrading Activation: Pre-charts 205

9.1 Pre-charts . 205
9.2 Formal Semantics . 209

9.2.1 Pre-chart Unwinding Algorithm 213
9.2.2 Pre-charts Semantics 213

9.3 Related Work . 218

10 Embedding LSCs into the Development Process 221

10.1 Abstract Development Process 222
10.2 Advanced Use Cases for LSCs 223

10.2.1 Capturing Typical System Interactions 223
10.2.2 Debugging by Existential Verification 228
10.2.3 From Scenarios to Protocol Specifications 229
10.2.4 Test Vector Generation 235

10.3 Related Work . 236

11 Assessment of the LSC Language 239

11.1 Property Specification for Statemate 240
11.1.1 Integration of LSCs into the STVE 240
11.1.2 Property Specification for Synchronous Models 242
11.1.3 Property Specification for Asynchronous Models 242

11.2 Specification of the LSCs for the Train Control System 250
11.3 Verification Results . 263

11.3.1 General Considerations 263
11.3.2 Existential Verification Results 264
11.3.3 Universal Verification Results 273

11.4 Assessment of LSCs . 279

12 Conclusion and Outlook 291

A LSCs for the Radio-based Train Control System 297

A.1 LSCs for System . 298
A.1.1 Existential LSCs . 298
A.1.2 Universal LSCs . 307
A.1.3 Assumption LSCs . 318

A.2 LSCs for Train . 320
A.2.1 Existential LSCs . 320
A.2.2 Universal LSCs . 323

viii CONTENTS

A.3 LSCs for Crossing . 325
A.3.1 Existential LSCs . 325
A.3.2 Universal LSCs . 336
A.3.3 Assumption LSCs . 374

B Information Flows and Constants of the Statemate Model

for the Train Control Application 381

B.1 Constants . 381
B.2 SYSTEM . 381
B.3 CROSSING . 384

C LSC Grammar 387

Chapter 1

Introduction

The amount of modern products containing hard and software components
is becoming larger and larger. The type of products containing computer
technology ranges from coffee and washing machines to cars and trains. These
computer systems are embedded into a physical environment, which provides
input data to these embedded controllers and which is in turn affected by the
embedded controller. An airbag controller for instance reads sensor data,
which indicate if a crash has occurred, and activates the firing capsule in
this case. A train control system, as another example, uses various sensors
to determine the position and velocity of a train, computes the maximum
speed for the current position and checks, if the train is going too fast.

Not only does the number of products containing embedded controllers in-
crease, but also the number of embedded controllers within a single product:
a modern high-end car e.g. may contain up to seventy embedded controllers.
This proliferation of embedded controllers is accompanied by a rising demand
for more functionality entailing more complex embedded controllers. Follow-
ing the general trend there is also a rising number of embedded controllers
performing safety-critical tasks. The incorrect computation or supervision
of a train’s speed e.g. may lead to a derailed train involving severe damage
to people and material.

The development of embedded controllers today typically starts with a
requirement specification document written in natural language. Such infor-
mal specifications have the inherent danger of being ambiguous, inconsistent
and incomplete — especially since such documents can consist of several
hundred pages — and lead to errors and incompatibilities, which often are
detected only later in the design process. The later an error is found, the
more costly — both in terms of money and time — it is to remove, since

1

2 CHAPTER 1. INTRODUCTION

each step back in the development cycle means that the following steps have
to be re-taken as well. In order to reduce the overall development costs it is
thus imperative to uncover errors as early as possible.

Validation that the embedded controller conforms to the requirements
specified initially is carried out by testing, i.e. by applying inputs to the
controller and observing, if the correct outputs are produced. The testing
process today is mostly carried out manually by test engineers, which rely on
their experience and intuition for finding good test cases covering the relevant
parts of the design. Clearly, the informal and often inconsistent process of
embedded controller development today is not an optimal base for producing
correct controllers in the most economic fashion, especially when considering
safety-critical applications and the increasing complexity of the tasks, which
are to be performed by the embedded controllers.

In order to guarantee the correctness and reliability of safety-critical elec-
tronic control units one prominent proposition is the adoption of an appro-
priate development process. Such a process structures the development into
different phases, defines the activities to be performed in the phase, which
documents are to be produced, etc. Examples for development processes are
the V-model [ESt97], which has been defined for developing software for the
German armed forces, and the CENELEC1 norm EN 50128 [CEN01], which
regulates the development of software for railway applications.

One approach, which addresses the abovementioned deficiencies of ambi-
guity and inconsistency, is known as model-based development process. The
central idea is to construct an abstract model of the embedded controller
capturing the requirements of the initial textual specification. Depending on
the concrete needs and focus of the developed embedded controller different
aspects — like e.g. functionality and decomposed structure — are reflected
in the model. Modern CASE-tools2 like e.g. Statemate [HLN+90] or var-
ious UML3 tools [OMG01] provide support for such a development process
and also offer graphical representations for the modeling of the embedded
controller.

The abstract models allow the user to formalize the textual requirements
and thus to more easily detect inconsistencies, ambiguities and incomplete
specifications. Several tools, e.g. Statemate, additionally offer simulation

1Comité Européen de Normalisation Electrotechnique
2Computer Aided Software Engineering
3Unified Modeling Language

3

capabilities allowing to directly observe and influence the dynamical behav-
ior of the model. This feature is referred to as executable specification and
enables the user to gain a good understanding of how the embedded con-
troller behaves dynamically. Moreover, it allows to change or add features
and assess their impact without much effort or risk. If the embedded con-
troller comprises several (logical or physical) components, it is possible to
examine their combined dynamic behavior before a concrete implementation
is available yielding a virtual integration. A model-based development hence
allows to assess the functionality of the designed embedded controller at a
very early stage in the design process removing ambiguities and inconsisten-
cies, which would otherwise have potentially led to errors discovered only in
later phases. The abstract representation constructed serves as a reference
model (also called golden device) for the later stages of the development.
Possible applications in this direction are for instance the automatic gener-
ation of code from the reference model and deriving test vectors for unit or
integration testing.

Formal Verification

The model-based development process tackles the problem of ambiguous and
inconsistent requirement specifications. The correctness of the designed em-
bedded controller wrt. to its requirements is another vital property, which
has to be guaranteed especially for safety-critical applications. In view of the
increasing embedded controller complexity it is clear that the traditional test-
ing approach is not sufficient to ensure correctness under all circumstances.
The number of possible combinations of input stimuli and possible sequences
thereof is too large to be tested in its entirety for industrial-sized embedded
controllers. Testing thus considers only a finite set of test cases chosen by
the test engineers.

In recent years formal verification has been developed in order to guaran-
tee correctness under all circumstances. Formal verification entails a formal
mathematical proof that a model satisfies the specified requirements. In
combination with the model-based development process formal verification
demonstrates the correctness of the model wrt. the specified requirements
lending more weight to the reference model. In this way the requirement that
“a train never passes a not secured crossing” can be proven for all possibilities
of sequences of input stimuli.

4 CHAPTER 1. INTRODUCTION

Within the field of formal verification, there are three major approaches:
theorem proving, model checking and bounded model checking. The basic
idea of theorem proving is to support the user in constructing a proof calcu-
lus, which demonstrates the validity of the specified requirement. Theorem
provers, like e.g. the popular PVS [OS97], require a large amount of user in-
teraction and expert knowledge, since they provide computer-based support
for the formal reasoning, which has to be carried out by the user.

Model checking is a fully automatic technique, which has been invented
independently by two research groups (Clarke and Emerson [CE81] on the
one hand and Quielle and Sifakis [QS82] on the other). Today’s model check-
ers use a symbolic representation (see [BCM+92, McM93]) of the model for
greater efficiency, so that this technique is called symbolic model checking. In
the remainder we use the term ’model checking’ instead of symbolic model
checking for simplicity’s sake.

A model checker requires two inputs: the model to be examined and
the requirement to be proven. The former input is given as a Finite State
Machine (FSM), which formally describes the behavior of the model. The
requirement is stated in temporal logic [Eme90, MP92], which adds temporal
operators to the standard boolean operators ‘∧’, ‘∨’ and ‘¬’.

The model check algorithm determines, if the model satisfies the specified
property under all circumstances, i.e. all possible sequences of input combina-
tions are examined. The result is either ’true’, if there is no way to violate the
property, or ‘false’ otherwise. In the latter case the model checker produces
a counter example, also called error path or witness, showing the sequence of
input stimuli, which lead to the violation of the requirement. The counter
example can be examined by the verifier and thereby gives valuable insight
to the cause why the property does not hold. This feature is another reason
why model checking has become more and more popular in recent years.
The details of the symbolic model checking are not relevant in this work and
can be found in [BCM+92], [McM93] or [CGP99].

The strategy of bounded model checking [BCCZ99] is to examine the
model up to a depth k starting from the initial state and check, if the property
is violated in this part of the model. If a violation is detected, a counter
example is returned. If no violation is found, the result is inconclusive, since
a violation might exist at a depth greater than k. The bound k is hence
increased and the property is checked again. The actual checking procedure
for each incomplete model FSM of depth k is formulated as a task for so-called
SAT-checkers, which have been developed to efficiently solve propositional

5

satisfiability problems [DP60].

The crucial point is to know when to stop increasing the bound, i.e. when
an increased depth does not add new states, which have not been examined
before. This maximal bound is called diameter and depends on both the
model and the property to be checked. The diameter of a given proof can
be computed, but in practice this is efficiently possible only for small mod-
els, so that in practical applications k is provided by the user or given a
default value. Thus, the part of bounded model checking, which is applied
in practice, is an incomplete method.

Simplified Property Specification

Temporal logic formulas expressing real world requirements can quickly be-
come fairly complex and hard to understand. Correct specification of non-
trivial properties in terms of temporal logic requires considerable expert
knowledge. Several approaches exist, which try to provide other, simpler
means to specify properties. This is one step in order to enable non-expert
users to employ formal verification techniques in practice, the other step be-
ing an easy and preferably automatic way to construct an FSM. This section
presents the approaches dealing with the property side.

Two fundamental ideas are distinguished: one restricting the user to chose
a specification pattern or template from a set of often recurring patterns and
instantiate its parameters with the concrete model elements in order to spec-
ify the desired requirement. This method bases on the observation that
often requirements are identical, except for the concrete variables used. The
analysis of typical requirements thus leads to the identification of recurring
patterns, which are offered as templates for requirement specification. For
each such pattern the formal basis, e.g. temporal logic, is defined once and
the user only chooses an appropriate pattern without having to wrestle with
the low-level particulars. Examples for different pattern libraries are the ones
compiled by Dwyer et al. [DAC98, DAC99], which allow patterns to be instan-
tiated for a number of formalisms, e.g. LTL (linear time temporal logic) and
CTL (computation tree logic) formula or Quantified Regular Expressions,
and the one by Bitsch [Bit00, Bit01]. The Statemate Verification Environ-
ment (see below) also offers a library of specification patterns [OSC02a].

A variant of the pattern-based approach is the use of a restricted subset
of natural language, which can be transformed into a temporal logic formula.

6 CHAPTER 1. INTRODUCTION

Holt and Klein [HK99, Hol99] e.g. use a subset of the English language in
order to specify CTL formulas and Ruf et al. [FMR00] combine the struc-
tured natural language approach with specification patterns by allowing the
user to construct sentences from preselected natural language fragments and
instantiating parameters.

Figure 1.1: Symbolic Timing Diagram example

Using graphical notations to visualize temporal logic formula is the second
method of simplifying the specification. Timing diagrams used in hardware
design are the base for the first such graphical specification languages. Most
interesting from our perspective are the Symbolic Timing Diagrams (STD)
developed by Schlör, which first appeared in the early 1990’s [SD93]. The
definition of the semantics of LSCs presented in later chapters of this the-
sis has been influenced to a large degree by the semantics given for STDs
in [Sch00]. STDs extend standard timing diagrams by allowing to specify
qualitative time constraints between value changes (called events), of signals
(called waveforms). Figure 1.1 shows an example STD with two waveforms,
three events and one constraint. A later extension of STDs adds quantitative
time constraints [Fey96, FJ97].

STDs are a state-based formalism, which are best suited for the specifi-
cation of black-box requirements, i.e. consider only the external interface of
a component, but also support compositional reasoning. Other approaches
using timing diagrams as property specifications exist, e.g. [Kut94], [Fis99]
or [AEKN00]. Constraint Diagrams [Die96] are a similar formalism, which
allows real-time specifications and is based on the Duration Calculus.

7

Specification of Communication Properties

The specification formalisms in the preceding section have been developed
with a single component in mind. The expressivity of most approaches also
allows to state properties about several components, but they are not tai-
lored to this particular use case. With respect to the increasing number of
embedded controllers, which are used today and which often also exchange
information and commands among each other, an appropriate graphical for-
malism is needed in order to meet the changed demands. Ideally, such a
formalism is not limited to being a graphical front-end for temporal logic,
but is suited also for other use cases, as elaborated below.

activate_rec

ack_snd
ack_rec

activate_snd

status_req_snd
status_req_rec

safe_snd
safe_rec

msc activateCrossing

Train Comm Crossing

Safe

T1(50)

Figure 1.2: MSC example

Message Sequence Charts (MSCs) [IT93] have been used for specifying
communication behavior for some time, predominantly in the development
of telecommunication systems, and thus are a good candidate for such a for-
malism. Figure 1.2 shows an example for an MSC describing the message
exchange necessary for the securing of a crossing. The three vertical lines,
called instances, represent the communicating entities: the train, the com-
munication channel and the approached crossing. Messages are depicted by
arrows between the instances, the condition Safe indicates that the crossing
is in a safe state, and the hour-glass symbol represents a timer.

8 CHAPTER 1. INTRODUCTION

This example demonstrates the intuitiveness of these basic MSC con-
structs, which motivates their application for the requirement capture in the
early development phases, where they are used to document typical inter-
actions, often referred to as scenarios. This is also the major use case for
Sequence Diagrams (SDs), which are a very similar graphical description
within the UML and are applied to the same end there. Today, such scenar-
ios serve two purposes: gaining a better understanding of the behavior of the
developed application, and documentation. They often also record simula-
tion or test traces. More advanced use cases are conceivable, however, which
reuse the early scenarios in later stages of the development process and thus
provide an added value. The following use cases show great promise:

Model Synthesis Starting from a set of scenarios, which identify the en-
tities comprising the system under design (SUD) and describe their
typical interactions, a first cut of a model is synthesized. From the com-
munication behavior shown in the MSCs or SDs a preliminary model
structure and behavioral description is derived, which can be extended
manually.

Existential Check Once a model exists it can be checked, if the function-
ality specified by the early scenarios is possible in the current model,
i.e. if it is able to fulfill each behavior described in a scenario at least
once. A failed check indicates a fundamental error. This check serves
as an early and easy to use debugging aid.

Model Testing When a largely stable model exists and a simulator is avail-
able, MSCs/SDs can serve as watchdogs monitoring a user-driven sim-
ulation session. Deviations from the specified scenarios are detected
and reported. Additionally MSCs/SDs can be used to drive the simu-
lation without user interaction by providing the required input stimuli
and observing, if the expected model reactions ensue. This use case
is another step toward a reference model and is also ideally suited for
regression testing, where a set of MSCs/SDs are re-run after a change
to the model in order to ensure that the basic original functionality is
still guaranteed.

Formal Verification MSCs/SDs can be used to state communication pro-
tocols between different entities and employ them for formal verifica-
tion.

9

Test Vector Generation Existing scenarios from earlier phases in the de-
velopment or also newly generated ones can be used to automatically
generate test vectors for integration testing of several communicating
embedded controllers.

All of the abovementioned use cases demand a formal foundation in order
to be realized by corresponding tools. Neither MSCs nor SDs fully comply
with this demand. For MSCs a formal semantics exists, but several impor-
tant issues are covered only inadequately or not at all. Liveness properties,
e.g. that a message must arrive at its destination, can for instance not be
expressed in the formal semantics of MSCs. Only safety properties are ex-
pressible, i.e. that the receipt of a message may only occur after sending. For
Sequence Diagrams no formal semantics has been defined so far. Moreover,
both languages are lacking expressiveness wrt. to the envisioned advanced
use cases. For the verification and model testing use cases e.g. it is vitally
important to know when the specified communication behavior should be
observed, i.e. when the chart is active. A more detailed introduction and
criticism of MSCs and SDs in this respect is presented in chapter 3. A
in-depth treatment of the state-of-the-art regarding the abovementioned ad-
vances use cases is given in the chapters dealing with the individual language
constructs of LSCs.

In summary we can state that in general the intuitiveness and visual
appeal of MSCs and SDs is very well suited for the abovementioned use cases,
but they are lacking expressiveness and an adequate formal semantics. This
is where Live Sequence Charts, the central subject of this thesis, come into
play. Damm and Harel noted the potential of MSCs and SDs to become more
than scenario descriptions, if given a sound and more expressive basis, and
proposed Live Sequence Charts (LSCs) in [DH98] as an extension of MSCs
and SDs, which addresses these shortcomings. This work is the starting point
for the present thesis, where the basic ideas of Damm and Harel are rendered
more precise and treated more completely than in [DH98].

The fundamental idea of LSCs is the distinction between mandatory and
possible behavior, where conventional MSCs and SDs are considered as con-
sisting of possible elements only and mandatory elements constitute the en-
hancements of expressiveness offered by LSCs. This concept is applied to
almost all language constructs: entire charts, instance lines, messages, con-
ditions, etc. On the chart level this allows the distinction between existential
and universal LSC specifications, the former being the scenario view of MSCs

10 CHAPTER 1. INTRODUCTION

and SDs (there exists a run, which conforms to the chart) and the latter al-
lowing the specification of protocols, which have to be obeyed by all runs of
a system. For instance lines and messages mandatory means that liveness
properties can be specified, i.e. points along an instance line must be reached
and messages must be received once sent. This important feature is also the
source of the name of Live Sequence Charts. The expressive power of LSCs
is additionally enhanced by truly supporting conditions by associating them
with a boolean expression (making them “first-class citizens” in the words
of [DH98]), instead of the informal treatment in MSCs or their absence in
SDs. Conditions in LSCs are not limited to single points in time, but may
constrain a number of contiguous time points, in which case they are called
local invariants. Additionally, LSCs allow to specify the activation point of
a chart by an activation condition. The full set of features is explained in
more detail in chapters 4 - 9.

The goal of this thesis is the development of a language for the easy, intu-
itive, graphical specification of interactions between communicating entities.
This language are Live Sequence Charts. The first task in this respect is
the definition of the language constructs required to express the properties
necessary for a more prominent role of sequence charts4 in the development
process. This involves a non-trivial trade-off between retaining as much in-
tuitiveness as possible on the one hand and providing as much expressive
power as necessary on the other. The second major task is the definition of a
suitable formal semantics, which unambiguously expresses the meaning of all
features and their combinations and thus allows the automated processing of
LSCs.

Another point is essential in order to successfully apply any formalism or
method in general, and LSCs in particular, in the real world: An indication
has to be given in which phases of the development the formalism in question
should be applied and to which end. Answering this question is the third goal
of this thesis. The final task is the evaluation of the LSC language by applying
it to one of the abovementioned advanced use cases: formal verification. The
evaluation should demonstrate, if the expressiveness is sufficient and if the
semantics is appropriate and useful in practice. This proof of concept will
be done by using LSCs for property specification for the formal verification
of Statemate designs.

4We will use the term ‘sequence chart’ to denote the sum of all dialects, be it MSCs,
SDs, LSCs,

11

Formal Verification of Statemate Designs

This section briefly introduces the Statemate tool and notations and
also gives a short overview over the Statemate Verification Environment
(STVE), into which the tools dealing with LSCs are prototypically integrated.

Statemate

Statemate is a CASE-tool, distributed by I-Logix, Inc., USA, which allows
to build an abstract model of an SUD, e.g. an embedded controller. It offers
to capture several views onto the SUD, the most important ones being the
functional decomposition and the behavioral description. Other views like
the modeling of continuous aspects or physical distribution of components
are possible as well; the details are described e.g. in [HLN+90] or [HP96].
Here only the former two aspects are explained as the STVE is based on
these.

Figure 1.3: Top level Activity Chart

12 CHAPTER 1. INTRODUCTION

Activity Charts

The functional decomposition of an SUD is modeled by Activity Charts,
whereas the behavioral description is given by Statecharts. Figure 1.3 on
the preceding page shows an example for a top-level Activity Chart for the
train control system, which is discussed in more detail in chapter 2. Each
functional unit, called activity in Statemate, is represented by a solid line
box, e.g. TRAIN or CROSSING in figure 1.3. The environment is represented by
external activities depicted by dashed line rectangles, e.g. DRIVER or BARRIER,
which provide input stimuli or accept outputs of the model. Activities can
be structured into a hierarchy, where each Activity Chart represents one
level of the hierarchy. The top-level Activity Chart in figure 1.3 for instance
contains the three activities shown, which in turn are further decomposed
into other Activity Charts, indicated by the ‘@’ in front of the activity name.
The activities TRAIN and CROSSING are truly decomposed further as shown
in figures 2.3 on page 28 and 2.10 on page 37 in section 2.2, whereas the
Activity Chart for COMMUNICATION contains only the behavioral description
of this component.

On each level of hierarchy a control activity can be specified, which is
responsible for controlling, i.e. starting, stopping, etc., the other activities
present. The control activity is depicted by solid line box with rounded cor-
ners (e.g. SPEED CONTROL CTRL in figure 2.3 on page 28). If no control activity
is specified, as is the case in the Activity Chart in figure 1.3, all activities at
this level of hierarchy are activated at system start. A control activity located
on a level without any other activities, e.g. SPEED CONTROL CTRL, is one of
the possibilities offered by Statemate for the specification of behavior.

Information exchange between activities is depicted by arrows leading
from the sender to the receiver. The user can distinguish data and control
flows, represented by solid, resp. dashed arrows. Several individual commu-
nications leading from one sender to the same receiver can be combined into
a single arrow, called an information flow.

Statecharts

Statemate offers several concepts for the specification of the behavior of
an activity. The most important one are Statecharts [HP96, HN96], which
can be roughly characterized as automata extended by parallelism and hi-
erarchy. Figure 1.4 on the facing page shows an example for a Statechart,

13

Figure 1.4: Statechart example

again taken from the model of the train control system. The Statechart
SPEED CONTROL CTRL is split into two parallel parts, called AND-States in
Statemate terminology, indicated by the dashed line separating sub-states
COMPUTE SPEED and SUPERVISE SPEED. The latter is further structured into
three sub-states, so-called OR-states. States, which are not decomposed, are
called basic states. All sub-states of an AND-state are active, when the gov-
erning AND-state is active, i.e. both COMPUTE SPEED and SUPERVISE SPEED

are active when SPEED CONTROL CTRL is active, whereas only exactly one
of the OR-states at each level of hierarchy may be active at a time, i.e. if
SUPERVISE SPEED is active either FREE RUN or FORCE BRAKE or FORCE STOP

is active. The entire Statechart is active, if the activity it is contained in is
active.

14 CHAPTER 1. INTRODUCTION

When a Statechart is active it can react on changes to system variables
by taking transitions between states. Each transition is annotated by

trigger[guard]/action

consisting of a trigger, which determines when the transition is possibly
enabled, a boolean expression guard, which further restricts the enabledness
of the transition, and an action part containing the ensuing consequences. A
transition is enabled, if the source state is active, the trigger is observed and
the guard evaluates to true. An enabled transition need not fire, since there
may be other transition, which are enabled concurrently. There are priority
rules determining which enabled transition is actually fired, but not all cases
can be covered by these rules, so that non-deterministic situations can arise.
If a transition is fired, control changes to the target state and the actions are
executed, which can consist of the generation of events, variable assignments,
control commands for other activities, e.g. st!(TIMER) or sp!(TIMER) for
starting, resp. stopping activity TIMER.

Which state of a Statechart or decomposed state is active initially is de-
termined by a default transition, which is graphically depicted as a transition
without a source state; state FREE RUN e.g. is initially activated in figure 1.4.

Variables in Statemate are typed and the user may choose from several
data types, one of the most important ones being Event, which is a boolean
signal visible for one step (execution cycle). Other available types are condi-
tion and data items, the latter comprising integer, real, etc.; see [HP96] for
more details. Other modeling constructs will be introduced by example when
presenting the Statemate for the train control case study in section 2.2.

Statemate Simulation Semantics

Part of the Statemate tool is a simulator, which allows the interactive exe-
cution of the model. Simulation runs can be recorded in Simulation Control
Programs (SCP) to be replayed later. The simulator supports two execution
models: synchronous and asynchronous semantics, which differ in the un-
derlying time model and the points in time when the embedded controller
communicates with its environment.

In the synchronous semantics the model accepts inputs from the envi-
ronment every step, whereas in the asynchronous semantics new inputs are
consumed only when all computations in reaction to the previous inputs have
been completed, i.e. a stable state is reached, where no further transition can

15

be fired without new input stimuli. In the asynchronous semantics reaction
to one set of input stimuli thus may entail several internal steps, which do not
consume time; time only passes when the system has reached a stable state
and synchronizes with its environment. The transition from one stable state
to the next is called a superstep. The asynchronous semantics is often also
referred to as superstep semantics, the synchronous one as step semantics.

Statemate Verification Environment

Logic
Temporal

Pattern Analyses
Symbolic Timing
Diagrams (STDs)

Counter Example Visualization

FSM

Statemate

VIS/
Prover

Figure 1.5: Overview over the Statemate Verification Environment

The Statemate Verification Environment (STVE) has been developed
jointly by the embedded systems division at OFFIS e.V.5 and the University
of Oldenburg in order to provide easy to use formal verification capabilities
to users, which have no intensive training in formal methods. Part of the
techniques and formalisms described in the remainder of this section form a
commercial product offering, which is marketed by OSC Embedded Systems
AG, Oldenburg, Germany, and I-Logix, Inc., USA. This section gives an
overview over the techniques integrated in the commercial product and also
other concepts, which are currently not part of the product. We subsume the

5Oldenburger Forschungsinstitut für Informatikwerkzeuge und -systeme

16 CHAPTER 1. INTRODUCTION

entire set of features and techniques under the term Statemate Verification
Environment. Figure 1.5 on the page before shows the general organization
of the STVE.

The offered techniques are grouped into different skill levels ranging from
analyses, which can be employed by ordinary designers familiar with State-
mate to full-fledged property specification and verification capabilities. The
increase of expert knowledge required is accompanied by an increase of ex-
pressive power: the more knowledge is needed to apply a technique, the more
complex properties can be expressed.

The techniques offered are grouped into three categories: robustness
checks, pattern-based verification and STD-based verification. The robust-
ness checks are simple, but formal analyses, which can be used by a typical
Statemate user. They comprise checks/analyses for

• non-deterministic situations:

– concurrently enabled transitions

– multiple writer (two or more activities simultaneously write a data
item)

– read-write hazards (a data item is read and written simultane-
ously)

– range violations (a data item is assigned an out-of-range value)

• reachability

– reachability of basic states

– reachability of state configurations (sets of basic states)

– reachability of transitions

– reachability of specific values for data items

Note that the check for a non-deterministic choice between concurrently
enabled transitions only reports those situations, which are not already re-
solved by the Statemate priority rules for transitions. These analyses are
intended to be used for debugging purposes as the model is developed by
answering questions like: “Are all states of the model reachable?”, “Is it pos-
sible to observe value ‘7’ at output o1?”, or “Are there situations, where —

17

after applying the priority rules — more than one transition is concurrently
enabled?”.

There are two core verification engines which can be used alternatively:
the VIS model checker ([Gro96a, Gro96b]) and a bounded model checker
based on the SAT checker ProverCL. By exploiting the counter example
generation capabilities of the VIS witnesses are produced, which lead into
exactly those situations, which have been checked by the robustness analy-
sis, provided such a situation exists. The general goal of these analyses thus
is falsification, i.e. the expectation is that a witness exists, e.g. how to reach
a certain basic state. This can be exploited by using reachability-based model
checking with early termination6 [Gro96a, Gro96b]. Instead of employing
the standard backward-oriented fix-point iteration (see e.g. [CGP99]) this
strategy checks the formula while performing a forward-oriented reachability
analysis. If the formula does not hold, the reachability analysis is aborted
(early termination), because a counter example has been found. If the for-
mula indeed fails, this strategy generally performs better than the fix-point
iteration, since only part of the reachable states need to be considered.

Falsification is also the prime use case for the practical application of
bounded model checking [BCCZ99], which is very efficient for these cases.
When a checked property does not hold, SAT-checkers, which form the core
of bounded model checkers, are typically more efficient than standard model
checkers. The STVE therefore offers bounded model checking via integration
of the SAT solver ProverCL [SS98] of Prover Technologies, Sweden, instead
of the VIS for robustness checks and other situations when a counter example
is expected. Note that both reachability-based and bounded model checking
are limited to check invariant formulas of the form ‘AG(p)’.7

More information on the robustness checks of the STVE are found in
[BBHW00, BDW00, OSC02b, BDKW01].

The pattern-based verification is a oriented towards certification, in-
stead of falsification, i.e. the specified properties are expected to hold on
the model. The STVE offers a library of pre-defined parameterized patterns,
which allow to express a set of typical properties. Each pattern is instan-

6The term ”reachability” used here is a different one than the one used in the above
checks. The term here refers to reachable states in the finite state machine (FSM) gener-
ated for the Statemate design, whereas reachability as used above refers to Statemate
items (basic states, transitions, etc.).

7The bounded model checking procedure described in [BCCZ99] also considers other
formulas, but in practice globally formulas are used almost exclusively.

18 CHAPTER 1. INTRODUCTION

Figure 1.6: Pattern instantiation example

tiated by supplying concrete Statemate expressions. An example pattern
is e.g. P implies finally Q B, which can be used to express the property
“After the train has passed the crossing, the command for the opening of
the barriers must be given within 5 steps.”. Figure 1.6 shows the parame-
ter instantiation dialog for this property. The signal from the pass sensor is
mapped to P, the open command for the barrier is mapped to Q and B, the
upper bound for the time passed between the two signals, is mapped to 5.

The expressive power of this approach is on the one hand limited by the
pre-defined set of patterns and on the other hand by the fact that the patterns
for efficiency reasons have been designed to be used with the reachability-

19

based method. This entails that, in addition to safety properties, bounded
liveness properties may be expressed as the example pattern demonstrates,
but no unbounded liveness requirements.
More information on the STVE patterns is available in [OSC02a].

If more flexibility in stating requirements is desired or unbounded live-
ness properties are to be expressed, Symbolic Timing Diagrams (STDs
[Sch00, FJ97]) are offered, which allow to specify completely user-defined
properties. Figure 1.1 on page 6 shows an example STD, which has been
specified for the crossing component of the train control system. The re-
quirement is formulated over the interface objects CROSSING SAFE REC F and
PASSED XING F and expresses that the crossing may only be passed by the
train after it has indicated its safe state. Properties stated as STDs are
checked using the standard fix-point iteration-based model check algorithm.
More information on the application of STDs within the STVE can be found
in [BW98, BBD+99, DDK99, KM00, DK01].

The overview shown in figure 1.5 on page 15 illustrates the general orga-
nization of the STVE. The Statemate design to be verified is transformed
automatically into a finite state machine (right hand side of figure 1.5) and
the property to be checked is translated into a temporal logic formula (left
half of figure 1.5). The translation of STDs is split into two phases: first a
symbolic automaton is derived for an STD, which in turn is transformed into
a temporal logic formula.

If a property specified as an STD or pattern is violated by the model
or a witness for a robustness check is found, the (bounded) model checker
generates an error path, which can be visualized and examined in two ways.
The preferred and most natural way is to translate it into an SCP in order
to execute in the Statemate simulator. Alternatively the error path can be
visualized as an STD.

For more information about the different formalisms and techniques
contained in the STVE the reader is referred to the following refer-
ences: [Bro99] describes the FSM generation for Statemate designs,
[BDW00, BDKW01, BBHW00, OSC02b] provide more details about the
analyses, the pattern-based approach is described in [OSC02a], and informa-
tion on formal verification of Statemate designs using STDs can be found
in [BW98, DDK99, KM00, DK01]. Details about the technologies underlying
the STVE are contained in [BBD+99, BBB+99, Bie03, Wit03].

20 CHAPTER 1. INTRODUCTION

Organization of this Thesis

Chapter 2 introduces the train control case study, which serves as a running
example throughout this thesis. This case study deals with a radio-based
signaling system for the control of level crossings. This chapter contains a
general introduction and a detailed description of the Statemate model,
which will also be used for obtaining experimental results in chapter 11.

The language of Live Sequence Charts is motivated by both the visual ap-
peal and lack of expressiveness and formal rigor of Message Sequence Charts
and UML’s Sequence Diagrams as has been expounded above. Chapter 3
gives an overview over the two sequence charts dialects, describing the major
features, historical development and discussing the shortcomings wrt. the
advanced use cases briefly presented above. The complete set of features
of the LSC language, along with the definition of the formal semantics, is
presented incrementally in the following chapters. Chapter 4 begins with the
basic LSC features, whose motivation, graphical representation and informal
meaning are described.

The semantics of an LSC is defined in terms of an automaton. The re-
lation between the embedded controller being developed (the SUD) and the
LSC specification is established by considering runs of the system and deter-
mining, if they are accepted by the automaton. The SUDs, whose properties
are to be specified by LSCs, operate for an indeterminate amount of time
(theoretically forever), so that the automata used for the semantics defini-
tion must be able to deal with infinite runs. Chapter 5 introduces a suitable
automata format, derived from Büchi automata and also defines a corre-
sponding timed variant thereof. Defining the semantics of LSCs in terms
of Büchi automata allows to easily derive temporal logic formulas due to
the well-known relationship between (a sub-class of) Büchi automata and
LTL. The temporal logic formulas are essential for later formal verification
activities.

Chapter 6 defines a formal syntax for the LSC constructs introduced
in chapter 4, upon which the algorithm for the generation of the automa-
ton operates. The basic algorithm defined here is extended in the following
chapters. The complete semantics of an LSC is then defined on the basis
of the generated automaton incorporating the activation and quantification
information.

Chapter 7 extends the basic features by additionally considering timing
constraints and extending the automaton generation algorithm to produce

21

a timed automaton. Chapter 8 deals with a feature, which is essential for
the use case of formal verification: assumptions. Since the environment of
an SUD is already part of the LSC, in form of one or more environment
instances, assumptions about the expected environment behavior are easily
specified within an LSC by using elements on dedicated instances.

Chapter 9 enhances the activation information not only allowing to con-
sider one point in time, via the activation condition, in order to determine
if an LSC is to be activated or not. Additionally a sequence of messages
forming a pre-chart may now trigger the activation of the actual LSC. The
pre-chart semantics is again defined in terms of an automaton.

Chapter 10 addresses the third task specified above and proposes a
methodology of how LSCs can be embedded into a model-based develop-
ment process. The focus is on a re-use of LSCs from early stages in the
design process.

The practical application of LSCs to the use case of formal verification
is presented in chapter 11. The Statemate Verification Environment is
covered in more detail and the integration of the LSC tools is described. The
major part of this chapter is taken up by the experimental results. Chapter 12
concludes this work with a summary and identification of directions for future
work.

Appendix A summarizes all LSCs used in the verification of the train
control system, including the corresponding automata. Appendix B lists the
contents of all information flows used in the Statemate model for the train
control system and appendix C contains the grammar of the textual LSC
representation.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Sample Application: A

Radio-based Signaling System

This chapter introduces the case study, which will be used as a running
example throughout this thesis. Section 2.1 gives a short introduction to the
general subject before the Statemate model of the case study is presented
in section 2.2. This Statemate model will also be used to evaluate the
concepts and tools described in the remainder of this work; cf. chapter 11.

2.1 General Description

The control of level crossings, crossings for short, is currently carried out by
wayside hardware, for example sensors, which announce an approaching train
to a crossing, signals, which for instance indicate the status of the crossing
to the train driver, etc. This solution is rather inflexible, since the hardware
is permanently installed and must be able to handle different trains varying
in speed, length, etc. Another drawback is the high amount of maintenance
involved to keep signals, sensors and wiring operational. International rail
traffic additionally raises demands for more flexibility, since almost every
European country uses different signaling technology, so that trains can not
easily cross borders. This has prompted railway companies to look for better,
more flexible and efficient solutions for the control of trains, crossings, etc.
There exist efforts on the European level with the objective of harmonizing
and facilitating international rail traffic in Europe: the ERTMS/ETCS (Eu-
ropean Rail Traffic Management System/ European Train Control System)

23

24 CHAPTER 2. SAMPLE APPLICATION

will use radio transmission, among other measures, for the communication
between trains and the operations center (then called radio block controller).
The German railway company Deutsche Bahn investigated a more advanced
concept, which proposes to use a radio connection also for the communication
between train and crossing and points. This allows more flexibility inasmuch
as each train can contact a crossing depending on its specific information,
a slow train would e.g. announce itself later than a faster train. This solu-
tion also entails lower maintenance effort, since the involved components are
located on the train and directly at the crossing, instead of being dispersed
along the track.

EnvCrossingTrain

activate

ack

red_on

yellow_on

lower_barrier

closed

status_req

safe

train_passed

raise_barrier

opened

switch_off_lights

Invariant
activation_point_reached
securing_all

AM:
AC:
LSC

Figure 2.1: Existential LSC showing the typical interaction between train
and crossing

2.1. GENERAL DESCRIPTION 25

There are several different strategies used in the traditional control of
crossings by means of wayside equipment, which serve as blueprints for the
radio-based approach. This case study considers the radio-based crossing
control according to the guarding signal strategy. Figure 2.1 shows an exis-
tential LSC depicting the typical interaction between train and crossing for
this strategy. Even without a detailed understanding of all the features of
the LSC language, the graphical nature of this representation is sufficient to
be used as an illustration of the protocol between train and crossing.

Once the activation point is reached, indicated by the second row in the
LSC header, the train activates the crossing. The activation point is the latest
point at which the train can initiate the securing of the crossing, if it is to be
passed without braking. In the hard-wired control this point was given by a
fixed sensor, which sent a signal to the crossing. In the radio-based version
this point can be determined dynamically. The exact position of this point
must consider the delays for communication setup, message transmission, the
time necessary to secure the crossing, an additional safety interval and the
speed and position of the train. The crossing acknowledges the receipt of
the activation request and starts the securing procedure by switching on first
the yellow and then the red light of the traffic lights in order to warn the
car traffic. Then the command to close the barriers is given and once the
barriers are indeed closed, the crossing is in a secured state.

After the amount of time has passed, which in ordinary circumstances
is needed to secure the crossing, the train requests a status report from
the crossing. Here, the crossing responds with the report safe. Should the
crossing not be in a safe state when the status request arrives, no response
is given. In the hard-wired control this corresponds to the crossing setting
the guarding signal to go in the safe case, and leaving it set to stop in the
unsafe case.

A pass sensor determines when the train has passed the crossing and
sends a corresponding signal to the crossing controller. Then the crossing
is returned into its normal state, i.e. the barriers are opened again and the
traffic lights are switched off.

Before a train can approach and contact a crossing, it needs to know
the position of the crossing. This information is stored in a track chart
along with other details about the track, like maximal velocity, position of
crossings, points, stations, etc. Once the train has been granted movement
authorization for a track segment, it looks up the relevant information in
the track chart and places control points at all potentially dangerous points,

26 CHAPTER 2. SAMPLE APPLICATION

which can e.g. be track segments with a lowered maximally allowed speed,
crossings, points, stations, or the end of the assigned track segment. With
each control point a target speed is associated, which must be observed; for
not secured crossings or not set points for instance this speed is zero, so
that the train e.g. has to stop in front of a crossing. Control points due to
crossings, points, stations or the end of the assigned track segment require
some action on the part of the train: a crossing needs to be secured before
it can be passed, a switch must be set to the right track, the train should
stop at a station it is supposed to service, and movement authorization for a
subsequent track segment must be requested before reaching the end of the
currently assigned segment.

The control points are considered by the train in the calculation of the
maximal velocity for each point in time. This speed profile is the basis for
the speed supervision, which controls that the train does not go faster than
allowed by track, train and control points. Once a control point has become
irrelevant, e.g. because a crossing has been secured and it is no longer neces-
sary that the train stops, it is disregarded for the maximal speed computation
and thus no longer restricts the train’s velocity.

This case study focuses on one aspect of the entire set of tasks necessary
for radio-controlled train operation: the control of level crossings. Points,
stations, etc. are neglected and it is assumed that movement authorization
has been granted. The considered type of crossing guards a single track and
its barriers cover only one side of the street.

2.2 STATEMATE Model

The Statemate model of the radio-controlled crossing bases on a model,
which has been developed in [KT00], but has been slightly adapted to our
needs in this thesis. Earlier versions have been partly described in [DDK99,
KM00, DK01]. The model presented here uses the asynchronous simulation
semantics of Statemate, a variation using the synchronous semantics exists
as well, but is not described in detail here, since the differences are only minor.

2.2.1 Activity Chart SYSTEM

Figure 2.2 on the facing page shows the top level Activity Chart (SYSTEM)
of the radio-based crossing control. The two main activities are TRAIN and

2.2. STATEMATE MODEL 27

Figure 2.2: Top level Activity Chart

CROSSING and the activity COMMUNICATION connecting them. All three in-
ternal activities are each further described in a separate Activity Chart as
indicated by the ‘@’ in front of the activity name. The environment of the
modeled part of the crossing control system is given by the external activ-
ities, indicated by the dashed borders. On the train side the environment
consists of the console interface to the train driver (activity DRIVER) and on
the crossing side there are the sensors and actuators for the peripheral ele-
ments. Additionally there is the operation center, to which defect messages
are directed and which can send responses to these. The DRIVER deter-
mines by D SPEED the desired train speed and may re-start the train after
an emergency stop by pressing the manual release button (RELEASED MAN).
The information flow DIAGNOSTIC contains two events for the indication of
the train stopping in front of a not secured crossing and for the passing of
the crossing, respectively.

The activity TRAIN (cf. section 2.2.2 on the next page) implements only
those parts of the train, which are necessary for the protocol considered
here. These are the control of the speed and applying the brake if needed,
the odometer for keeping track of the position and speed, and the major task:
the activation of the crossing.

28 CHAPTER 2. SAMPLE APPLICATION

The implementation of a crossing in activity CROSSING (cf. sec-
tion 2.2.4 on page 37) contains sub-controllers for all peripheral elements
(lights, barrier, pass sensor) as well as the overall control for securing the
crossing.

The information flow between TRAIN and CROSSING is established by
means of activity COMMUNICATION (cf. section 2.2.3 on page 36). The infor-
mation exchange takes place via the information flows T SEND and T RECEIVE

between TRAIN and COMMUNICATION, respectively C SEND and C RECEIVE

between CROSSING and COMMUNICATION. The signals sent in T SEND and
C SEND are relayed by COMMUNICATION to the corresponding receive chan-
nel (C RECEIVE, resp. T RECEIVE). The exact contents of information flows
is listed in appendix B.

2.2.2 Activity Chart TRAIN

Figure 2.3: Activity Chart TRAIN

The train consists of several sub-components as shown in figure 2.3. The
activity TRAIN CTRL forms the core of the train comprising the two func-
tionalities of communication with the crossings (ACTIVATE CROSSING) and
supervising the train’s speed (SPEED CONTROL). The activity ODOMETER keeps
track of the train’s speed and position and the BRAKE slows down the train,
if necessary.

2.2. STATEMATE MODEL 29

Statechart SPEED CONTROL CTRL

The behavior of activity SPEED CONTROL is described by Statechart
SPEED CONTROL CTRL shown in figure 2.4, which consists of two paral-
lel sub-states: COMPUTE SPEED computes the maximally allowed speed
(NOMINAL SPEED), whereas SUPERVISE SPEED checks if the current train
speed is below the maximum.

The computation of the NOMINAL SPEED is done every super-step
utilizing a timeout event and the implicit entered event for state
CONTROL: en(CONTROL). The actual computation is done by function
COMPUTE NOMINAL SPEED, which takes the dynamic train data (ODATA)
and the next control point (CP) as parameters. A control point may be set,
i.e. it must be observed and the target speed at its position is thus zero,
or deleted, i.e. it need not be observed any more and the target speed at
its position is set to the maximal value for this track segment. All control
points in a track segment are set by default when movement authorization
is granted to the train for this segment.

The function COMPUTE NOMINAL SPEED checks, if control point CP still
needs to be observed and if so, determines the maximal speed depending
on the train’s current distance to the control point:

if CP.ALREADY_REGARDED==true then

RET:=30

else

if TRAIN.POS>=CP.POS then

RET:=0

else

DIST:=CP.POS-TRAIN.POS;

if DIST<=10 then RET:=0

else if DIST<=30 then RET:=5

else if DIST<=50 then RET:=10

else

if DIST<=80 then RET:=20

else RET:=30

end if

end if

end if

end if

30 CHAPTER 2. SAMPLE APPLICATION

end if

end if;

return(RET)

Figure 2.4: Statechart SPEED CONTROL

The resulting speed is the maximal speed for the current position and can
not be larger than the maximal speed allowed for this track segment. Taking
the minimum of the computed value and the train’s maximal speed yields
the overall maximal speed NOMINAL SPEED.

The lower sub-state checks if the current train speed (ODATA.SPEED) is
within the allowed range. If so, the Statechart stays in state FREE RUN and
computes the new acceleration and deceleration values depending on the
speed set by the driver (D SPEED). This adjustment is performed by the self
loop on FREE RUN as long as the train does not exceed its allowed speed

2.2. STATEMATE MODEL 31

as computed by sub-state COMPUTE SPEED (condition part of the transition
annotation of the self loop). The implemented algorithm is fairly simple: If
the speed set by the driver is lower than the current train speed, the train is
decelerated by the difference, otherwise it is accelerated. If the two speeds
are equal, the train is neither accelerated nor decelerated.

If the train speed is greater than the allowed speed, state FREE RUN is
exited, FORCE BRAKE is entered and the brake is activated. Once the speed is
less than the maximal speed again and the train has not stopped, the State-
chart returns to FREE RUN. If the NOMINAL SPEED and the actual train speed
are both zero, the train has stopped in front of a still active control point,
state FORCE STOP is entered and SPEED CONTROL CTRL emits the event STPPED
to ACTIVATE CROSSING CTRL and EMERGENCY STOP to the driver. Note that
only those stops are covered by STPPED, which result from NOMINAL SPEED

dropping to zero. If the train stops for other reasons, it may resume its course
on its own without intervention by the driver. In the former case, however,
the driver has to manually confirm that the crossing may be passed safely
(RELEASE MAN) in order to continue. SPEED CONTROL CTRL then switches back
into the normal behavior of state FREE RUN.

Statechart ACTIVATE CROSSING CTRL

The activity ACTIVATE CROSSING (cf. figure 2.3 on page 28) contains
the Statechart ACTIVATE CROSSING CTRL shown in figure 2.5 on the next
page, which handles the communication between train and crossing, and a
timer, which is used to supervise that the train reaches a secured cross-
ing in time. The communication behavior of the train is described by
ACTIVATE CROSSING CTRL. Once the train reaches the activation point —
indicated by the condition V ACTIVATION POINT P1 — it changes its state
from IDLE to WF CROSSING SAFE, which realizes both the setup of the com-
munication channel and the protocol between the train and the crossing. The
detailed behavior is shown in Statechart WF CROSSING SAFE in figure 2.6.

On entering WF CROSSING SAFE the communication channel with
the crossing is setup. Once the connection has been established,
the train requests the securing of the crossing by emitting the event

1Note that the conditions marked by the suffix P represent procedures, which are
not included in the model. The conditions thus represent the result of the procedures.
Condition V ACTIVATION POINT P abstracts from the computation of the activation point
for a crossing.

32 CHAPTER 2. SAMPLE APPLICATION

Figure 2.5: Statechart Activate Crossing

ACTIVATE CROSSING SND. On receiving the acknowledgment from the cross-
ing (ACK REC), the train sends the status request (STATUS RQ SND) after
waiting for the amount of time needed by the crossing to carry out the se-
curing procedure. This is the crossing closing time CCT. Simultaneously with
the status request a timer is started, which supervises that the train reaches
the crossing in time (see below). In the last state of WF CROSSING SAFE the
status message of the crossing is awaited.

Returning to ACTIVATE CROSSING CTRL, first the normal case is con-
sidered, i.e. the report indicates a successful securing of the crossing
(CROSSING SAFE REC). State PASS CROSSING is entered and the control point
is deleted by function DELETE CP. When the train now passes the crossing
– represented by its control point – the communication channel is closed
(SP COMMUNICATION) and the train is ready for the next crossing.

During the securing procedure two error situations can arise: First, there
may be problems at the crossing, so that it is not in a safe state when
the status request arrives. In this case it does not answer and therefore
the train cannot delete the control point with the result that it stops in
front of the crossing. This is indicated by Statechart SPEED CONTROL CTRL

2.2. STATEMATE MODEL 33

Figure 2.6: Statechart WF CROSSING SAFE

with the event STPPED triggering the transition from WF CROSSING SAFE to
FAULTY CROSSING. Since the train has stopped already, the timer becomes
irrelevant and is stopped. In this situation the driver has to manually con-
firm that the crossing can be safely passed (RELEASE MAN) entering state
PASS CROSSING and deleting the control point in order to allow the train to
pass it.

The second error situation arises when the crossing has answered the sta-
tus request but the train is unable to pass it within the maximal barrier
closed time. This is indicated by the event TMOUT sent by the timer result-
ing in changing from state PASS CROSSING to FAULTY CROSSING, setting the
control point again via the function SET CP and notifying the crossing that
the train will not reach it in time (event CROSSING FREE SND). Again this
situation has to be resolved by the driver.

34 CHAPTER 2. SAMPLE APPLICATION

Figure 2.7: Statechart TIMER CTRL

Statechart TIMER CTRL

The timer depicted by Statechart TIMER CTRL2 in figure 2.7 supervises that
the train reaches an already secured crossing before the maximal barrier
closed time elapses, i.e. the maximum amount of time that a crossing may
stay closed without a train passing it. The reason for this upper limit is
that car drivers tend to become impatient, if no train passes after some time,
and start to drive around the barriers3, which creates a highly dangerous
situation. A timeout (TMOUT) is generated when this property is violated.

The timer implements a simple counter which increments counter variable
T. The timeout is generated depending on two conditions, V STILL SAFE P

and V BRAKE POINT P, which again represent the result of procedures:

V STILL SAFE P indicates, if the train will pass an already secured crossing
within the maximum barrier closed time. The computation of the value
of this condition depends on the current train speed and position.

V BRAKE POINT P indicates, if the train has reached the braking point, i.e. the
point where it would have to start braking in order to safely stop in
front of the crossing. This computation also depends on the current
train speed and position.

The behavior suggested by the transition to the termination connector
in figure 2.7 is thus the following: If the train reaches its braking point and
is unable wrt its maximally allowed speed to reach the crossing before the

2The Activity Chart TIMER contains only the Statechart TIMER CTRL, so that it is
omitted here.

3Recall that the barriers only cover half of the street on each side of the crossing.

2.2. STATEMATE MODEL 35

maximum barrier closed time elapses, the timeout is generated and the timer
is stopped.

Odometer and Brake

Figure 2.8: Statechart ODOMETER CTRL

The activity ODOMETER is responsible for the determination of the speed
and position of the train; its behavior is given by Statechart ODOMETER CTRL

shown in figure 2.8. The current speed is added to the current position yield-
ing the new position and the new speed is computed by either subtracting
the current deceleration value or adding the acceleration value. The activity
BRAKE is activated whenever the train exceeds its maximal speed (cf. Stat-
echart SPEED CONTROL CTRL in figure 2.4 on page 30). Once activated the
brake decelerates as fast as possible, until the speed is within the legal range
again or the train is stopped:

BRAKE/

T_COMMANDS.ACC:=0;

T_COMMANDS.DEC:=TRAIN_D.MAX_DEC

Note, however, that the brake is only activated upon violation of the
maximal speed, but not when the driver requests a lower speed than the
maximally allowed one. The second case is handled by the self loop of state
FREE RUN in Statechart SPEED CONTROL CTRL. Also note that there is no in-
terference between the two cases, since the brake is only activated when
FREE RUN is left.

36 CHAPTER 2. SAMPLE APPLICATION

2.2.3 Activity Chart COMMUNICATION

Figure 2.9: Statechart COMMUNICATION CTRL

The activity COMMUNICATION represents the radio link between TRAIN and
CROSSING. It is explicitly modeled in order to provide the possibility to simu-
late errors when establishing the connection and to be able to consider com-
munication delays. The current implementation of the Statemate model
however assumes that the communication setup is always possible and that
there is no transmission delay.

The train initiates the connection setup by ST COMMUNICATION

whereupon control in Statechart COMMUNICATION CTRL changes to state
WAIT FOR CONNECTION (see figure 2.9). After the time necessary to
setup the connection (establishing lag time, ELT) has passed, the ra-
dio connection is ready and an acknowledgment is sent to the train
(COMMUNICATION ESTABLISHED).

The further interactions take place instantaneously, i.e. requests and ac-
knowledgments are passed on without delay. The original events in T SEND

resp. C SEND are indicated by the suffix SND, which becomes REC as the

2.2. STATEMATE MODEL 37

events are relayed to the corresponding receiving channels C RECEIVE resp.
T RECEIVE. The exact contents of the information flows is listed both as a
comment in Statechart COMMUNICATION CTRL and in appendix B and appear
both on the crossing and train side (cf. sections 2.2.2 on page 28 and 2.2.4).

The termination of the communication between TRAIN and CROSSING is
triggered by the train via SP COMMUNICATION which leads to an immediate
abortion of the communication. This is modeled by changing into the state
OFF in the COMMUNICATION CTRL.

2.2.4 Activity Chart CROSSING

Figure 2.10: Activity Chart CROSSING

The activity CROSSING shown in figure 2.10 contains the overall software
control of the crossing (CROSSING CONTROL) responsible for the coordination
of the whole securing process and the software control (ELEMENT CTRL)

38 CHAPTER 2. SAMPLE APPLICATION

for the involved peripheral elements consisting of LIGHTS CONTROL,
BARRIER CONTROL, and SENSOR CONTROL.

Statechart CROSSING CONTROL

Figure 2.11: Statechart CROSSING CTRL

The function of this component is the coordination of all mea-
sures while securing or unsecuring the crossing. The initial state
IDLE remains activated until the crossing controller receives the signal
ACTIVATE CROSSING REC; thereupon state PROTECTION PROCESS is entered,
which encapsulates all further states. The securing procedure is only be-
gun, if the all peripheral elements of the crossing are operational. This is
indicated by the condition not HW TROUBLE on the transition from IDLE

to PROTECTION PROCESS. HW TROUBLE is a shorthand notation for (not

RED ERR) and (not BARRIER ERR) and (not SENSOR ERR).
Upon entering the PROTECTION PROCESS the state SWITCHING LIGHTS ON

is activated and the event TURN LIGHTS ON is sent in order to activate

2.2. STATEMATE MODEL 39

LIGHTS CONTROL. The overall control remains in this state until either re-
ceiving the event LIGHTS ON or a red light malfunction is detected (RED ERR),
both events originating in activity LIGHTS CONTROL. A red light failure results
in an abortion of the rest of the protection process, since it is too danger-
ous to close the barriers without warning by a light signal. The crossing
controller thus returns to the IDLE state.

If the traffic lights have been successfully switched on, the lowering of the
barriers is initiated by sending event CLOSE BARRIER to BARRIER CONTROL. If
the barrier is closed successfully, the event BARRIER CLOSED is emitted by the
barrier controller and the crossing enters its corresponding state. If the bar-
rier fails to close or does not close in time, BARRIER ERR is set to true and the
error state ERROR CLOSING of CROSSING CTRL is entered. Note that this fail-
ure does not result in a complete abortion of the securing procedure, but that
the traffic lights remain on. The reason is that (according to German law)
the crossing is considered secured, if the lights are red, i.e. the barriers are
only an additional safety measure, since red lights are more easily overlooked
by cars than a closed barrier. The crossing nevertheless does not answer the
status request after a barrier failure for the same safety considerations.

Once state BARRIER CLOSED has been reached, the crossing is in a safe
state and awaits the status request of the train. Only in this state the
status request is answered by event CROSSING SAFE SND, which is generated
by the state’s static reaction (represented by the ‘>’ after the state name;
the contents of the static reaction is given by the comment next to state
BARRIER CLOSED in figure 2.11).

The overall controller stays in state BARRIER CLOSED until the train has
passed (indicated by event PASSED of the SENSOR CONTROL), the train informs
the crossing that it will not reach it in time (CROSSING FREE REC; cf. sec-
tion 2.2.2) or the maximum barrier closed time (MBCT) has expired. The last
possibility ensures that a crossing does not remain closed too long, if e.g. the
pass sensor is defect and the train has already passed the crossing without
the crossing noticing. In this case the TIME OUT state is entered and a corre-
sponding event (TIMEOUT OPCENTER) is sent to the operations center, which
then determines if and when the crossing can return to its unsecured state.

Once the train has passed the crossing or announced by the free message
that it will not reach it in time, the crossing controller sends the command
to open the barriers (OPEN BARRIER) to the barrier controller. This is done
even when the barriers have malfunctioned during the previous closing. Once
the barriers leave their lower position indicated by event BARRIER OPENING,

40 CHAPTER 2. SAMPLE APPLICATION

the lights are switched off and the Statechart CROSSING CTRL returns to its
initial state and waits for the next train. Note that the crossing is returned
to its open state as soon as the barriers are opening, i.e. it is not necessary
that the barriers are open all the way in order to switch off the traffic lights.

Statechart LIGHTS CONTROL CTRL

Figure 2.12: Statechart LIGHTS CONTROL CTRL

The Statechart of the controller for the traffic lights contains two funda-
mental states as shown in figure 2.12: the states OFF and ON. Entering OFF

(see figure 2.13) the SWITCH OFF signal is sent to the hardware to ensure that
all lights are turned off and counter GT is reset. The timer counts the green
time, i.e. the time the traffic lights have been off since their last activation.
This is required in order to ensure that the minimum green time (MGT) is
respected, i.e. there must be a certain amount of time between two subse-
quent activations, where the crossing can be passed by car traffic. Similar to
the timer in the train (cf. section 2.2.2), GT is incremented every superstep.
Once the MGT is reached no further increment is necessary.

The reaction to the command to switch on the lights (TURN LIGHTS ON)
differs depending on the value of GT: If it has reached the MGT, the yellow

2.2. STATEMATE MODEL 41

Figure 2.13: Statechart OFF

light is switched on immediately (event SWITCH ON). If the minimum green
time has not yet passed, the activation of the yellow light is delayed and
the PENDING state is entered, which continues counting the green time. This
state is identical to OFF and is thus not shown explicitly here. Once the MGT
has been reached the switch on command is issued.

The YELLOW state, which is similar to the states OFF and PENDING, counts
the elapsed yellow time (EYT), which measures the period of time the yellow
light is on. Once the yellow light has been on for the required amount of
time, the light changes to red (event SWITCH OVER). If the yellow light is not
operational or fails during operation, indicated by the condition YELLOW ERR,
the red light is switched on immediately and left on for the combined amount
of required yellow and red time.

The red light must be on for a certain amount of time, the red time
(maximum red time (closing), MRTC), before the barriers may be lowered.
Therefore the timeout event on the self loop on state RED waits until the red
time has passed before sending the event, that the traffic lights have been
switched on successfully (LIGHTS ON). In the case of a yellow light failure the
remaining yellow time (RYT) is added to the red time. The lights controller
returns to its initial state when either the command to switch off the lights
is received from the crossing controller or the red light fails, indicated by the
condition RED ERR.

The static reactions contained in LIGHTS CONTROL CTRL send a defect
message to the operations center when either a yellow or red light failure
occurs (events YELLOW DEFECT, resp. RED DEFECT).

42 CHAPTER 2. SAMPLE APPLICATION

Statechart BARRIER CONTROL CTRL

Figure 2.14: Statechart BARRIER CONTROL CTRL

The barrier controller shown in figure 2.14 starts in the OPENED state and
upon receiving the command to close the barriers (CLOSE BARRIER) from
the crossing controller sends the corresponding event LOWER to the barrier
actuators and waits for the result in state CLOSING. If the barriers close
in time, i.e. reach their lower end position, indicated by condition CLOSED,
within the maximum closing time MCT, the corresponding state is entered
and the command for the opening of the barriers (OPEN BARRIER) is awaited.
If the barriers are closing too slowly or not at all, the timeout event for the
MCT is observed, the error state is entered and a barrier error is reported both
to the crossing controller (via condition BARRIER ERR) and to the operations
center (via event BARRIERS DEFECT).

Both in the ERROR and CLOSED state the barrier controller reacts to
the opening command by sending the event RAISE to the barrier actua-
tors and changes to state OPENING. The falling edge of condition CLOSED

(fs(CLOSED)) on the self loop on state OPENING indicates that the barriers

2.2. STATEMATE MODEL 43

have left their lower end position, which is reported to the overall controller
by event BARRIER OPENING. Once the barriers have reached their upper end
position, indicated by condition OPENED, the barrier controller returns to its
initial state.

The opening of the barriers has to occur within a certain time, the maxi-
mum opening time MOT, which typically is identical to the maximum closing
time. In the case of a barrier failure the same behavior as for the closing case
is observed. The error state can also be left again, if the barriers are opened
successfully.

Statechart SENSOR CONTROL CTRL

Figure 2.15: Statechart SENSOR CONTROL CTRL

The controller for the pass sensor shown in figure 2.15 waits for a train
to activate the sensor, indicated by the rising edge of condition SENSOR ON

(tr(SENSOR ON)). The sensor is not activated, if an error has been detected
(condition SENSOR ERR). Once the train leaves the sensor area, indicated by
fs(SENSOR ON), the passing of the train is reported via event PASSED to the
crossing controller.
The static reaction of SENSOR CONTROL CTRL reports a failure of the sensor
to the operations center via event SENSOR DEFECT.

44 CHAPTER 2. SAMPLE APPLICATION

Chapter 3

Message Sequence Charts and

Sequence Diagrams

In the development of computer systems visual languages are becoming in-
creasingly popular due to their graphical appeal, as developers are more
inclined to draw diagrams in order to design a system than to write cryp-
tic lines of code. Especially the telecommunications domain has been using
visual languages for many years. In this field the language of Message Se-
quence Charts, which captures information exchange in communication sys-
tems, has its origin. It has been adopted in other fields as well in order
to specify message exchange between entities. Most notable is the inclusion
of an object-oriented variant of Message Sequence Charts, called Sequence
Diagrams, into the UML standard. In this chapter we will give an introduc-
tion to both sequence chart variants, starting with Message Sequence Charts
in section 3.1 and followed by Sequence Diagrams in section 3.2, and high-
light their inadequacies barring a more prominent role in the design process.
These shortcomings have led to the definition of a variant which addresses
and remedies these deficiencies: Live Sequence Charts, which are introduced
in chapter 4.

3.1 Message Sequence Charts

Message Sequence Charts (MSCs) are standardized and maintained by the
International Telecommunications Union (ITU). Prior to their standardiza-
tion there existed several precursors, like Time Sequence Diagrams, Arrow

45

46 CHAPTER 3. MSCS AND SDS

Diagrams, and many more. We will not discuss these variants here, but only
deal with MSCs themselves. A comprehensive account of pre-MSC sequence
charts can be found in [GRG93a] or [Ren99].

3.1.1 MSC-93

MSCs were first called Extended Sequence Charts, an auxiliary notation for
SDL (Specification and Description Language, [IT88]1), a graphical language
for the specification of system structure and behavior (typically telecommuni-
cation systems), which is maintained by the ITU as well. It was realized that
the Extended Sequence Charts were a valuable addition to the state-based
view of SDL, which resulted in the adoption of Message Sequence Charts as
ITU Recommendation (Z.120 [IT93]) in 1993.

In this first revision of the MSC standard, MSC-93, individual MSCs
are collected in MSC documents, although no further relation is implied by
grouping them together. Each MSC has two dimensions: the horizontal or
structural one, where the different entities participating in the chart appear,
and the vertical or temporal one, which indicates the passing of time from
top to bottom of an MSC. Figure 3.1 shows the basic MSC features.

msc basic_features

Instance3

msg2

msg6

Condition

T(5)

Instance2

Instance1

Action

msg1(x)

msg3

msg5

msg4

Figure 3.1: Basic MSC features

1By now there exist three newer versions of the SDL standard, the most recent one
being SDL-2000 [IT00].

3.1. MESSAGE SEQUENCE CHARTS 47

The entities involved in the communication are represented by vertical
lines called instances, which consist of an instance head symbol (empty rect-
angle) carrying the instance name, the instance axis and an instance end
symbol (filled rectangle); cf. figure 3.1. Due to the close relation between
MSCs and SDL instances often represent entities of the SDL design, like pro-
cesses, blocks, etc., although this is not required. On the instance axis the
actions carried out by the entity represented by the instance appear; these
actions are called events and can e.g. be messages, conditions or timers. The
events of one instance axis are totally ordered from top to bottom unless
they are contained in a coregion. An ordering between events on different in-
stances is enforced only by messages; see below for more detailed descriptions
of these concepts.

The environment is represented by the frame enclosing the MSC. Note
that the instance head and end do not correspond to the creation and de-
struction of the model entity represented by the instance. They just mark
the points in time where the corresponding design entities start, resp. stop to
take part in the communication described in the MSC. There exist separate
constructs for expressing creation and destruction of entities (see below).

Information exchange between entities is represented by messages, which
are depicted by arrows; all communication is asynchronous. As shown in
figure 3.1, messages can be exchanged between two instances or between an
instance and the environment. Each message consists of two distinct events:
a send event and a receive event. Messages are the only way to establish an
ordering between events of two different instances, since obviously a message
must be sent before it can be received. A message has a name and may also
carry parameters, cf. msg1 in figure 3.1. Only one message may be sent or
received by each instance at one point in time.

Conditions are used to represent system states, which are described tex-
tually. They are depicted by hexagonal shapes and can refer, i.e. be attached,
to one or more instances. Instance axes of instances, which are not participat-
ing in a condition, but which cross the condition symbol are drawn through
the hexagon, whereas the axes of participating instances are suspended. In
figure 3.1 e.g. the condition refers to both Instance2 and Instance3. Condi-
tions can be used to define possible continuations of MSCs: An MSC ending
with a condition connected e.g. can be continued in another MSC, which
starts with the same condition.

MSCs also allow to express time properties in the form of timers, with
three possible actions:

48 CHAPTER 3. MSCS AND SDS

1. setting a timer to a value

2. resetting the timer

3. observing a timeout

Timer set events are depicted by a small square attached to an instance
and may be named; cf. T in figure 3.1. The duration of the timer can
optionally be specified in parenthesis. A timer set event is always connected
to either a timer reset or timeout event by means of a vertical line which
emanates from the timer set square, runs in parallel to the instance axis and
is connected to the instance axis once again by an arrow, which indicates
the timeout or reset event. A timeout event is rendered as a solid arrow, a
reset event by a dashed arrow. Figure 3.1 on page 46 shows an example for
a timeout event.

Process creation is depicted by a dashed message arrow leading from the
creating instance to the created one. Process termination is depicted by a
large X terminating the instance line; cf. Instance1 in figure 3.1 for an
example. Local actions, i.e. activity internal to an entity, are depicted by a
rectangle, which contains a textual description of the action.

The total order among the events on one instance may be suspended by
a coregion. All events within a coregion are completely unordered, i.e. they
may occur in any order, but not simultaneously. A coregion is depicted by
a dashed segment of an instance axis. In figure 3.1 the send events of the
messages msg5 and msg6 are contained in the coregion of Instance3 and
may therefore be sent in any order.

The only structuring mechanism offered by MSC-93 is the refinement
of an instance into sub-entities, called decomposition. This is not depicted
graphically, but just indicated by the key word decomposed followed by the
name of the chart, which shows the refined structure and behavior, below
the instance head.

Several different approaches to define a semantics for MSC-93 have
been undertaken: automata-based [LL92b, LL92a, LL95], Petri-net-
based [GRG93b] and by process algebra [MR94]. A short overview of
these approaches can again be found in [GRG93a]. From these semantics
the one based on process algebra was chosen to become the official semantics
published by the ITU in [IT95].

3.1. MESSAGE SEQUENCE CHARTS 49

3.1.2 MSC-96

Three years after approval of the first version, a new revision of MSCs was
accepted by the ITU: MSC-96 [IT96b]. The major change from MSC-93 to
MSC-96 was the introduction of a number of structuring mechanisms on two
different levels. First it has to be noted that the new revision distinguishes
Basic MSCs (BMSCs), meaning individual charts (MSCs as defined in MSC-
93, with a few extensions), from High-level-MSCs (HMSCs), which describe
the organization or interplay of several charts. Thus HMSCs constitute one
level of structuring (inter-chart structure), the other level being within BM-
SCs (intra-chart structure) by use of inline expressions and sub-charts.

msc new_96_features

Instance2

T(5)

Instance1 Instance3

msg2

T

msg1

msg3

msg4

msg5

Figure 3.2: New MSC-96 features

For BMSCs a few non-structuring changes were introduced as well. There
is a new type of message, incomplete messages, i.e. either the sender of the
message may be omitted, resulting in a found message, or the receiver, re-
sulting in a lost message. The graphical representation of lost and found
messages is an arrow which ends or starts at a circle instead of an instance;
msg4 in figure 3.2 is an example of a lost, msg5 of a found message.

MSC-96 also provides the possibility to impose an order on otherwise
unordered events, either on separate instances or within a coregion. This
generalized ordering is represented graphically by an arrow whose head is

50 CHAPTER 3. MSCS AND SDS

not positioned at the end but in the middle. Figure 3.2 shows an exam-
ple of ordering two otherwise unrelated message receive events on different
instances: The receipt of msg2 should precede the receipt of msg1.

The appearance of timer has been altered in the new standard as well:
the old timer set symbol has been replaced by a more intuitive hour-glass
symbol, the timer reset symbol by an X similar to the process termination
symbol, but connected to the instance axis by a vertical line, and a timeout
is now indicated by an hour-glass symbol which is connected via an arrow
to the instance axis. Moreover, different timer events related to the same
timer can now be decoupled from each other – i.e. they need no longer be
connected by a vertical line, but are identified by the timer name – and may
thus appear in different charts. A timer e.g. may be set in one chart and the
corresponding timeout may be observed in another MSC. Figure 3.2 shows
the setting of timer T and the respective timeout event.

Intra-chart Structure

The intra-chart category of structuring mechanisms offered by MSC-96 con-
tains two new possibilities to structure Basic MSCs, in addition to the in-
stance decomposition of MSC-93. The first of those are inline expressions,
the second are MSC references. The former are represented graphically by a
box, which encloses those instances and events, which take part in the inline
expression. Inline expressions come in different flavors indicated by a key
word in the upper left corner of the box:

loop: Describes the iteration of the communication sequence shown in the
box. Both bounded and unbounded iterations are allowed; for bounded
ones a lower and an upper bound may be specified. Figure 3.3 shows
an example where msg1 is send and received at least 2 and at most 7
times.

alt: Several alternative continuations of the chart can be specified. Which
alternative is taken is determined by which event is observed first af-
ter entering the inline expression. In case of a common prefix among
the alternatives, the common prefix is executed first and the first dif-
fering event determines the alternative. The different alternatives are
separated by dashed horizontal lines; see figure 3.4 on page 52 for an
example. Here there are three possible continuations after the sending

3.1. MESSAGE SEQUENCE CHARTS 51

msc loop inline

Instance1 Instance2 Instance3

msg2

msg1

loop <2,7>

Figure 3.3: loop inline expression

and receipt of msg1: Instance2 either sends msg2 to Instance1, msg3
to Instance3 or msg4 to Instance3.

opt: This inline expression describes optional behavior and has only one
section (like the loop inline expression). It is a short-hand notation for
an alternative inline expression with two alternatives, where the second
one is empty.

par: The sections of this inline expression are executed in parallel. The
graphical representation is identical to the alternative inline expression,
except that the key word is par instead of alt.

exc: This inline expression describes an exception and contains only one
section. Either the events of the inline expression are executed and the
MSC is exited afterwards, or the inline expression is skipped and the
rest of the MSC is executed normally. It is a short-hand notation for
an alternative inline expression with two alternatives, where the first
one is the exception and the second one the remainder of the MSC.

Each inline expression may be shared by any number of instances in the
MSC, only the exception inline expression must cover all instances. Instances
which are not sharing an inline expression may exchange messages with in-
stances within by using gates.

52 CHAPTER 3. MSCS AND SDS

msc alt inline

Instance1 Instance2 Instance3

msg2

msg3

msg4

alt

msg1

Figure 3.4: loop alternative expression

referencemsc

Instance3Instance1 Instance2

alt Fail

msg1

Connect

Figure 3.5: MSC reference example

The second intra-chart structuring element is a sub-chart construct, called
MSC reference in MSC-96. A reference stands for other BMSCs or collections
of other BMSCs. Several BMSCs may be part of a reference expression, which
can be constructed using the same operators as for inline expressions plus one
additional operator for sequential composition (seq). The difference between
inline expressions and MSC references is that the latter are (a set of) BMSCs

3.1. MESSAGE SEQUENCE CHARTS 53

themselves which can be reused several times, similar to procedure calls in
programming languages. In order to make this concept more flexible it is also
allowed to substitute elements in a reference (like instances or messages) when
plugging an MSC reference into a chart, analogous to passing parameters to
functions or procedures in programming languages. Instances outside the
reference may communicate with instances within via gates.

54 CHAPTER 3. MSCS AND SDS

Graphically references are represented as boxes with round corners, which
contain the name(s) of the MSCs which are referenced. The composition of
several MSCs is not expressed graphically but by using corresponding key
words. Figure 3.5 shows an example of an MSC reference with two alterna-
tives, either the first MSC Connect is entered or the second one (Fail).

Inter-chart Structure

msc HMSC

msc1

msc3 msc2

cond1 cond2

Figure 3.6: Highlevel MSC

On this level only one structuring mechanism is offered by MSC-96: High-
level MSCs (HMSCs), which allow to graphically define how MSCs may be
combined, i.e. they allow to draw a graph which shows all possible execution
orders for a number of MSCs. The nodes of this graph are either other HM-
SCs, conditions or MSC references, i.e. (collections of) BMSCs. The MSCs of
the nodes can be combined by using the operators for MSC references. Con-
ditions may be used in addition to references as nodes. Each HMSC must
contain at least one start and one end node – represented by a downward-
pointing and upward-pointing triangle, respectively. Graphically, sequential
composition is depicted by connecting the nodes in question by a flow line.
Alternatives are represented by several flow lines leading from one node to
a set of nodes. Parallel composition is depicted by having two or more start
and end symbols in a HMSC. Figure 3.6 shows an example where first MSC
msc1 is executed and afterwards, depending on the evaluation of the two
conditions, either msc2 or msc3. If the right alternative is taken, the initial
MSC is entered again and so forth.

For MSC-96 an extensive description of the static semantics exists [IT96a],

3.1. MESSAGE SEQUENCE CHARTS 55

but the definition of the dynamic semantics required more effort and time. It
is a remodeled and extended variant of [IT95], i.e. it is again defined in terms
of process algebra. Initially worked out in [Ren99], it was approved by the
ITU as [IT98] in 1998. In the meantime between the publication of MSC-96
and the publication of its semantics, other suggestions for a semantics were
made, based on Petri-Nets [Hey00] [KPE00], rewriting logic [Kos97], Dura-
tion Calculus [GDO98] and streams [Krü00]; there also exists an alternative
process algebra characterization [GHRW98, GHN+98]. These works mostly
do not cover the complete set of MSC-96 features, but concretize different
open points of MSCs, like time and sequential composition.

3.1.3 MSC-2000

The latest revision of the MSC standard, MSC-2000 [IT99], was published
at the end of 1999. While the major additions of MSC-96 were structuring
mechanisms, MSC-2000 focuses on extending MSCs with object-oriented fea-
tures and adding data. The MSC document containing individual MSCs has
been extended to include several object-oriented features, like inheritance or
virtual references, plus a number of declarations (messages, instances, . . .)
in the style of programming languages. These new organizational features
are mostly non-graphical.

MSC-2000 also allows the specification of method calls and replies, similar
to Sequence Diagrams, although they do not need to be synchronous (cf.
section 3.2). The section of the instance which is carrying out the method
call, is indicated by broadening the instance axis into a thin, filled rectangle,
identical to the activation in SDs (see section 3.2). Moreover, the instance
axis of the calling and waiting instance is marked by an empty rectangle.
The method call is additionally distinguished from normal, asynchronous
messages by the keyword call. Every method call must be matched by
corresponding reply message represented by a dashed arrow; see figure 3.7
for an example. In addition to the normal, asynchronous messages of the
former versions of the MSC standard MSC-2000 thus offers the possibility of
synchronous and asynchronous method calls.

MSC-2000 allows the user to declare a data language to be included,
so that variables of this data domain can be used in the MSCs. This is
particularly useful in conjunction with conditions, where it is now possible
to associate boolean expressions with a condition; they are called guarding

56 CHAPTER 3. MSCS AND SDS

conditions2. But the standard also puts a restriction on the allowed usage of
guarding conditions: They are associated with a scope, which can be either
an inline expression or an entire MSC, and may only be used at the beginning
of their respective scope. Guarding conditions are identified by the keyword
when; cf. figure 3.7.

new_2000_featuresmsc

Instance2Instance1 Instance3

msg1call

msg1

msc_ref

time &ts

(0,3*ts]

when x > 0

Figure 3.7: MSC-2000 features

MSC-2000 also offers more possibilities of specifying time constraints.
Apart from timers, timing requirements can now be expressed by intervals
as well. Such a time interval may connect any two events on one instance
or constrain the execution of an MSC reference. Both timing intervals and
timers can have upper and lower bounds and arbitrary time expressions are
allowed as bounds. In addition, it is possible to reference a global clock
by time stamps which can be referenced in later timing expressions. An
interval is depicted graphically by an double-headed arrow whose end points
are connected to the constrained events by a dashed line; the time constraint
is given in interval notation. Time stamps are only represented textually by

2To be precise: conditions are called guarding if they restrict the further execution of
the MSC. This restriction may be expressed by a simple label as for conditions in MSC-96
or by an expression of the data language. Thus all boolean conditions are guarding, but
not all guarding conditions are boolean.

3.1. MESSAGE SEQUENCE CHARTS 57

the keyword time. Figure 3.7 contains an example of a relative time stamp
&ts which measures the time needed to execute the method call msg1. The
execution time for the MSC reference msc ref is then constrained to be at
most three times as long as the execution time of the method call.
So far no formal semantics has been published for MSC-2000 by the ITU. A
first attempt at defining part of the semantics has been undertaken in [JP01].

3.1.4 Shortcomings of MSCs

activate_rec

ack_snd
ack_rec

activate_snd

status_req_snd
status_req_rec

safe_snd
safe_rec

msc activateCrossing

Train Comm Crossing

Safe

T1(50)

Figure 3.8: MSC for the securing procedure

At this point we would like to assess the language offered by MSCs with
respect to their usefulness and suitability in the development process. The
usage to which MSCs have been mostly put is as documentation, either in the
early phases of system development as sample scenarios or to record test or
simulation runs. But sequence charts have the potential for other, additional
usages in the design process, like e.g. graphical property specification for
formal verification, on which we will elaborate in chapter 10. This requires
an unambiguous and formally based language, requirements which the MSC
language is lacking for the most part.

We use the MSC in figure 3.8 in the following to illustrate the major points
of criticism. This MSC shows the interaction between train and crossing for
the securing of the crossing (cf. chapter 2). The train issues an activation

58 CHAPTER 3. MSCS AND SDS

command, which is immediately acknowledged, and after waiting for 50 units
of time, it requests the status of the crossing. If the crossing has been secured
successfully, it answers by sending the corresponding message. All messages
are exchanged via radio link represented by the communication component.

The formal semantics given by the ITU ([IT95, IT98]) defines the seman-
tics only in terms of allowed sequences of events, without indicating, if the
behavior specified by an MSC is mandatory or not. The major points of
criticism are detailed in the following:

1. An MSC shows only one sample run of the system, one scenario. The
MSC in figure 3.8 thus expresses that it is possible for a train to order
a crossing to be secured. But the intended meaning of this MSC is
not to specify a possible, sample behavior, but rather to express a
mandatory protocol between train and crossing: Every train should
contact every crossing along its way and secure it, i.e. every system
run should conform to the behavior specified in the MSC.

2. An MSC does not state explicitly when the behavior it describes should
be observed, i.e. there is no indication of when the MSC should be
activated. People familiar with the application may know that the
train should activate the crossing once it reaches the corresponding
activation point, but the MSC does not reflect this hidden knowledge.
It would e.g. allow the train to activate all crossings along its way at
the start of its trip or even when it has already passed the crossing.

The guarding data conditions of MSC-2000 can be used to specify the
activation point of an MSC by placing them at the beginning of an MSC
and expressing the system state characterizing the activation point by
the boolean expression, although sequences of messages, which acti-
vates a chart, can not be specified.

3. The MSC semantics offers no distinction, whether progress is enforced
or not. The intention of the MSC in figure 3.8 e.g. is that the crossing
does send the safe message, if it has been secured. Thus progress along
the instance line should be enforced, but the semantics in [IT95] only
define permitted sequences of events; the occurrence of an event can
not be enforced. Likewise, we do expect all messages, which are sent
in our example MSC, to arrive at their destination. This too can not
be expressed according to the MSC semantics. Using the terms coined

3.1. MESSAGE SEQUENCE CHARTS 59

by Lamport [Lam77] MSCs can only express safety (nothing bad ever
happens), but not liveness properties (something good will happen
eventually).

Bounded liveness is theoretically expressible by using timers, but since
timer durations are not covered by the semantics (see below), this is
only true on an informal level.

4. MSCs do not allow more than one event to happen at the same time.
In the example MSC we would like to express that 50 time units pass
between the reception of the acknowledgment and the sending of the
status request, i.e. we want the timer to start counting when the ac-
knowledgment arrives and the timeout to occur simultaneously with
the sending of the status request. Likewise, the condition expressing
the safe state of the crossing should be evaluated when the status re-
quest arrives at the crossing, i.e. the crossing is required to be in the
secured state at this point. Neither can be expressed in MSCs.

Simultaneity is now available for timing annotations as the ex-
ample in figure 3.7 shows, but it is still not possible to enforce
e.g. simultaneousness of a message and a condition or of several mes-
sages.

5. Conditions in MSCs have no formal semantics, but are either glue
points, which indicate possible concatenations of MSCs, or ”guard”
alternatives in HMSCs. In the words of [IT95]: ”The semantics of a
chart containing conditions is simply the semantics of the chart with
the conditions deleted from it.”. This is obviously not the way to treat
conditions from a more formal point of view. In MSC-2000 conditions
have been upgraded to some degree due to the introduction of data,
which allow boolean conditions. But these guarding conditions do not
solve the problem completely, since they are restricted to be placed at
the beginning of their scope. It is thus not possible to have boolean
conditions in arbitrary locations of a chart, so the extension for con-
ditions as offered by MSC-2000 is not completely satisfactory. Even
more so, since no semantics for the latest revision of the standard is
available so far.

The missing semantics also entail that the meaning of a violated con-
dition is unclear: is this an error or not? In the example MSC the

60 CHAPTER 3. MSCS AND SDS

meaning of the condition is: If the crossing is safe, then the corre-
sponding message must be sent. This means that the satisfaction of
the condition is not required; a violation should therefore not result in
an error.

6. The treatment of time is only rudimentary, since quantitative timing
is not covered by the semantics, i.e. timer durations are ignored. Only
the correct sequence of timer events, resp. intervals is enforced.

3.2 Sequence Diagrams

Sequence Diagrams (SDs) are one of the many diagrams offered by the Unified
Modeling Language (UML) [OMG01]. We will not give a detailed introduc-
tion to the complete UML here, but rather focus on Sequence Diagrams. For
a comprehensive description of the UML and all its diagrams see [OMG01]
or [JBR99].

The features of SDs are mostly derived from BMSCs, i.e. there are no
operators for organizing collections of SDs similar to HMSCs, which may
change in the newest version of the UML (2.0) currently under development.
SDs are usually viewed in isolation as being possible scenarios of the system
being developed. SDs may be associated with Use Case Diagrams, which
provide an abstract view of the general functionality of a system. In this
case SDs are examples and concretizations of the functionality depicted in
the use case.

The basic SD features have been adopted from MSC-93, although the
terminology is a different one. Instances are called object life lines as they
represent objects (or actors) in the UML world; messages are called stimuli
and may be synchronous (operations) or asynchronous (signals). Operations
correspond largely to the MSC-2000 feature of method calls, although in
MSCs method calls need not be synchronous, whereas in SDs they always are.
The reply message can be drawn explicitly, but is not required. Optionally
SDs allow to express the flow of control through the life lines: the part of the
life line where the corresponding object is active, i.e. computing, is indicated
by broadening the life line into a narrow rectangle called activation. This
feature has been partially adopted for method calls in MSC-2000, but in
MSCs only the segment of the instance which is executing body of the method
is indicated by a rectangle. SDs allow the use of activation also outside of

3.2. SEQUENCE DIAGRAMS 61

ob1:C1

ob3:C3

ob2:C2

ob4:C4
Actor

op()

[x>0]foo(x)

[x<0]bar(x)
doit(z)

doit(w)

more()

Figure 3.9: Sequence Diagram example (taken from [OMG01])

method bodies, i.e. here the active part(s) of objects in an SD can be high-
lighted in a more general fashion (cf. figure 3.9, which has been taken from
[OMG01]) where objects ob1 and ob2 are shown as active, although they are
currently not servicing operation calls).

Graphically life lines are depicted by vertical dashed lines or thin rectan-
gles, if the activation is shown. Operations are represented by solid arrows
with a filled arrow head, return messages by dashed arrows with a stick ar-
row head. Signals are depicted by solid arrows with stick or half stick arrow
heads. As seen in figure 3.9, creation operations are represented by normal
operation arrows in contrast to MSCs, where creation messages are depicted
by dashed arrows. Object destruction is represented by a large X, just as

62 CHAPTER 3. MSCS AND SDS

process termination in MSCs. Figure 3.9 also shows that stimuli may be
guarded, so that it is possible to specify alternatives. This corresponds to
an alternative inline expression or a reference in MSCs. A duplication of
life lines is offered to express alternatives or concurrent activities (e.g. ob4 in
figure 3.9).

caller exchange receiver

{b.receiveTime -
a.sendTime < 1 sec}

a:lift_receiver

b:dial_tone

c:dial_digit

d:route

ringing_tone phone_rings

answer_phone

stop_ringingstop_ringing
< 1 sec

{c.receiveTime -
b.sendTime < 10 sec}

{d.receiveTime -
d.sendTime < 5 sec}

Figure 3.10: Sequence Diagram example with time (taken from [OMG01])

SDs also offer timing constraints, which may be stated either graphically
or textually. The graphical representation is similar to the time intervals of
MSC-2000, except that the annotation is not necessarily in interval format,
but may be expressed textually as well, see figure 3.10 (also taken from
[OMG01]). In order to use the textual representation it is necessary to tag
the stimuli with a symbolic name, by which they can be referenced in the
constraint. Specific time points of a stimulus can be defined and referenced,
e.g. a.sendTime in figure 3.10. The actual constraint is written in curly
braces and can be expressed in any language, the one predefined by the
UML standard for this purpose is the Object Constraint Language (OCL),
see [OMG01].

3.2. SEQUENCE DIAGRAMS 63

The UML standard defines a semantics for SDs in terms of the UML meta
model, which eventually is defined in terms of itself, but until now no official
formal semantics for either the complete UML or SDs is available, although
several propositions have been made for different parts of the UML, some
of which are shortly presented in the following. Several works have taken
a meta-modeling approach, trying to define a common domain in which the
different diagram types of the UML can be mapped: see e.g. works by the pre-
cise UML group3 [EFLR99, EBF+98, EK99] and [GR99]. [RACH00] present
an algebraic semantics for class and state diagrams, [LP99] define an oper-
ational semantics for state diagrams, including consistency checks by model
checking, [LMM99a, LMM99b] follow a very similar approach. [FHD+99]
translate SDs into timed automata in order to check their timing consis-
tency, but do not consider the complete set of features. [DJPV03] define a
semantics for a kernel UML language, which covers class and state diagrams
and also takes the action language into account.

Shortcomings of Sequence Diagrams

The points of criticism raised for MSCs in section 3.1.4 hold as well for SDs,
as they are existential in nature, make no statement about the activation
and do not allow the distinction whether progress is enforced or not. Simul-
taneousness is expressible for timing annotations by the interval notation or
by the timing labels. Conditions in the sense of MSCs do not exist in SDs,
the only construct coming close are the guard expressions on messages (cf.
figure 3.9). These allow to express simultaneousness, but cover only condi-
tions on the sender’s side. Simultaneous sending and/or receipt of several
messages is not discussed in [OMG01]. The major drawback of SDs, however,
is the absence of a formal semantics.

So in conclusion we can say that neither MSCs nor SDs provide the ex-
pressiveness and formal rigor, which is needed for sequence charts to be used
for more advanced use cases. This motivates the introduction of a sequence
chart dialect which remedies these shortcomings: Live Sequence Charts.

3www.cs.york.ac.uk/puml

64 CHAPTER 3. MSCS AND SDS

Chapter 4

Live Sequence Charts: The

Kernel Language

This chapter presents the key elements of the Live Sequence Chart (LSC)
language. The shortcomings of the MSCs and SDs, which have been de-
tailed in the previous chapter, motivated Werner Damm and David Harel
to propose an improved sequence chart dialect, which resolves these prob-
lems: LSCs. The first ideas appeared as [DH98] in 1998 (an abridged version
was published as [DH99]); a newer revised edition was published in 2001 as
[DH01]. The base for the present work is the core feature set as put down in
[DH98], which is still incomplete regarding the expressivity of the envisioned
language. Some features like real-time are not treated in detail, others like
simultaneous regions, local invariants or pre-charts have been omitted com-
pletely. The need for these constructs has quickly become apparent in our
work resulting in this extension of the feature set given in [DH98]. Some of
these novel features, like simultaneous regions and pre-charts, have already
been adopted by Damm and Harel in the latest version of the paper [DH01].

The general guideline for the definition of the LSC language was to raise
the expressiveness of sequence charts to the level required for the application
as a formal specification technique, but still retain the intuitiveness and visual
appeal of MSCs and SDs.

In this chapter we will first present the basic graphical elements, like
instances, messages, etc., of which an LSC is comprised, with the terminology
being largely derived from MSCs. In the second part we will go beyond
the existential view and also introduce a first possibility to characterize the
activation point for a chart.
The semantics of the elements described in this chapter follow in chapter 6.

65

66 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

4.1 Basic LSC Features

The basic idea of LSCs is to allow a distinction between mandatory and
possible behavior, i.e. most LSC elements can be designated to belong to ei-
ther one category or the other. This distinction is also expressed graphically,
which contributes largely to the easy understanding of LSC specifications.
Mandatory elements are depicted by solid lines, possible ones by dashed
lines. The basic features described in this section are:

• instances, which represent the participants for the communication,

• messages sent between the instances,

• temperatures indicating progress along instances and messages,

• conditions describing particular states of the instances at a certain
point in time,

• local invariants, which are conditions which hold for a period of time

• coregions and simultaneous regions, which express ordering information
on instances.

4.1.1 Instances and Messages

Instances and messages are the elementary building blocks of LSCs. The
graphical representation for instances has been adopted from MSCs, i.e. LSC
instances consist of an instance head carrying the instance name, an instance
axis and an instance end, as the example LSC in figure 4.1 shows. As for
MSCs and SDs, the horizontal dimension is the structural dimension and the
vertical dimension corresponds to the time dimension.

Deviating from MSCs we depict the environment by an instance of its
own rather than the border of the LSC. When using LSCs for formal veri-
fication, an explicit environment instance offers the possibility of expressing
assumptions on the behavior of the environment within the LSC by employ-
ing the same elements as for the other instances (see chapter 8 for details).
Graphically, environment instances are denoted by a shaded instance head
symbol; see figure 4.1.

4.1. BASIC LSC FEATURES 67

Inst2 Inst3

Sync3

Inst1 ENV

AC:
AM: Invariant

Features_exampleLSC:
Act

Async1

Async2

Ret_Sync2

Ret_Sync3

Sync2

Cond1In
v1

Sync1

Ret_Sync1

Figure 4.1: Kernel LSC example

Message Types

Concerning messages we consider two kinds: asynchronous and instanta-
neous ones. This is a deviation from [DH01], which distinguishes between
synchronous and asynchronous communication. The characteristic of syn-
chronous communication is that the sender blocks until the receiver is ready
to receive the message. Once the receiver is willing to accept the message,
the communication is carried out. What is observable in this case thus is sim-
ply that the information exchange takes place, i.e. the message is observed,
sending and receiving are simultaneous. In order to clearly distinguish these

68 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

concepts, we rather use the term instantaneous than synchronous. Since
the time dimension in LSCs is the vertical one, a delay on the senders side
between trying to send a message and acceptance of this request by the re-
ceiver should be expressed on the instance axis as a progress requirement.
The same line of thought has been used in the context of Message Flow
Graphs by Ladkin and Leue [LL95].

AC:
AM: Invariant

Inst2

AmbiguityLSC:
Act

Inst3

Sync2()

Inst1

Sync1()

(a) ambiguous LSC

AC:
AM: Invariant

Inst2

AmbiguityLSC:
Act

Inst3Inst1

Sync2

Ret_Sync2

Sync1

Ret_Sync1

(b) possible resolution

Figure 4.2: Ambiguity example

Operation calls, e.g. in UML or method calls in MSC-2000, are thus rep-
resented by two instantaneous messages: the method call and the return
message. For method calls in LSCs we require the return message to be in-
cluded explicitly, because otherwise confusion arises whether messages and
other elements following a method call receipt are part of the method body.
Consider the LSC in figure 4.2(a). It is not immediately clear whether oper-
ation call Sync2 should be considered as taking place after the completion of
the preceeding operation call or if it is part of the body of operation Sync1.
Requiring the user to explicitly include the return message clarifies the sit-
uation. Figure 4.2(b) shows how the second interpretation would look like.
Consequently we require to explicitly include the return message for each
operation invocation.
[DH01] does not explicitly address the question of method calls or returns.

For the graphical representation of messages we use an SD-like notation:
asynchronous messages are visualized by half stick arrows, instantaneous
messages by arrows with solid heads; see figure 4.1. Instantaneous messages

4.1. BASIC LSC FEATURES 69

have to be drawn horizontally to indicate simultaneity of sending and receiv-
ing, while asynchronous ones are drawn slanted to indicate the passage of
time between sending and receipt. Note that both types of messages consist
of a sending and receiving event. The pairing of operation call and return
is indicated graphically by widening the instance axis on the receiver side
into a thin rectangle which marks the operation body, as for method calls in
MSC-2000; see figures 4.1 and 4.2(b) for examples. A graphical representa-
tion of activations, i.e. explicitly showing the flow of control by enlarging the
corresponding instance axis segments, as done in SDs is not provided, since
this is not the focus of LSCs.

Progress

One deficiency of both MSCs and SDs is their inability to enforce progress,
as mentioned in section 3.1.4. LSCs overcome this drawback by associating
a temperature with both locations1 and messages. The temperature can
be either hot or cold, the former indicating that progress is enforced. The
analogy here is that one cannot remain at a hot location for an infinite amount
of time, because then one would burn ones feet. This obviously requires that
a hot location has to be left, i.e. the following location has to be reached.
At a cold location one can stay forever without harming ones feet, i.e. the
following location need not be reached. In terms of messages this means that
a hot message has to be delivered, whereas a cold message may be lost along
the way. Progress information is thus expressed by the temperatures of the
messages and along the instance lines. The meaning of the temperatures is
summarized in table 4.1.

hot cold
location location has to be left may stay infinitely long

i.e. next locations has to be reached at location
message message has to be received message may be lost

once sent

Table 4.1: Temperatures for messages and locations

1Locations are those points on an instance axis, where some event is attached,
e.g. sending or receipt of a message, conditions, etc. In chapter 6 we give a formal definition
of a location.

70 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

Graphically hot temperatures are represented by solid lines, cold ones
by dashed lines. This means that e.g. a hot location is depicted by a solid
instance axis segment, which starts at this location and ends either at the
next cold location or the instance end. In figure 4.1 for example the location
of the sending of message Sync2 is cold and the next location (the receipt
of the return message) is hot, so that the instance axis segment in between
them is dashed. Note that also the rectangle representing operation bodies
is rendered either solid or dashed depending on the location temperatures.
Analogously are messages depicted by solid or dashed arrows depending on
their temperature; see figure 4.1 for examples. Note that the completion of
operation calls is indicated by location temperatures, not by the message
temperature. The request for operation Sync2 in figure 4.1 thus must be
received, but the operation need not be completed.

It is recommended that only those locations are annotated with a hot
temperature, whose instance is responsible for achieving the progress. The
receiving instance of a method call e.g. is responsible for generating a corre-
sponding return message, so only this location is assigned a hot temperature,
not the sending one. Conforming to this convention yields LSCs, which show
a focus of control, similar to the activation of object life lines in SDs.

We will gradually transform the MSC of figure 3.8 on page 57, which we
used to illustrate the shortcomings of MSCs and SDs in chapter 3, into an
LSC as we introduce the LSC features. Figure 4.3 shows the first step of this
transformation with temperatures added for locations and messages. Note
that all final location temperatures are cold, because once all events on an
instance axis have been observed, no progress need be enforced. All messages
are instantaneous, since we are considering a Statemate model, where no
asynchronous communication is possible.

4.1.2 Conditions

In order to make statements about the state of the system boolean conditions
referring to attributes or data items of the involved entities are used. Note
that we are using symbolic names instead of concrete expressions in our LSC
examples, since the unwinding algorithm presented in chapter 6 operates on
propositions rather than concrete model elements. Graphically, conditions
are represented as in MSCs by an elongated hexagon (see figure 4.1 or fig-
ure 4.3).

4.1. BASIC LSC FEATURES 71

activate_rec

ack_snd

activate_snd

status_req_rec
status_req_snd

safe_rec

safe_snd

LSC activateCrossing

Train Comm Crossing

ack_rec

Safe

T1(50)

Figure 4.3: Crossing activation LSC, first step

Conditions also come in two variants: mandatory and possible. This is a
second enhancement compared to MSCs in addition to making all conditions
boolean, which is aimed at answering the question raised in chapter 3.1.4 as
one of the points of criticism: What is the meaning of a condition, which is
not satisfied? A violated condition could either be an error or it could mean
that the considered run, which violates the condition, is not a relevant one
for this scenario, so that the violation and the remainder of the chart should
be disregarded.

LSCs allow both answers. A mandatory condition must be satisfied,
i.e. the boolean expression associated with it has to hold; violation of the
condition is an error. Possible conditions do not generate an error when they
are not satisfied, but merely constitute an exit from the enclosing LSC.

Mandatory conditions are denoted by solid lines (e.g. Cond1) and possible
ones by dashed lines. Note that we deviate here from [DH01] inasmuch as we
do not use temperatures to distinguish mandatory and possible conditions.
Temperatures – as they are used for messages and locations – express liveness.
The mode of a condition on the other hand indicates the consequence of a

72 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

violation of that condition, but this does not entail liveness, i.e. a mandatory
condition does not force us to progress in the LSC. In order to have a cleaner
separation of concerns we use the term condition mode in this thesis. Note
that conditions involving more than one instance specify a synchronization
barrier, since all participating instances have to be ready to evaluate the
condition simultaneously.

activate_rec

ack_snd

activate_snd

status_req_rec

ack_rec

status_req_snd

safe_rec

safe_snd

LSC activateCrossing

Train Comm Crossing

Safe

T1(50)

Figure 4.4: Crossing activation LSC, second step

Figure 4.4 shows the second transformation step for the example MSC. As
noted in the criticism section (section 3.1.4), the statement in this example
is that if the crossing is safe, the remainder of the chart, transmission of the
corresponding messages, has to be observed. Thus the Safe condition has
mode possible.

4.1.3 Local Invariants

Conditions constrain attributes or data items of entities at one point in time,
but often it is desired to express validity of a condition over a period of time.
In the example in figure 4.4 for instance, an alternative and more restrictive

4.1. BASIC LSC FEATURES 73

specification of the condition might require the crossing to remain safe un-
til the safe messages has been transmitted to the train. This observation
motivates the introduction of a fitting feature: local invariants, which come
in two flavors: possible and mandatory, with the same interpretation as for
conditions. They are not part of the LSC language definition of [DH01],
where only normal conditions are covered.

LSC activateCrossing

CommTrain

activate_rec

ack_snd

activate_snd

status_req_rec

Crossing

ack_rec

status_req_snd

safe_rec

safe_snd

S
afe

T1(50)

Figure 4.5: Crossing activation LSC, third step

Since local invariants cover a period of time, they need reference points
for start and end. They should thus always be bound to observable events,
i.e. message sending or receipt, or timeouts or timing intervals (cf. chap-
ter 7). For each reference point the issue of inclusion needs to be resolved:
Should the scope of a local invariant include its reference points or not?
Both alternatives, inclusion and exclusion of the reference point, are needed
as will become apparent in the examples in later chapters, therefore for each
reference point both alternatives can be specified.

Local invariants starting at an instance head can only be exclusive, since
activation is separated from the LSC body, which is facilitated the defini-
tion of the activation point of the LSC (cf. section 6.3). Inclusiveness, if
desired, can thus be expressed by adding the concerned local invariants to
the activation condition.

74 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

Graphically, local invariants are depicted by a condition symbol, which
is rotated by 90◦. Inclusion of a reference point is indicated by making the
corresponding end of the condition symbol planar. Figure 4.5 shows that
condition Safe has been extended to a local invariant, where both start and
end reference points are included in the scope. Figure 10.5 on page 233 shows
an example for a local invariant starting at the instance head.

Local invariants are expressible neither in classical MSCs nor in SDs nor
in [DH01], though in UML there exists the possibility of specifying such
invariants textually by OCL expressions. These are not part of the SD,
however, rather than being constraints on the class, i.e. they always affect all
objects of a class under all circumstances given in the OCL expression and
are not local to an object of a particular SD.

4.1.4 Simultaneous Regions and Coregions

We now have assembled all basic elements of our kernel LSC language. The
default ordering of these basic elements is one after the other from top to
bottom along the instance axis. Ordering between instances is induced only
by messages and conditions ranging over more than one instance. Simulta-
neous regions allow to group several elements, which should be observed at
the same time. This is essential for determining reference points for condi-
tions, local invariants and timer. This feature is a true addition compared
to classical MSCs and SDs, where simultaneousness is forbidden or not con-
sidered. Neither is simultaneity considered in the first version of LSCs as
introduced in [DH98]. The newest version of this paper, [DH01], however,
follows our suggestion and contains this important feature. Simultaneous
regions remedy the fourth point of criticism of chapter 3.1.4. Graphically
they are represented by enlarging the location in question into a small filled
circle; see figure 4.6 or 4.1 on page 67 for an example.

Figure 4.6 shows the MSC example with simultaneous regions in the de-
sired places. Both the timer events, which will be discussed in detail in
chapter 7, and the local invariant events are connected to their respective
reference points, so that the LSC now expresses the intended behavior —
apart from activation and universal interpretation. Note that in simultane-
ous regions defined on instance heads, only exclusive local invariant starts
are permitted, since all other elements are part of the activation condition.

4.2. ACTIVATION AND QUANTIFICATION 75

activateCrossing

S
afe

LSC

safe_snd

safe_rec

Train

activate_rec

Comm

ack_snd

activate_snd

status_req_rec

Crossing

ack_rec

status_req_snd

T1(50)

Figure 4.6: Crossing activation LSC, fourth step

A coregion is used to indicate that no ordering is imposed on the events it
contains, i.e. they may occur in any order. This corresponds to the classical
MSC view of a coregion with the exception that – as a consequence of the
simultaneous region construct – we also allow events in a coregion to take
place simultaneously.

Coregions are represented graphically by a dotted line running in parallel
to the instance axis. This differs from the representation in MSCs, where
they are depicted as dashed portions of the instance axis. This visualization
clashes with the one for cold locations, therefore this alternative represen-
tation has been chosen. Figure 4.7 on the following page shows a coregion
example as well as further examples for simultaneous regions.

4.2 Activation and Quantification

In the preceding section the graphical elements describing the communica-
tion behavior of several interacting entities are presented. This section adds
information about when this behavior should be observed and whether it
specifies a sample behavior or a protocol to be obeyed, addressing items 2
and 1, respectively of the points of criticism raised in chapter 3.1.4.

The quantification information represents the distinction between manda-
tory and possible behavior on the chart level. The sample-run or scenario

76 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

AC:

AM: Invariant

Inst2

Sim&CoRegs ExampleLSC:

Act

Inst3Inst1

msg2

Inst4

Cond1

msg1

msg3

msg4

msg5

Figure 4.7: Simultaneous and coregion example

view of MSCs and SDs, i.e. the interpretation that there exists a run, which
fulfills the LSC, is covered by the possible mode, which we call existential.
The mandatory mode, which is missing in MSCs and SDs as laid out in sec-
tion 3.1.4 on page 57, expresses that the behavior specified in the LSC must
be fulfilled by all runs, for which reason it is called the universal view.
Graphically, the quantification information is depicted by the border style
of the LSC: a solid border indicates a universal chart, a dashed border an
existential one.

For universal LSCs it is vital to be able to characterize the activation
point. If every run has to fulfill the universal LSC, it must be possible to
state at which point(s) of the run the LSC should be considered, otherwise
the behavior of the entire system has to be specified in one LSC, which is
clearly undesirable. The activation point of an LSC is characterized by two
complementary concepts: activation condition and activation mode. The
activation condition is a boolean condition, which expresses the activation
point for a chart. The activation mode specifies, how often an LSC should
be activated and is a new addition compared to [DH98, DH01] and has been
adopted from Symbolic Timing Diagrams (STDs) [Sch00]. The offered modes

4.2. ACTIVATION AND QUANTIFICATION 77

System Start

(a) initial

System Start

(b) invariant

System Start

(c) iterative

Figure 4.8: Activation Modes

are initial, invariant and iterative2. The initial mode indicates that the LSC
is activated at system start only, i.e. it is intended to describe a start-up or
initialization sequence.

Figure 4.8(a) illustrates the initial mode; the boxes represent possible ac-
tivations of the LSC, with black boxes indicating incarnations, i.e. activated
instantiations, of one LSC, which are actually activated according to the
activation mode and grey ones indicating incarnations which are not acti-
vated according to the activation mode. The figure shows that an initial
LSC is activated only once, at system start and other possible activations
are disregarded.

The other two modes indicate that the LSC is activated whenever the
activation condition holds. The difference between an invariant and an iter-

2Note that STDs do not support the iterative mode.

78 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

ative LSC is that the first one allows a reactivation of the LSC while another
incarnation of the same chart is still active. i.e. an invariant LSC allows the
activation of another incarnation, if the activation condition of a chart holds
again, while the first incarnation is still active. Iterative LSCs allow only one
incarnation of the chart at a time, i.e. if the activation condition does hold
again while the first incarnation is active, no new one will be incarnated.

activateCrossingLSC

S
afe

activation_point_reached

Comm

ack_snd

activate_snd

status_req_rec

Crossing

AC:

Invariant

Train

activate_rec

ack_rec

status_req_snd

safe_rec

safe_snd

AM:

T1(50)

Figure 4.9: Crossing activation LSC, last step

This distinction is best illustrated by figures 4.8(b) and 4.8(c). Note that
both modes also allow the LSC to be activated at system start, provided
the activation condition holds in the initial state. The invariant mode allows
the overlapping activation of several incarnations of the same LSC (two in
the example in figure 4.8(b)). This is prohibited by the iterative mode,
which is illustrated in figure 4.8(c). Here the overlapping activation of the
LSC is shadowed by the previous incarnation and therefore disregarded as
indicated by the grey third rectangle in figure 4.8(c). This entails that the
use of the iterative mode should be exercised with caution, since forcing an
LSC to be iterative when the model in reality allows the reactivation may
shadow some incarnations. For model checking this means in the worst case,
that the shadowed incarnation detects a violation of the model, but this

4.2. ACTIVATION AND QUANTIFICATION 79

counter example is never found, because this incarnation is shadowed by the
previous incarnation, which is not violated. The use of iterative LSCs for
property specification for formal verification is thus prohibited and will not
be considered in our application example. For other use cases, e.g. testing,
however, the iterative mode does make sense.

Activation mode and condition are not depicted graphically, but are ex-
pressed textually at the top of an LSC together with the name, using the
acronyms AM and AC respectively. For examples for activation mode, condi-
tion and quantification see figures 4.1, 4.7 and 4.9. Figure 4.9 shows the final
result of the stepwise transformation of the MSC of figure 3.8 into an LSC.

80 CHAPTER 4. LSCS: THE KERNEL LANGUAGE

Chapter 5

Automata-Theoretic

Foundation

The base for the definition of the formal semantics of LSCs is a variation of
timed Büchi automata. We chose Büchi automata for several reasons: First,
we use LSCs to describe the communication behavior of reactive systems,
i.e. systems which must be able to accept and react to input signals at any
time. These systems are typically designed to operate forever, at least the-
oretically, which means that runs of reactive systems are infinite. Therefore
classical finite automata are not sufficient for our purpose. Büchi automata
([Tho90]) are one possible solution as they accept infinite words. The second
reason for choosing Büchi automata over other variants of automata on infi-
nite words is that there is a close relationship between Büchi automata and
linear time temporal logic (LTL) [Tho90, Eme90]. Since the main application
field for LSCs in this thesis is property specification for formal verification,
this is a major advantage. The third reason is that Büchi automata allow to
easily express liveness properties via their acceptance criterion.

This line of reasoning has also been employed in the definition of the
formal semantics of Symbolic Timing Diagrams (STDs) by Schlör in [Sch00],
where the semantics of STDs are given in terms of a Büchi automaton variant.
This variant, called Symbolic Automaton in [Sch00], extends classical Büchi
automata by allowing expressions over an assertion language as transition
labels. Since this extension is a vital addition for our semantics definition of
LSCs, as will become apparent later, we are using this type of automaton as
well and further extend it to be able to cope also with quantitative timing,
which is not considered in [Sch00].

81

82 CHAPTER 5. AUTOMATA-THEORETIC FOUNDATION

Section 5.1 starts with a short introduction to classical Büchi automata,
followed by the extension to the timed variant in section 5.2. In section 5.3
we present the extension of non-timed Symbolic Automata as defined in
[Sch00] and add time, effectively merging Symbolic Automata and timed
Büchi automata.

5.1 Büchi-Automata

Büchi automata ([Tho90]) are able to deal with words of infinite length, in
contrast to finite automata, which accept only finite words. Their expres-
siveness is identical to ω-regular expressions, which are an extension of finite
regular expressions. Extending the Kleene star the ω indicates unbounded
repetition: aω for instance represents an infinite sequence of a’s. The defini-
tion of ω-regular languages is in fact given by the relation to Büchi automata:
A language is called ω-regular iff it is accepted by some Büchi automaton.

The acceptance criterion for Büchi automata (and other automata on
infinite words) needs to take the infiniteness of the words into account. In-
formally the set of accepting states of a Büchi automaton is defined by those
states, which are visited infinitely often. These states are also called fair
states. In the context of acceptance of infinite words we will in the remain-
der only speak of fair states, reserving the term accepting state for finite
words. For automata generated from LSCs we will often use the term final
state, which marks the complete traversal of the LSC. The term final state is
not synonymous to fair state, even though it is always contained in the set
of fair states as we will see later. For more information on other automata
on infinite words, which differ in the definition of the acceptance condition,
see [Tho90] or [AD94].

The following definition introduces non-deterministic Büchi automata fol-
lowing [Tho90] and [AD94]. The goal of our semantics is to generate deter-
ministic Büchi automata from LSCs, as they are easier to handle for prac-
tical applications; this is not possible in all cases as will be seen later (see
e.g. section 6.2.4 on page 118).

5.1 Definition ((Non-deterministic) Büchi Automaton)
A (non-deterministic) Büchi automaton BA is a tuple

BA = (Σ, Q, q0,−→, F),where

5.1. BÜCHI-AUTOMATA 83

• Σ is a finite alphabet of input symbols,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• −→⊆ Q×Σ×Q is the transition relation. A transition (q, σ, q′) ∈−→
represents the change from state q to state q′ on input symbol σ. We
typically write a transition in the form q

σ
−→ q′,

• F ⊆ Q is the set of fair states.

Let σ = σ0σ1 . . . be an infinite word over alphabet Σ, σ ∈ Σω. A run r
of BA over σ is a sequence of transitions

r : q0
σ0−→ q1

σ1−→ . . . , such that

∀i ≥ 0 : (qi, σi, qi+1) ∈−→ (the target state of each transition is the source
state of the following transition.

Let inf(r) ⊆ Q denote the set of states of BA which are visited infinitely
often by run r, i.e. inf(r) consists of those states q ∈ Q such that q = qi for
infinitely many i ≥ 0. The language accepted by BA is defined as:

L(BA) := {σ = σ0σ1 · · · ∈ Σω | ∃r = q0
σ0−→ q1

σ1−→ · · · : inf(r) ∩ F 6= ∅},

�

Informally the Büchi acceptance criterion says, that those runs are ac-
cepted by a Büchi automaton, which visit some state q ∈ F infinitely often.
The language L(BA) accepted by BA consists of those words σ ∈ Σω, for
which there is an accepting run.

q0a, b q1 a
a

Figure 5.1: example Büchi automaton

84 CHAPTER 5. AUTOMATA-THEORETIC FOUNDATION

Example 5.1 (Büchi automata)
Figure 5.1 shows an example of a Büchi automaton. The initial state is
marked by a transition without a source state and fair states by a double
border. In this example there is only one fair state, q1. The automaton
accepts the language (a+ b)∗aω. �

5.2 Timed Büchi Automata

When the occurrence times of the letters of words are important, timed
languages are used and consequently a corresponding type of automaton is
needed: a timed automaton. We only consider timed Büchi automata here,
there also exist variants for finite automata and other timed automata on
infinite words (see [AD94]). For the definition of timed Büchi automata we
loosely follow the lead of [AD94] here, inasmuch as we associate an occur-
rence time to each symbol of a word, yielding timed words. In contrast to
[AD94], however, we only consider discrete time instead of dense time as this
is sufficient for our purpose. Time is represented by a sequence of time values
from the set of non-negative natural numbers: τi ∈ N, which has to satisfy
two constraints: time only advances and time never stands still:

5.2 Definition (Timed Word)
A time sequence τ = τ0τ1τ2 . . . is an infinite sequence of time values τi ∈ N

for which the following holds:

1. τi < τi+1, ∀i ≥ 0 (τ is strictly monotonically increasing).

2. ∀t ∈ N ∃i ≥ 1 : τi > t (time always progresses)

A timed word over an alphabet Σ is then a pair (σ, τ), where σ = σ0σ1 . . .
is an infinite word and τ = τ0τ1 . . . is a time sequence. The time value τi
denotes the occurrence time of input symbol σi. �

In the untimed case the behavior of the automaton depends only on the
input symbols, i.e. being in some state the next states of an automaton are
determined by the current input symbol. In order for an automaton to also
accept timed words it needs a means to count time, since the choice of the
next states also depends on the occurrence time of the input symbols in
question. This is realized by clocks, which can be set to zero on any transition

5.2. TIMED BÜCHI AUTOMATA 85

of the automaton and count the time since their last reset. This allows for
the introduction of clock constraints on transitions – i.e. a transition may
only be taken, if all its clock constraints are satisfied – forcing the input
word to obey certain timing requirements. Thus time is introduced into an
automaton by adding a (finite) set of clocks and augmenting transitions by
clock resets and clock constraints formulated over this set of clocks.

Before giving the formal definition of a timed automaton it is necessary to
determine which are legal expressions for clock constraints and how the value
of the clocks is resolved. For our purposes it is sufficient to allow comparison
of clock values to constants, conjunction and disjunction of clock constraints.

5.3 Definition (Clock Constraint)
Let C be a set of clocks. A clock constraint γ ∈ Φ(C) is defined as

γ := ǫ | x < c | x ≤ c | x = c | x > c | x ≥ c | γ1 ∧ γ2 | γ1 ∨ γ2,

where x ∈ C and c ∈ N. ǫ represents the empty clock constraint.
A clock interpretation ν assigns to each clock x ∈ C a value of the time

domain:
ν : C −→ N

The set of all clock interpretations is defined as I.
The valuation of a clock constraint is defined by

J·K(·) : Φ(C) × I −→ B

JǫK(ν) := true

Jx < cK(ν) := ν(x) < c

Jx ≤ cK(ν) := ν(x) ≤ c

Jx > cK(ν) := ν(x) > c

Jx ≥ cK(ν) := ν(x) ≥ c

Jx = cK(ν) := ν(x) = c

Jγ1 ∧ γ2K(ν) := Jγ1K(ν) ∧ Jγ2K(ν)

Jγ1 ∨ γ2K(ν) := Jγ1K(ν) ∨ Jγ2K(ν)

Let ν+ t be the clock interpretation, which adds t to all clocks: ν+ t := ∀x ∈
C : (ν + t)(x) = ν(x) + t. �

86 CHAPTER 5. AUTOMATA-THEORETIC FOUNDATION

In the following the definition of a timed Büchi automaton is given by
extending definition 5.1 on page 82. The set of clocks used in the clock
constraints of the automaton is added and the transitions between states
are augmented by clock resets and constraints. The acceptance criterion is
adjusted accordingly, so that fair states are defined in terms of timed words.

5.4 Definition (Timed Büchi Automaton)
A timed Büchi automaton T BA is a tuple

T BA := (Σ, Q, q0, C,−→, F),where

• Σ is a finite alphabet of input symbols,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• C is a finite set of clocks

• −→⊆ Q×Σ×P(C)×Φ(C)×Q is the transition relation. A transition
(q, σ, ρ, γ, q′) ∈−→ represents the change from state q to state q′ on
input symbol σ. The set ρ ∈ P(C) indicates which clocks are reset
when taking the transition and γ is a clock constraint over C, which
has to be fulfilled.

• F ⊆ Q is the set of fair states.

Let (σ, τ) = (σ0, τ0)(σ1, τ1) . . . be a timed word over Σ. A timed run tr of
a timed Büchi automaton T BA over timed word (σ, τ) is an infinite sequence
of pairs qi, νi, where qi ∈ Q is the i-th state of the automaton along the run
and νi ∈ I is the clock interpretation in this state:

tr : (q0, ν0)
σ0−→
τ0

(q1, ν1)
σ1−→
τ1

(q2, ν2)
σ2−→
τ2

. . . ,with

• ∀x ∈ C : ν0(x) = 0, (initially all clocks are zero)

• ∀i ≥ 1 : νi := νi−1 + τi − τi−1

5.3. SYMBOLIC AUTOMATA 87

• ∀i ≥ 0 ∃ (qi, σi, ρi, γi, qi+1) ∈−→: JγiK(νi) = true ∧ ∀x ∈ ρi : νi+1(x) =
0 ∧ ∀x 6∈ ρi : νi+1(x) = νi(x) + τi − τi−1

(the target state of each transition is the source state of the following
transition, the transition respects all its clock constraints, resets all
appropriate clocks and all clocks, which are not reset, correctly advance
the time).

Let inf(tr) ⊆ Q denote the set of states of T BA which are visited in-
finitely often by timed run tr, i.e. inf(tr) consists of those states q ∈ Q such
that q = qi for infinitely many i ≥ 0. The language accepted by T BA is
defined as the set of timed words, for which there is an accepting run of
T BA:

L(T BA) := {(σ, τ) | ∃tr = (q0, ν0)
σ0−→
τ0

(q1, ν1)
σ1−→
τ1

· · · : inf(tr) ∩ F 6= ∅}

�

q0a q1
a

q2 a

b, x := 0

c, x < 4

Figure 5.2: example timed Büchi automaton

Example 5.2
Figure 5.2 shows an example of a timed Büchi automaton, which accepts the
language {(σ, τ) | σ ∈ a+(ba∗c)ω ∧ ∀i ∃j > i : σi = b ⇒ σj = c ∧ τj < τi + 4}.

�

5.3 Symbolic Automata

The automata described so far operate on single input symbols only, since
they allow but one element of Σ per transition. In order to be able to de-
scribe the communication behavior of a system, it is necessary to allow more
than one observation at a time. Symbolic Timing Diagrams faced the same

88 CHAPTER 5. AUTOMATA-THEORETIC FOUNDATION

problem, which in [Sch00] is solved by the extension of Büchi automata to
symbolic automata, where a run is extended to a computation sequence refer-
ring to valuations of system variables and formulas are allowed as transition
annotations in the automaton. We adopt this strategy for the LSC semantics
definition and therefore use symbolic automata.

[Sch00] does not consider quantitative timing for STDs, so that symbolic
automata are untimed. We consequently extend the definition of symbolic au-
tomata to also encompass (discrete) time, similar to timed Büchi automata.
First, we extend the notion of a timed word to a timed symbolic word (called
a computation sequence in [Sch00]).

5.5 Definition (Timed Symbolic Word)
Let V be a set of typed variables, DOM the domain of variables v ∈ V and
θ : V −→ DOM a valuation, which assigns to each v ∈ V a value of its
domain. Furthermore let τ be a time sequence.

A symbolic word then is an infinite sequence θ = θ0θ1θ2 . . .

A timed symbolic word then is a pair (θ, τ) = (θ0, τ0)(θ1, τ1)(θ2, τ2) . . . , where
τi denotes the occurrence time of valuation θi. �

In order to refer to the occurrence of several communication events it is
necessary to extend the timed Büchi automata to allow formulas:

5.6 Definition (Formula over Σ)
Let Σ ⊆ V be a set of boolean variables. A formula ψ over Σ is a boolean
expression produced by the following rules:

ψ := σ | ¬ψ | (ψ) | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

with σ ∈ Σ.
The set of all formulas over Σ is denoted by BExprΣ. �

5.7 Definition (Validity of a formula)
Let θ be a valuation and ψ a formula. The validity of ψ with respect to θ,
denoted θ |= ψ is defined as follows:

5.3. SYMBOLIC AUTOMATA 89

θ |= σ := θ(σ) = true

θ |= ¬ψ := not θ |= ψ

θ |= (ψ) := θ |= ψ

θ |= ψ1 ∧ ψ2 := θ |= ψ1 and θ |= ψ2

θ |= ψ1 ∨ ψ2 := θ |= ψ1 or θ |= ψ2

�

We can now define in extension of definition 5.4 on page 86 a timed symbolic
automaton:

5.8 Definition ((Non-deterministic) Timed Symbolic Automaton)
A timed symbolic automaton T SA is a tuple

T SA := (Σ, Q, q0, C,−→, F),

where

• Σ is a finite alphabet of input symbols (variables),

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• C is a finite set of clocks

• −→⊆ Q × BExprΣ × P(C) × Φ(C) × Q is the transition relation. A
transition (q, ψ, ρ, γ, q′) ∈−→ represents the change from state q to
state q′ while satisfying formula ψ. The set ρ ∈ P(C) indicates which
clocks are reset when taking the transition and γ is a clock constraint
over C, which has to be fulfilled.

• F ⊆ Q is the set of fair states.

A timed run tsr of a timed symbolic automaton T SA over a timed symbolic
word (θ, τ) is an infinite sequence of pairs (qi, νi), where qi ∈ Q is the i-th
state of the automaton along the run, νi ∈ I is the clock interpretation in
this state:

tsr : (q0, ν0)
θ0−→
τ0

(q1, ν1)
θ1−→
τ1

(q2, ν2)
θ2−→
τ2

. . . ,with

90 CHAPTER 5. AUTOMATA-THEORETIC FOUNDATION

• ∀x ∈ C : ν0(x) = 0, (initially all clocks are zero)

• ∀i ≥ 1 : νi := νi−1 + τi − τi−1

• ∀i ≥ 0 ∃ (qi, ψi, ρi, γi, qi+1) ∈−→: θi |= ψi ∧ JγiK(νi) = true ∧ ∀x ∈ ρi :
νi+1(x) = 0 ∧ ∀x 6∈ ρi : νi+1(x) = νi(x) + τi − τi−1

(the target state of each transition is the source state of the following
transition, the boolean expression annotating the transition is evalu-
ated to true, the transition respects all its clock constraints, resets all
appropriate clocks and all clocks, which are not reset, correctly advance
the time).

Let inf(tsr) ⊆ Q denote the set of states of T SA which are visited
infinitely often by timed run tsr, i.e. inf(tsr) consists of those states q ∈ Q
such that q = qi for infinitely many i ≥ 0. The language accepted by T SA
is defined as:

L(T SA) := {(θ, τ) |∃ tsr = q0
θ0−→
τ0

q1
θ1−→
τ1

q2
θ2−→
τ2

· · · : inf(tsr) ∩ F 6= ∅}

�

The definition of the semantics for pre-charts requires a finite automaton
(cf. chapter 9), so that here a finite variant of timed symbolic automaton is
introduced as well. This timed finite automaton is similar to a timed symbolic
automaton, except for the definition of acceptance.

5.9 Definition (Timed Finite Automaton)
A timed finite automaton T FA is a tuple

T FA := (Σ, Q, q0, C,−→, F),

where

• Σ is a finite alphabet of input symbols (variables),

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• C is a finite set of clocks

5.3. SYMBOLIC AUTOMATA 91

• −→⊆ Q × BExprΣ × P(C) × Φ(C) × Q is the transition relation. A
transition (q, ψ, ρ, γ, q′) ∈−→ represents the change from state q to
state q′ on formula ψ. The set ρ ∈ P(C) indicates which clocks are
reset when taking the transition and γ is a clock constraint over C,
which has to be fulfilled.

• F ⊆ Q is the set of accepting states.

Let (θ, τ) be a finite timed word: (θ, τ) = (θ0, τ0) . . . (θn, τn). A finite timed
run tfr of a timed finite automaton T FA over (θ, τ) is a finite sequence of
pairs (qi, νi), where qi ∈ Q is the i-th state of the automaton along the run,
νi ∈ I is the clock interpretation in this state:

tfr : (q0, ν0)
θ0−→
τ0

. . .
θn−→
τn

(qn+1, νn+1),with

• ∀x ∈ C : ν0(x) = 0, (initially all clocks are zero)

• ∀1 ≤ i ≤ n+ 1 : νi := νi−1 + τi − τi−1

• ∀0 ≤ i ≤ n ∃ (qi, ψi, ρi, γi, qi+1) ∈−→: θi |= ψi ∧ JγiK(νi) = true ∧ ∀x ∈
ρi : νi+1(x) = 0 ∧ ∀x 6∈ ρi : νi+1(x) = νi(x) + τi − τi−1

(the target state of each transition is the source state of the following
transition, the boolean expression annotating the transition is evalu-
ated to true, the transition respects all its clock constraints, resets all
appropriate clocks and all clocks, which are not reset, correctly advance
the time).

A finite timed word is accepted by T FA, iff qn+1 ∈ F . The language
accepted by T FA is defined as:

L(T FA) := {(θ, τ) |∃ tfr = (q0, ν0)
θ0−→
τ0

. . .
θn−→
τn

(qn+1, νn+1) : qn+1 ∈ F}

�

Relation between Büchi Automata and Linear Temporal Logic

There is a well-known relation between ω-regular languages, i.e. Büchi au-
tomata, and linear time temporal logic (LTL): star-free ω-regular languages
are identical in expressiveness to LTL [Eme90]. Schlör [Sch00] constructively

92 CHAPTER 5. AUTOMATA-THEORETIC FOUNDATION

shows that this property holds for symbolic automata by defining a trans-
lation from symbolic automata to LTL. Wittke [Wit03] additionally consid-
ers STDs with quantitative timing constraints. The results of these works
form the base for the application of LSCs to formal verification considered
later in this thesis. The formal basis for the LSC semantics are symbolic
automata, however, the reader is referred to the above works for a descrip-
tion of the translation to LTL. Note that both of these approaches require
that the automaton to be translated contains at most trivial loops, i.e. self
loops on states. Automata fulfilling this property are called partially ordered
in [Sch00] and flat in [Wit03]. The algorithm for unwinding LSCs into timed
symbolic automata ensures that this requirement is respected as will become
apparent later.

Chapter 6

Semantics of the LSC Kernel

Language

This chapter introduces the semantics of the LSC features presented in chap-
ter 4. The definition of the semantics is split into two phases: the definition
of the semantics for the kernel behavior of an LSC in terms of a symbolic
automaton, and the treatment of quantification, activation condition and
mode, since these bits of information can be handled much more efficiently
after the core automaton has been generated. Especially the invariant mode
would complicate the automaton generation procedure considerably, since a
reactivation of the automaton must be possible in every state. This would
entail a very complex construction algorithm, since for every state of the core
automaton the product of the core automaton with itself would have to be
computed. Thus we will first generate only the core automaton, disregarding
possible reactivations.

The procedure of deriving an automaton from an LSCs, which we call
unwinding, is inspired by the semantics definition for Symbolic Timing Di-
agrams presented in [Sch00], which has been taken as a blue print for the
semantics definition in [DH01]. The semantics given in [DH01], however, use
a symbolic transition system, the so-called skeleton automaton, as a semanti-
cal framework. The unwinding algorithm presented in this chapter operates
on a propositional level in order to be independent of the particulars of a
specific modeling language and its expression language.
A preliminary and incomplete version of the formal semantics presented in
this chapter has been published in [KW01].

Before giving the details of the unwinding algorithm we define the formal

93

94 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

syntax of LSC elements in section 6.1, which is the starting point for the
translation from an LSC into a timed symbolic automaton presented in sec-
tion 6.2. Since time is introduced later in chapter 7, the automaton does not
contain clocks or clock constraints. Activation and Quantification informa-
tion is incorporated in section 6.3. We conclude this chapter with a review
of related work in section 6.4.

6.1 Formal Syntax

This section defines the syntax of the LSC elements introduced in chapter 4.
This definition is the base for all further extensions in the following chapters.
An LSC consists of several components: the body of the LSC — i.e. the
instances and events defined on it —, the activation condition and mode, the
quantification and the pre-chart, which is not discussed here, but is dealt with
in detail in chapter 9. There is also a (possibly empty) set of assumptions
linked to an LSC, which is discussed in chapter 8. In the remainder of this
section the focus is on the body of the LSC, the other information is dealt
with in section 6.3.

6.1 Definition (LSC)
An LSC is a tuple L = (l, assumptions, ac, pch, amode, quant), with

• l : the body of LSC

• assumptions : a set of assumptions

• ac : the activation condition

• pch : the pre-chart

• amode : the activation mode

• quant : the quantification

�

An LSC body consists of a number of instances, which are collected in
the set Inst(l). In the following let l denote the body of an LSC L, and let
i ∈ Inst(l) denote some instance of l. The basic blocks (atoms) of which an
LSC body is comprised are the following:

6.1. FORMAL SYNTAX 95

• instance heads

• instance ends

• sending a message

• receiving a message

• condition atom (local to one instance)

• start of a local invariant

• end of a local invariant

The atoms carry the progress information of each instance (cf. sec-
tion 6.2.1 on page 103) and are organized according to their positioning
on the instance axes. The atoms are thus instance-wise collected in sets:

• Msgsnd(i) : set of message send atoms

• Msgrcv(i) : set of message receive atoms

• Conds(i) : set of condition atoms1

• LI starts(i) : set of start atoms of local invariants

• LI ends(i) : set of end atoms of local invariants

There is only one instance head atom, denoted by ⊥i, and one instance
end atom, denoted by ⊤i, for each instance i, so that it is not necessary to
have sets for these atoms on the instance level. Collecting all atoms of the
LSC body according to type yields the following sets:

• Instheads(l) :=
⋃

i∈Inst(l){⊥i}

• Instends(l) :=
⋃

i∈Inst(l){⊤i}

• Msgsnd(l) :=
⋃

i∈Inst(l)Msgsnd(i)

• Msgrcv(l) :=
⋃

i∈Inst(l)Msgrcv(i)

1Note that a condition atom is local to one instance. A condition shared by several
instances consists of one condition atom on each participating instance.

96 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

• Conds(l) :=
⋃

i∈Inst(l)Conds(i)

• LI starts(l) :=
⋃

i∈Inst(l) LI starts(i)

• LI ends(l) :=
⋃

i∈Inst(l) LI ends(i)

Collecting all atoms of an instance, resp. of the entire body yields the sets:

Atoms(i) := {⊥i} ∪
Msgsnd(i) ∪
Msgrcv(i) ∪
Conds(i) ∪
LI starts(i) ∪
LI ends(i) ∪
{⊤i}

Atoms(l) := Instheads(l) ∪
Msgsnd(l) ∪
Msgrcv(l) ∪
Conds(l) ∪
LI starts(l)∪
LI ends(l) ∪
Instends(l)

The atoms of each instance are ordered from top to bottom as drawn in the
LSC2 and thus have a graphical position, given by the function position(a)
for a ∈ Atoms(i).

6.2 Definition (Atom Position)
Let a, a′, a′′ ∈ Atoms(i) and a ≺i a

′ denote the order of a and a′ as drawn on
instance i. The function position(·) assigns a natural number to each atom
a ∈ Atoms(l) of LSC body l. This number is called position of a.

position : Atoms(l) −→ N0

position(a) :=

0 if ∀a′ 6= a : a′ 6≺i a

1 + position(a′) if a′ ≺i a ∧ ¬∃a′′ ∈ Atoms(i) :

a′ ≺i a
′′ ≺i a

�

2This total order can be disrupted by a coregion as discussed later.

6.1. FORMAL SYNTAX 97

Remark 6.1 (Atom Positions)
The definition of the position of an atom does not assign a unique number
to each atom, but allows several atoms of one instance to share one position.
This is necessary in order to correctly describe simultaneous regions (see
below), which are characterized by the fact that more than one atom occupies
the same position. �

AC:

AM:

Inst2

LSC:

Inst3Inst1

msg2

Inst4

Cond1

Sim&CoRegs Example

Act

Invariant

1

2

3

4

0 0

1

2

3

4

msg1

msg3

msg4

msg5

Atom

Figure 6.1: LSC with highlighted atoms

Example 6.1 (Positions of Atoms)
Figure 6.1 shows the example LSC from figure 4.7 with atoms highlighted.
Note that the two simultaneous regions each contain two atoms: the send-
ing atom of message msg1 and the sending atom of message msg2, and the
receipt atom of message msg5 and one condition atom of condition Cond1,
respectively. It also illustrates that conditions may consist of more than one
atom, Cond1 e.g. is comprised of two condition atoms, one on Inst3 and one
on Inst4. For instances Inst1 and Inst2 we also give the atom positions.

�

98 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Atoms a ∈ Atoms(i) are grouped into clusters, which are characterized by
the fact that all atoms contained in them are observed simultaneously and
therefore have the same position. This concept is needed to express simulta-
neous regions.

6.3 Definition (Cluster)
The set of clusters of an instance i ∈ Inst(l) is defined by the maximal set

Clusters(i) := {cl ⊆ Atoms(i) | ∀a, a′ ∈ cl : position(a) = position(a′)}.

The set of clusters of an LSC body l is defined by

Clusters(l) :=
⋃

i∈Inst(l)

Clusters(i).

The position function is extended to cover clusters as well:

position(cl) := position(a), a ∈ cl, cl ∈ Clusters(l).

�

Example 6.2 (Clusters & simultaneous regions)
Figure 6.2 illustrates the cluster concept. Most of the clusters contain only
one atom, only the two clusters, which correspond to simultaneous regions
contain two atoms each. Also note that the positions of the clusters and the
atoms contained in them are identical. �

Remark 6.2 (Clusters)
Note that each atom is contained in exactly one cluster, but that each cluster
may contain several atoms. The latter case only arises, if the cluster cor-
responds to a simultaneous region; atoms outside of a simultaneous region
result in a singleton cluster. �

The clusters on each instance as defined so far are totally ordered; as in-
troduced in chapter 4, coregions allow to suspend this total order. A coregion
cr is thus a set of unordered clusters and contains all those clusters, which
are covered by the dotted line next to the instance axis; see figure 6.1 on
the page before for an example. Each coregion consists of a set of unordered
clusters: cr := {cl1, . . . , cln} ⊆ Clusters(i). The set of all coregions of in-
stance i is given by Coregions(i) and the set of all coregions of an LSC body

6.1. FORMAL SYNTAX 99

AC:

AM:

Inst2

LSC:

Inst3Inst1

msg2

Inst4

Cond1

Sim&CoRegs Example

Act

Invariant

msg1

msg3

msg4

msg5

Atom Cluster

Figure 6.2: LSC with highlighted atoms and clusters

l by Coregions(l). For each cluster cl ∈ Cluster(l) we define the function
coreg(cl), which returns the coregion cl is part of:

coreg(cl) :=

{

∅ , if¬∃cr ∈ Coregions(l) : cl ∈ cr

cr , else

The position does not reflect the relaxed ordering requirement imposed
by a coregion: the sending of msg3 and the receipt of msg4 on Inst1 in
figure 6.1 on page 97 are still ordered according to their positions. In order
to correctly capture the coregion semantics a logical position, called location
is needed:

6.4 Definition (Location)
The location of a cluster cl ∈ Clusters(i) is given by the function

location(cl) :=

{

position(cl), if coreg(cl) = ∅

min({position(cli) | cli ∈ coreg(cl)}), if coreg(cl) 6= ∅

100 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Locations(i) := { location(cl) | cl ∈ Clusters(i)} is the set of locations of
instance i and Locations(l) :=

⋃

i∈Inst(l) Locations(i) the set of all locations
of LSC body l. �

Remark 6.3 (Locations)
• The locations are unique only on one instance, since location(·) relies

on position(·).

• The location of a cluster is equal to its position, unless it is part of a
coregion.

• The location of a cluster, which is not part of a coregion is unique on
its instance.

• All clusters in a coregion have the same location, but different positions.

• Clusters on instances without coregions are totally ordered.

• Clusters on instances with coregions are partially ordered.
�

Example 6.3 (Locations)
Figure 6.3 on the next page illustrates the location concept. Notice that
the location of a cluster is identical to its position, except for clusters in
coregions. Here all clusters in the coregion share one location. �

The atoms introduced above are local to one instance. In order to be able
to refer to the graphical elements used in the LSC it is necessary to establish
the connection between atoms, which belong to the same LSC element but are
located on different instances. Each message e.g. is made up of two atoms,
the send and the receive atom, which are located on different instances.
Likewise, conditions, which involve more than one instance are comprised
by one condition atom on each participating instance. The relation between
such atoms is established by the identifier, which designates the graphical
element. For an LSC body l there are thus the following disjunct sets of
unique identifiers and the following functions, which associate an atom with
its identifier:

• the set of instance identifiers in l : Instances(l)

6.1. FORMAL SYNTAX 101

AC:

AM:

Inst2

LSC:

Inst3Inst1

msg2

Inst4

Cond1

Sim&CoRegs Example

Act

Invariant

msg1

msg3

msg4

msg5

Atom Cluster Location

Figure 6.3: LSC with highlighted atoms, clusters and locations

• the set of message identifiers in l : Messages(l)

• the set of condition identifiers in l : Conditions(l)

• the set of identifiers of local invariants in l : Local Invariants(l)

instID : Inst(l) −→ Instances(l)

msgID : Msgsnd(l) ∪Msgrcv(l) −→Messages(l)

condID : Conds(l) −→ Conditions(l)

liID : LI starts(l) ∪ LI ends(l) −→ Local Invariants(l)

The identification of the send and receive part of a message is achieved
by the msgID(·) function. In the transition annotations of the automaton
generated from an LSC body (cf. section 6.2) it is necessary to distinguish

102 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

send and receive atoms, therefore the set of message labels MsgLabels(l) is
introduced, including the function msgLabel(m), which associates a message
label with each m ∈ Msgsnd(l) ∪ Msgrcv(l). Sending of message m1 is
represented by the label !m1, receipt by ?m1.

msgLabel : Msgsnd(l) ∪Msgrcv(l) −→MsgLabels(l)

msgLabel(m) :=

{

!msgID(m) if m ∈Msgsnd(l)

?msgID(m) if m ∈Msgrcv(l)

Furthermore is it necessary to access the properties of messages, condi-
tions and local invariants. For messages the relevant properties are tem-
perature and type (instantaneous or asynchronous), for conditions and local
invariants the mode (mandatory or possible). The progress information along
each instance is associated with the atoms of this instance, so that the domain
of function temp(·) below is the union of message identifiers and atoms. The
properties for messages and conditions on the other hand pertain to the LSC
elements, represented by the corresponding identifiers, and not the atoms.
The situation for the mode of local invariants is identical to that of condi-
tions, i.e. this information is tied to the LSC element. The information, if a
local invariant atom is included in the simultaneous region, which contains
it, on the other hand pertains to the individual atom, so that the incl func-
tion is defined on the set of local invariant atoms rather than on the set of
identifiers.

temp : Messages(l) ∪Atoms(l) −→ {hot, cold}

sync type : Messages(l) −→ {async, instant}

mode : Conditions(l) ∪ Local Invariants(l) −→ {mandatory, possible}

incl : LI starts(l) ∪ LI ends(l) −→ B

The treatment of liveness requirements in the formal semantics in the next
section is tied to locations, so that the atom temperature has to be lifted to
the location level. An intermediate step to achieve this is to first lift it to
the Cluster level, which in fact determines the temperature of simultaneous
regions. Analogously to the cut temperature computation in section 6.2.3 on
page 117 one hot atom overrides the temperature of all other atoms in a
simultaneous regions.

6.2. FORMAL SEMANTICS 103

temp : Clusters(l) −→ {hot, cold}

temp(cl) :=

{

cold, if ∀a ∈ cl : temp(a) = cold

hot, else

The temperature function is extended analogously to locations, so that
coregions can be treated correctly. Since no ordering exists between the
atoms of a coregion, no progress between them can be enforced, so that a
single temperature is associated with a coregion. In the remainder we only
apply the temp(·) function to message identifiers and locations, so that no
confusion should arise.

temp : Locations(l) −→ {hot, cold}

temp(loc) :=

cold, if ∀cl ∈ Clusters(l) : location(cl) = loc ∧

temp(cl) = cold

hot, else

6.2 Formal Semantics

In this section we describe the generation of the automaton from an LSC. We
first construct the basic structure and then discuss several semantical issues,
which influence the final automaton, before completing the procedure.

6.2.1 Basic Automaton Construction

The unwinding approach has been adopted from the definition of the seman-
tics of Symbolic Timing Diagrams [Sch00, Fey96, FJ97]. The general idea
is to define a cut through the LSC starting at the top and moving this cut
downward until we reach all instance ends, while respecting the partial order
imposed by the LSC. Cuts become states in the automaton and the tran-
sition relation of the automaton encodes the successor relation among the
cuts. Ordering among the atoms in an LSC is induced by the following rules:

1. atoms (clusters) along each instance axis are totally ordered (unless
they are part of a coregion)

2. a message has to be sent before it can be received

104 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

3. conditions ranging over several instances (shared conditions) enforce
synchronization between the involved instances

These rules determine when an LSC element is enabled, i.e. when it is ready
to be unwound:
An atom is enabled when

1. all its predecessors along the instance axis have already be unwound

2. the corresponding message send atom has already been unwound (if
the atom is a message receive atom of an asynchronous message) or is
being unwound simultaneously (if the atom is part of an instantaneous
message)

3. all other condition atoms belonging to the same condition are also
enabled (if the atom is a shared condition)

The first rule demands a computation of all predecessors on the instance
axis for each atom. It is actually sufficient to only conduct a local com-
putation of the immediate predecessor of each atom, since this relation is
transitive: If the immediate predecessor of a cluster cl has been unwound,
then immediate predecessor of cl must have been unwound, and so on. The
formal definition of the function computing the immediate predecessor is:

6.5 Definition (Immediate Predecessor)

predecessor : Clusters(i) −→ P(Clusters(i))

predecessor(cl) :=

{

∅ , if∃ a ∈ cl : a = ⊥i ∨ a = ⊤i

CL , else
, where

CL := {cl′ ∈ Clusters(i) | location(cl′) < location(cl) ∧

¬∃ cl′′ ∈ Clusters(i) :

location(cl′) < location(cl′′) < location(cl) }

�

The function predecessor(cl) looks along one instance for the location,
which is immediately above the cluster cl and returns the clusters bound
to that location. If the element bound to the predecessor location is not a

6.2. FORMAL SEMANTICS 105

coregion, the returned set of clusters contains a single cluster. Otherwise all
clusters of the coregion are returned. For clusters containing instance head or
end atoms no predecessor is returned, since an instance head does not have a
predecessor and instance end atoms are not unwound by the algorithm (see
below).

The second and third rule above involve more than one instance and thus
require to also take clusters of other instances into account. The message
send and receive atom for an instantaneous message have to be unwound
simultaneously, and all condition atoms of a condition must be unwound at
the same time. This synchronization of clusters is expressed by the relation
≈.

6.6 Definition (Equivalence of Clusters)
Let cl, cl′ ∈ Clusters(l). The relation ≈ on Clusters(l) is defined as:

cl ≈ cl′ ⇔ ∃ a ∈ cl ∃ a′ ∈ cl′ :

cl = cl′ ∨ sharedConds(a, a′) ∨ instMsgs(a, a′)

∨ transitivity(a, a′)

where

sharedConds(a, a′) := a, a′ ∈ Conds(l) ∧ condID(a) = condID(a′)

instMsgs(a, a′) := a ∈Msgsnd(l) ∧ a′ ∈Msgrcv(l)

∧ msgID(a) = msgID(a′)

∧ sync type(msgID(a)) = instant

transitivity(a, a′) := a, a′ ∈ syncAtoms(l)

∧ ∃cl′′ ∈ Clusters(l) ∃ai, aj ∈ cl′′ : |cl′′| > 1

∧ (sharedConds(a, ai) ∨ instMsgs(a, ai))

∨ (sharedConds(a′, aj) ∨ instMsgs(a′, aj))

syncAtoms(l) := {a ∈ Atoms(l)|a ∈ Conds(l)∨

(a ∈Msgsnd(l) ∨ a ∈Msgrcv(l))

∧ sync type(msgID(a)) = instant}

The classes defined by ≈ are called simultaneous classes. SimClasses(l) :=
{ scl ⊆ Clusters(l) | ∀ cl, cl′ ∈ scl : cl ≈ cl′ } is the set of simultaneous
classes of l. �

106 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Remark 6.4 (Single atoms)
For single atoms, e.g. the sending of an asynchronous message, the corre-
sponding simultaneous class is a singleton set of clusters, which in turn is a
singleton set of atoms. �

The simultaneous classes are the basic elements, which the unwinding al-
gorithm operates on. Similar to the case for clusters it is necessary to know
the predecessor(s) of a simultaneous class in order to determine, if it is en-
abled or not. This gives rise to the definition of the function prerequisite(·),
which uses the predecessor(·) function defined for clusters:

6.7 Definition (Simultaneous Class Prerequisite)

prerequisite : SimClasses(l) −→ P(SimClasses(l))

prerequisite(scl) :=

{

∅ , if ∃ cl ∈ scl : ∃a ∈ cl : a ∈ Instheads(l)

SCL , else
,

where

SCL := {scl′ ∈Sim Classes(l) |

∃cl ∈ scl ∃cl′ ∈ scl′ : (cl′ ∈ predecessor(cl)∨

∃a ∈ cl ∃a′ ∈ cl′ : a ∈Msgrcv(l) ∧

a′ ∈Msgsnd(l) ∧msgID(a) = msgID(a′)∧

sync type(msgID(a)) = async)}

�

The prerequisite(·) function is similar to the predecessor(·) function. It
looks for the immediate predecessors of all clusters contained in the consid-
ered simultaneous class and collects the simultaneous classes for all prede-
cessor clusters. If the current simultaneous class contains an asynchronous
message receive atom, the simultaneous class containing the corresponding
message send atom is added as well. It returns the empty set, if the consid-
ered simultaneous class contains an instance head atom.

Example 6.4
Figure 6.4 illustrates the concepts of positions, clusters, locations and Sim-
Classes. We have omitted the SimClasses for instance heads and ends for

6.2. FORMAL SEMANTICS 107

AC:
AM: Invariant

Inst2

Sim&CoRegs ExampleLSC:
Act

Inst3Inst1

msg2

Inst4

Cond1

msg1

msg3

msg5

msg4

Atom Cluster Location

SimClass

Figure 6.4: LSC with positions, locations and SimClasses

readability’s sake; in these cases the SimClasses contain only one cluster, see
table 6.1.

The predecessor computation is obvious, we therefore concentrate on the
prerequisites. Atoms are named after their corresponding identifiers, message
send atoms are characterized by prefixing the identifier with a ‘!’, message
receive atoms with a ‘?’. Table 6.1 shows the simultaneous classes and their
prerequisites for this example.

The multitude of braces in the prerequisites is due to the nested sets.
A single atom is not enclosed in braces (e.g. ?msg1), but is enclosed in a
cluster, which is a set of atoms (e.g. {?msg1}). Simultaneous regions result
in clusters with more than one element (e.g. {!msg1,!msg2}). The clusters
are part of a SimClass, which is a set of clusters (e.g. {{!msg3}, {?msg3} }).
When considering the prerequisites another level of braces is added, since

108 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

SimClass Prerequisite

{{⊥Inst1}} ∅
{{⊥Inst2}} ∅
{{⊥Inst3}} ∅
{{⊥Inst4}} ∅

{ {?msg1},{!msg1,!msg2},{?msg2} } { {{⊥Inst1}}, {{⊥Inst2}}, {{⊥Inst3}} }
{ {!msg3}, {?msg3} } { {{?msg1},{!msg1,!msg2},{?msg2}} }
{ {?msg4}, {!msg4} } { {{?msg1},{!msg1,!msg2},{?msg2}},

{{⊥Inst4}} }
{ {!msg5}, {?msg5, cond1} } {{{!msg3},{?msg3}},{{?msg4},{!msg4}}}

{{⊤Inst1}} ∅
{{⊤Inst2}} ∅
{{⊤Inst3}} ∅
{{⊤Inst4}} ∅

Table 6.1: Prerequisites for the LSC in figure 6.4

prerequisites are sets of SimClasses. Notice that all elements of the coregion
share part of their prerequisites, which is due to the fact that coregions are
treated as a single location. �

A cut through the LSC is used to keep track of the progress of the un-
winding procedure. It represents the borderline between already unwound
elements and those which still have to be considered. The elements directly
below the cut are those, which are currently enabled. Cuts are represented
by a tuple containing one cluster of each instance:

6.8 Definition (Cut)
A cut Cut ⊆ Clusters(i1) × · · · × Clusters(in), for Inst(l) = {i1, . . . , in} is
a tuple (cli1 , . . . , clin), clij ∈ Clusters(ij), 1 ≤ j ≤ n = |Inst(l)|.

Let Cuts(l) be the set of all possible cuts of LSC body l. �

The unwinding algorithm requires a number of other auxiliary sets and
constructs, which are collected in a tuple called phase. Each phase charac-
terizes one unwinding step and consequently corresponds to a state in the
resulting automaton. Possible transitions from one phase to another corre-
spond to transitions of the automaton.

6.2. FORMAL SEMANTICS 109

6.9 Definition (Phase)
A phase is a tuple Phase := (Ready,History, Cut), with

• History ⊆ SimClasses(l) : the set of simultaneous classes which have
already been unwound

• Ready ⊆ SimClasses(l) : the set of simultaneous classes, which are
currently enabled to be unwound

• Cut : the current cut as defined in definition 6.8.

Let Phases(l) be the set of all phases of LSC body l. �

Since several simultaneous classes may be enabled concurrently, e.g. due
to a coregion, each ready set may contain more than one simultaneous class.
In this case all combinations of elements of the ready set lead to valid suc-
cessor phases and thus have to be taken into consideration. All possible
combinations correspond to the powerset of the ready set; the set of simul-
taneous classes, which is currently chosen to be unwound, is called the fired
set Fired ⊆ P(SimClasses(l)). Thus, for each phase Phasei there exist k
fired sets Firedik , with k = |P(Readyi)|. Let Firedsets(l) be the set of all
fired sets in l.

Example 6.5 (Fired set)
Let the current ready set consist of simultaneous classes a and b, thus
Readyi = (a, b). The resulting fired sets are Firedi1 = ∅, F iredi2 =
{a}, F iredi3 = {b}, and Firedi3 = {a, b}}. �

The unwinding algorithm starts at the top of the LSC body and computes
the initial phase Phase0, which is given by

Phase0 =(Ready0, History0, Cut0),

110 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

with

Ready0 =
{

scl ∈ SimClasses(l) |

prerequisite(scl) ∈
{

P
(

{scl′ ∈ SimClasses(l) |

∀cl ∈ scl′ : ∀a ∈ cl :

a ∈ (Instheads(l) ∪ LI starts(l))}
)

\ ∅
} }

History0 =
{

⋃

i∈Inst(l)

{{⊥i}}
}

Cut0 =(⊥1, . . . ,⊥n)

Remark 6.5 (Initial ready set)
The instance heads are not unwound explicitly, but are rather the starting
point of the algorithm. The simultaneous classes, which are initially enabled
are consequently those, which have only instance head in conjunction with
local invariant start atoms as prerequisites. Recall that the only atoms al-
lowed in simultaneous regions at the instance head are local invariant starts;
timer set atoms and timing intervals are permitted as well, cf. chapter 7.
The instance heads themselves are accordingly excluded from the ready set by
removing the empty set from the computed prerequisites. �

Starting with the initial phase the construction of the automaton consid-
ers every phase and computes the fired set(s) for it. For each phase a state
is generated in the automaton and for each fired set of the current phase the
successor phase is computed and the corresponding state is generated. For
each fired set a transition is inserted, which is annotated with the simultane-
ous class(es) of the fired set. The successor phases for a phase is computed
by the function Step(·, ·):

6.10 Definition (Step)

Step : Phases(l) × Firedsets(l) −→ Phases(l)

Step(Phasei, F iredik) = Phasej ,

6.2. FORMAL SEMANTICS 111

where

Historyj := Historyi ∪ Firedik

Readyj :=
{

scl ∈ SimClasses(l) \
{

⋃

i∈Inst(l)

{{⊤i}}
}

|

∀scl′ ∈ prerequisite(scl) : scl′ ∈ Historyj ∧ scl 6∈ Historyi

}

Cutj := (cl′1, . . . , cl
′
n),

with

cl′t =

{

cl′′t ∃ f ∈ Firedik ∃ scl ∈ f : cl′′t ∈ scl

clt else
, t = 1, . . . , n

�

Remark 6.6 (Empty fired set)
The Step(·, ·) function returns the identity for the empty fired set, which
corresponds to a self loop in the automaton. �

The Step(·, ·) function is applied to all phases until the entire LSC body
has been unwound, i.e. until the final phase is reached:

Phasefinal = (Readyfinal, Historyfinal, Cutfinal),

with

Readyfinal = ∅

Historyfinal = SimClasses(l) \
{

⋃

i∈Inst(l)

{{⊤i}}
}

Remark 6.7 (Final phase)
The final ready set is always empty, since those simultaneous classes, which
consist of instance end atoms have been excluded from the ready set in defi-
nition 6.10.
The final cut contains those simultaneous classes, which include the penulti-
mate atom for each instance. �

112 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Example 6.6 (Primitive unwinding structure)
Application of the Step(·, ·) function to the LSC in figure 6.4 on page 107
results in the (incomplete) automaton shown in figure 6.5 on page 114. The
sets of the corresponding phases are listed in the following:

• q0 :

– History0 = {{{⊥Inst1}}, {{⊥Inst2}}, {{⊥Inst3}}, {{⊥Inst4}}}

– Cut0 = ({⊥Inst1}, {⊥Inst2}, {⊥Inst3}, {⊥Inst4})

– Ready0 = {{{?msg1}, {!msg1, !msg2}, {?msg2}}}

• q1 :

– History1 = History0 ∪ {{{?msg1}, {!msg1, !msg2}, {?msg2}}}

– Cut1 = ({?msg1}, {!msg1, !msg2}, {?msg2}, {⊥4})

– Ready1 = {{{!msg3}, {?msg3}}, {{?msg4}, {!msg4}}}

• q2 :

– History2 = History1 ∪ {{{!msg3}, {?msg3}}}

– Cut2 = ({!msg3}, {?msg3}, {?msg2}, {⊥4})

– Ready2 = {{{?msg4}, {!msg4}}}

• q3 :

– History3 = History1 ∪ {{{!msg4}, {?msg4}}}

– Cut2 = ({?msg4}, {!msg1, !msg2}, {?msg2}, {!msg4})

– Ready2 = {{{?msg3}, {!msg3}}}

• q4 :

– History4 = History2 ∪ {{{!msg4}, {?msg4}}}

– Cut4 = ({?msg4}, {?msg3}, {?msg2}, {!msg4})

– Ready4 = {{{!msg5}, {?msg5, cond1}}}

• q5 :

– History5 = History1∪
{{{!msg3}, {?msg3}}, {{!msg4}, {?msg4}}}

6.2. FORMAL SEMANTICS 113

– Cut5 = ({!msg3, ?msg4}, {?msg3}, {?msg2}, {!msg4})

– Ready5 = {{{!msg5}, {?msg5, cond1}}}

• q6 :

– History6 = History3 ∪ {{{!msg3}, {?msg3}}}

– Cut6 = ({!msg3}, {?msg3}, {?msg2}, {!msg4})

– Ready6 = {{{!msg5}, {?msg5, cond1}}}

• q7 :

– History7 = History4 ∪ {{{!msg5}, {?msg5, cond1}}}

– Cut7 = ({?msg4}, {!msg5}, {?msg5, cond1}, {!msg4})

– Ready7 = ∅

• q8 :

– History8 = History5 ∪ {{{!msg5}, {?msg5, cond1}}}

– Cut8 = ({?msg4}, {!msg5}, {?msg5, cond1}, {!msg4})

– Ready8 = ∅

• q9 :

– History9 = History6 ∪ {{{!msg5}, {?msg5, cond1}}}

– Cut9 = ({?msg4}, {!msg5}, {?msg5, cond1}, {!msg4})

– Ready9 = ∅

A closer look at the automaton reveals some redundant states and tran-
sitions: The phases for states q7, q8, q9 are identical and could therefore be
represented by a single state. The same is true for the phases for states
q4, q5, q6, with the exception that their cuts differ. The cuts are not directly
relevant for the Step(·, ·) function, thus these states could be merged into
one as well. The rule for being able to combine states is thus that they have
identical history and ready sets.

Note that identifiers rather than message labels have been used for the
transition annotations in the automaton in figure 6.5, since all messages in
the LSC are instantaneous and hot. The correct annotation for the transition

114 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

q0

q1

msg1 ∧msg2

q2

msg3

q3

msg4

q4

msg4

q5

msg3
∧
msg4

q6

msg3

q7

msg5 ∧ cond1

q8

msg5
∧
cond1

q9

msg5 ∧ cond1

Figure 6.5: Incomplete automaton for LSC Sim&Coregs Example

from q1 to q2 would for instance be !msg3∧?msg3. In the remainder of this
thesis we will use the abbreviation by message identifier for hot instantaneous
messages. �

In order to generate more concise automata, a new state will only be
generated, if no equivalent state exists already. Even with this optimization
the automaton is still incomplete, since e.g. the self loops carry no annotation.
This and other issues, which influence the completion of the automaton, are
discussed in the following sections.

6.2.2 Self Loop Annotation

The unwinding structure as it is so far generated by the Step(·, ·) function
provides annotations only for transitions between different states. The self

6.2. FORMAL SEMANTICS 115

loops which exist for every state are not annotated, since no simultaneous
classes are unwound. An empty annotation corresponds to true and thus
makes the resulting automaton highly non-deterministic.

q0 ¬msg1 ∧ ¬msg2

q1 ¬msg3 ∧ ¬msg4

msg1 ∧msg2

q2¬msg4

msg3

q3 ¬msg3

msg4

q4 ¬msg5

msg3
∧
msg4

msg4 msg3

q5 true

msg5
∧
cond1

Figure 6.6: Incomplete, optimized automaton for LSC Sim&Coregs Example

using weak interpretation

The question of how to annotate the self loops is influenced by the ques-
tion, if duplicate messages are allowed, i.e. should it be considered an error,
if a message, which is contained in an LSC body, is observed more than
once during the activation of the LSC? Is e.g. the crossing in figure 4.9 on
page 78 permitted to send the message safe snd twice? The interpretation
assumed in [DH01] is that duplicate messages result in an error and are thus
prohibited. Applying this strict interpretation to the incomplete automaton
generated so far results in an automaton, where every self loop is annotated
with the conjunction of the negation of all messages of the LSC; all non-
self-loop messages similarly need to be extended by the conjunction of the

116 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

negation of all messages of the LSC, which are not unwound in the current
step. It is not immediately clear, if this interpretation is too restrictive.

This motivates a second interpretation, which we call weak and which
allows duplicate messages as long as the messages contained in the LSC
are observed also at the correct times. This corresponds to annotating the
self loops in the automaton only with the conjunction of the negation of all
messages, which are in the ready set associated with the current state.

Both interpretations remove the non-determinism in the automaton due
to the empty self loop annotation (see example 6.7). The annotation for the
self loop of the final state is identical for both variants: true, because once the
behavior specified in the LSC has been observed entirely no further restriction
applies to the system. Since the choice of an adequate interpretation of an
LSC also depends on the specific field of application, we will return to this
issue when evaluating the LSC language in chapter 11.

Example 6.7 (Interpretations)
Figure 6.6 and 6.7 show the weak, resp. strict interpretation for the (opti-
mized) automaton for LSC Sim&Coregs Example. For readablilty’s sake the
self loop annotation for the strict alternative is shown as sc, which stands
for ¬msg1 ∧ ¬msg2 ∧ ¬msg3 ∧ ¬msg4 ∧ ¬msg5.

�

Figure 6.6 on the preceding page exemplifies that in case of the weak
interpretation, special care has to be taken with concurrently enabled Sim-
Classes, which result from either a coregion or elements, which are completely
independent in the LSC body, e.g. two conditions consisting of only one con-
dition atom and being defined on separate instances. As illustrated by the
annotations of the transitions leaving state q1 in figure 6.6, the annotations
of the transitions leaving q1 are not mutually exclusive, i.e. there is the possi-
bility of non-determinism. Assume q1 has been reached and msg3 and msg4
are observed simultaneously. The next state could be any of q2, q3 or q4. In
order to remove this source of non-determinism the transitions, which do not
contain all elements of the ready set, need to be additionally annotated with
the negation of the remaining elements. In figure 6.6 this means that the
transition from q1 to q2 is annotated with msg3 ∧ ¬msg4 and the one to q3
with msg4∧¬msg3. This is not necessary for the strict interpretation, since
it already forbids the occurrence of all other messages of the LSC.

6.2. FORMAL SEMANTICS 117

q0 sc

q1 sc

msg1 ∧msg2 ∧ ¬msg3∧
¬msg4 ∧ ¬msg5

q2sc

msg3 ∧ ¬msg1 ∧ ¬msg2∧
¬msg4 ∧ ¬msg5

q3 sc

msg4 ∧ ¬msg1 ∧ ¬msg2∧
¬msg3 ∧ ¬msg5

q4 sc

msg3 ∧
msg4∧
¬msg1 ∧ ¬msg2 ∧ ¬msg5msg4 ∧ ¬msg1∧

¬msg2 ∧ ¬msg3 ∧ ¬msg5 msg3 ∧ ¬msg1∧
¬msg2 ∧ ¬msg4 ∧ ¬msg5

q5 true

msg5 ∧ cond1 ∧ ¬msg1∧
¬msg2 ∧ ¬msg3 ∧ ¬msg4

Figure 6.7: Incomplete, optimized automaton for LSC Sim&Coregs Example

using strict interpretation

6.2.3 Location Temperatures

So far the location temperatures, i.e. the progress requirements on the in-
stance axes, have not been considered. This information is collected by the
cuts, which indicate up to which locations the unwinding has progressed. The
local liveness information of each instance, given by the location tempera-
ture, is used to compute the global liveness requirements, which is expressed
by the cut temperature defined below.

118 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

6.11 Definition (Cut Temperature)

cut temp : Cuts(l) −→ {hot, cold}

cut temp(cut) :=

{

hot if ∃ clj ∈ cut : temp(location(clj)) = hot

cold else
,

for cut = (cl1, . . . , cln), 1 ≤ j ≤ n. �

Thus phases containing a hot cut mean that the corresponding states in
the automaton have to be left within a finite amount of time — analogously
to hot locations on an instance. A cold cut indicates that the corresponding
state need not be left. In conjunction with the self loop this means that
such a state is fair in the sense of the Büchi acceptance criterion. Note
that the final and the exit state (see below) are always fair, since no further
requirements are posed by the LSC once it has been completed or exited.

6.2.4 Semantics of Conditions

Up to now conditions are only partly treated by the unwinding procedure.
The unwinding so far only covers the case that the condition is fulfilled,
violations are not considered; cf. figures 6.6 on page 115 and 6.7 on the pre-
ceding page. For mandatory conditions no further steps are necessary, since
evaluating a condition to false results in a non-accepting run (there exists no
transition in the automaton for this case). As illustrated by the automata in
figures 6.6 and 6.7 condition Cond1 must be satisfied, when message msg5 oc-
curs. For possible conditions, whose violations should result in an exit from
the LSC, a special exit state is introduced, which is entered whenever a pos-
sible condition is violated. This state is similar to the final state inasmuch
as no further restrictions apply after entering this state, i.e. the self loop
annotation is true as well; see figure 6.9(a) on page 120 for an example3.

All conditions, possible and mandatory ones, are disregarded by both the
weak and the strict interpretation discussed above, because they are only
required to hold at one specific point in time; other points in time are not
constrained. Since conditions typically retain their value for a span of time,

3Exit and final state can effectively be merged as a further optimization of the symbolic
automaton. In the remainder we will nevertheless use separate exit states in order to
increase readability.

6.2. FORMAL SEMANTICS 119

it is undesirable to forbid the evaluation to true at other times than the
specified one. Conditions are thus not treated like messages, i.e. they are not
included in the self loop annotations, etc.

The fact that conditions usually retain their value for more than one point
in time gives rise to the question, when a condition should be evaluated. This
issue is tied to the annotation of the concerned self loops and is covered in
the remainder of this section, starting with possible conditions.

Evaluation of Possible Conditions

Cond

msg

Figure 6.8: LSC fragment for the evaluation of possible conditions

If a condition is bound to one or more messages via a simultaneous region,
as is e.g. the case in the LSC in figure 6.1 on page 97, the evaluation point
is clear: it is given by the occurrence time of the message(s). The same is
true if the condition is bound to a timeout or end of a timing interval (cf.
chapter 7). If the condition is isolated, i.e. not part of a simultaneous region
or contained in a simultaneous region with no messages, however, it is not
clear when it should be evaluated. The point of evaluation is influenced by
the annotation of the self loop at the state(s), where the condition is enabled,
i.e. contained in the ready set.

For the illustration of the different alternatives we use the LSC frag-
ment shown in figure 6.8. Figures 6.9(a) - 6.9(d) show automata fragments
demonstrating the possible solutions, dashed parts indicating glue points to
the remaining parts of the automaton. The automata fragments differ only
in the self loop annotation.

Figure 6.9(a) shows the automaton fragment, which is generated by the
algorithm so far (assuming weak interpretation). The self loop does not carry
any annotation, which is equivalent to true, since no message is involved in
the unwinding of Cond. Regardless of the truth value the automaton may

120 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

qi

msg

true

qj

Cond

qXtrue

¬Cond

(a) alternative 1

qi

msg

false

qj

Cond

qXtrue

¬Cond

(b) alternative 2

qi

msg

¬Cond

qj

Cond

qXtrue

¬Cond

(c) alternative 3

qi

msg

Cond

qj

Cond

qXtrue

¬Cond

(d) alternative 4

Figure 6.9: Alternatives for the evaluation point for possible conditions

remain in state qi, the automaton is thus non-deterministic and the evaluation
point arbitrary (once msg has been observed).

A second possible annotation of the self loop is shown in figure 6.9(b). It
is the converse of the first alternative and forces the immediate evaluation of
the condition, since the automaton must not remain in qi. This automaton
fragment is deterministic. The third possibility depicted in figure 6.9(c)
annotates the self loop with the negation of the condition and once more
yields a non-deterministic automaton. This alternative forces the automaton
to leave qi and reach qj when the condition is evaluated to true. As long as the
condition does not hold there is a non-deterministic choice between staying

6.2. FORMAL SEMANTICS 121

in qi and moving into the exit state qX . The fourth alternative is illustrated
by figure 6.9(d) and is the converse of the preceeding solution annotating the
self loop with the condition itself. This solution is non-deterministic as well.
Before assessing the alternatives and choosing the default solution for the
automaton construction we consider the above possibilities in conjunction
with mandatory conditions.

Evaluation of Mandatory Conditions

Cond

msg

Figure 6.10: LSC fragment for the evaluation of mandatory conditions

The situation is slightly different for mandatory conditions. Figure 6.10
shows the LSC fragment for a mandatory condition, figures 6.11(a) - 6.11(d)
show the automata fragments for the different alternatives. Since Cond now
is a mandatory condition, there is no exit state for these fragments. The
consequences only change for alternative 3 (figure 6.11(c)), the other alter-
natives are essentially not concerned by the altered mode. Solution 3 differs
inasmuch as the resulting automaton is no longer non-deterministic as for a
possible condition. This solution now prohibits to detect a violation of the
condition, since an evaluation of Cond to false only results in taking the self
loop.4 Therefore alternative 3 is no viable solution.

The remaining alternatives are not ideal solutions either: Possibility 1 and
4 produce non-deterministic automata, which should be avoided, if possible;
alternative 2 is too restrictive. The optimal solution is to unambiguously
determine the point of evaluation by tying the condition to a reference point.
For the moment the only reference point available are message atoms, which
are grouped with the condition in a simultaneous region as illustrated e.g. in

4The only violation, which could be detected, is a violation of the progress requirement,
if the cut corresponding to state qi is hot and the condition never evaluates to true. This
is independent of the condition mode, however.

122 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

qi

msg

true

qj

Cond

(a) alternative 1

qi

msg

false

qj

Cond

(b) alternative
2

qi

msg

¬Cond

qj

Cond

(c) alternative 3

qi

msg

Cond

qj

Cond

(d) alternative
4

Figure 6.11: Alternatives for the evaluation point for mandatory conditions

figure 6.1 on page 97 and the associated automata in figures 6.6 on page 115
and 6.7 on page 117. Timeout atoms and end points of timing intervals
introduced in chapter 7 qualify as reference points as well. We thus strongly
recommend the provision of such a reference point.

For conditions without a reference point alternative 1 is the best solu-
tion, even though it results in a non-deterministic automaton. It allows the
most flexibility, however, since all other situations described above can be

6.2. FORMAL SEMANTICS 123

expressed by using appropriate local invariants, etc. This is not the case for
the other alternatives.

Remark 6.8 (Tying possible conditions to messages)
If a possible condition has a reference point in the form of a message, this
message must also be included in the annotation of the transition, which leads
into the exit state. Assume for instance that the mode of Cond1 in the LSC
in figure 6.1 were possible. Then there would be a transition from state q4 to
the exit state annotated by ”¬Cond1 ∧msg5” in the automata in figures 6.6
and 6.7. �

6.2.5 Message Temperatures

So far message temperatures have been assumed to be hot, for which the
semantical treatment is clear: if the send atom has been observed, the receive
atom must also be observed. The intuitive semantics of a cold message is
that it need not be received. For instantaneous messages the situation is
clear: Since sending and receipt happen simultaneously, only the send atom is
unwound. For asynchronous messages, however, there exist different options
how to formally define the semantics:

• Alternative 1: The receiving instance is not allowed to progress be-
yond the receiving atom for this message, i.e. no atoms below the re-
ceiving atom may be observed before the message arrives.

• Alternative 2a: The receiving instance is allowed to progress beyond
the receiving atom without actually receiving the message. If the mes-
sage does arrive later on, the LSC is exited without generating an error,
similar to a violated cold condition.

• Alternative 2b: The receiving instance is allowed to progress be-
yond the receiving atom without actually receiving the message. If
the message does arrive later on, this constitutes an error, similar to a
mandatory condition.

• Alternative 2c: The receiving instance is allowed to progress beyond
the receiving atom without actually receiving the message and a late
arrival of the message is ignored.

124 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

A

S

Ret_S

Figure 6.12: LSC fragment for the illustration of different alternatives for
cold asynchronous messages

Figure 6.12 shows an LSC fragment with a cold asynchronous message
and figure 6.13 on the facing page illustrates the different alternatives (disre-
garding self loop annotations for readability). Alternative 1 means that the
state after receipt of A becomes a fair state regardless of the temperature of
the associated cut; see figure 6.13(a). Thus message A blocks the remainder
of the LSC, if it is never received.

Alternative 2a (illustrated in figure 6.13(b)) necessitates a duplication of
part of the automaton structure, since for all elements following after the
cold message receipt it is necessary to know, if the A has been received, i.e. if
a late receipt of A has to result in an exit or not. If S occurs before the
receipt of A, the left branch in the automaton is taken, and if then A arrives
belated, this results in a transition to the exit state. In order to guarantee
this behavior all transitions, including self loops, of the left-hand branch of
the automaton in figure 6.13(b) have to be extended by ¬?A.

Alternative 2b is similar to 2a (see the automaton in figure 6.13(c)), with
the exception that no transitions to the exit state are required, since late
arrivals of a cold asynchronous message constitute an error. The branch in
the automaton is necessary for this alternative as well, since a late arrival of
A must be detectable.

The last alternative (see the automaton in figure 6.13(d)) allows either to
observe the cold asynchronous message receipt and the succeeding atom in
the specified order or to move on if the succeeding atom is observed before the
cold message arrives. In the latter case a late arrival of the cold message is not
treated in a special way as by the two preceeding options. This is achieved
by inserting an additional transition starting at the state where the receipt is
awaited and ending in the state, where the succeeding element has been un-

6.2. FORMAL SEMANTICS 125

qi

!A

qj

?A

qk

S

ql

Ret S

(a) automaton
for alternative 1

qi

!A

qj

?A

qm ¬?A

S ∧ ¬?A

qn ¬?A

Ret S ∧ ¬?A

qk

S

ql

Ret S
qX true

?A

?A

(b) automaton for alternative
2a

qi

!A

qj

?A

qm ¬?A

S ∧ ¬?A

qn ¬?A

Ret S ∧ ¬?A

qk

S

ql

Ret S

(c) automaton for al-
ternative 2b

qi

!A

qj

?A

qk

S

S ∧ ¬?A

ql

Ret S

(d) automaton
for alternative
2c

Figure 6.13: Automata fragments for the different alternatives for cold asyn-
chronous messages

126 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

wound (cf. figure 6.13(d)), thus skipping the the cold asynchronous message
receipt. The transition annotation is identical to the one of the succeeding
transition. For the weak interpretation the skipping transition additionally
has to be annotated with the negation of the asynchronous receipt in order
to avoid non-determinism.

Alternatives 2a and 2b interfere with the interpretation: The weak inter-
pretation, which explicitly allows duplicate messages, is implicitly overridden
by restricting the occurrence of late cold asynchronous message receipt. The
strict interpretation already forbids other occurrences of ?A than the ones
specified in the LSC. In this case the consequence of alternative 2a is an
implicit weakening of the strict interpretation due to additional exits. Such
implicit and hidden effects must be avoided, since they result in unintuitive
charts. Both options are better expressed explicitly by using appropriate
possible and mandatory local invariants.

We hence choose the last alternative (2c), because it is the only solu-
tion, which is completely orthogonal to other LSC elements and concepts; all
other alternatives are expressible by other LSC elements and concepts. Fair
states in the automaton are determined by the cut temperature, i.e. location
temperatures. Alternative 1 would introduce a second, redundant and poten-
tially contradictory way to specify a cold cut, which overrides the location
temperatures. This situation can and should be expressed by a hot asyn-
chronous message and cold cut, which contains the receipt. Solution 2c also
avoids the duplication of parts of the automaton, which is necessary for op-
tions 2a and 2b yielding a more concise automaton yielding a more concise
automaton.

Cold Asynchronous Messages in Simultaneous Regions

The previous discussion has only taken into account single cold asynchronous
message receipts, but not those which are part of a simultaneous region.
The latter case comprises two sub-cases: the only message atoms in the
simultaneous region are cold asynchronous message receipts, or there are also
other message atoms present. The first sub-case is slightly more restrictive
than for isolated receipts, because either all cold asynchronous messages
contained in the simultaneous region are received at the same time, or none
arrives. The semantics thus is: If one message arrives, all other messages must
arrive simultaneously as well. If not all messages are observed simultaneously,
the consequences depend on the interpretation. This case is already covered

6.2. FORMAL SEMANTICS 127

A
S2

S

Ret_S

(a) LSC fragment

qi ¬S2 ∧ ¬?A

!A

qj

S2

qk

S

ql

Ret S

(b) corresponding automaton
fragment

Figure 6.14: Cold asynchronous message receipt within a simultaneous region

by the procedure for isolated receipts described above.

The other sub-case requires a different treatment, since those message
atoms, which are not cold asynchronous receipts, need to be observed and
thus may not be skipped. Consider e.g. the LSC fragment in figure 6.14(a):
Even though A need not be received, S2 must be sent before S may be sent.
Thus qj — in contrast to the situation in figure 6.13(d) — must not be
skipped, if S is observed before the receipt of A. If S2 occurs, either A arrives
simultaneously or not, thus the automaton in figure 6.14(b) for the LSC
fragment advances from qi to qj on observing S2, regardless of the receipt of
A, because:

(S2 ∧ ¬?A) ∨ (S2∧?A) ≡ (S2 ∧ (¬?A∨?A)) ≡ S2

After observing S2 the arrival of A is not restricted (unless done explicitly
by an appropriate local invariant or the strict interpretation is used). Note
however that it is an error, if A arrives before S2 is observed. If it is received,
it must arrive simultaneously with the sending of S2. This is expressed by
retaining ?A in the stable condition of qi.

128 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

6.2.6 Local Invariants

Invariant

Inst2

Local Inv Example

ActAC:

AM:

Inst1

LSC:

Inst3

msg2

Inv1

Cond1

msg3

msg4

msg1

Figure 6.15: LSC with local invariant and condition

The treatment of local invariants is similar to conditions, only the longer
duration has to be handled differently. For mandatory local invariants this
means that all transitions, including self loops, between the unwinding of
the local invariant start and the local invariant end have to be annotated by
the corresponding identifier. Possible local invariants additionally require to
provide transitions to the exit state from all states, which are covered by the
local invariant. Each such transition is annotated with the negation of the
local invariant identifier.

Example 6.8
Figure 6.16 shows the automaton for the LSC in figure 6.15 using the weak
interpretation for better readability. Since the start of Inv1 includes its
reference point (message msg1), the first transition to be annotated with the
local invariant is the one from q1 to q2. The end does not include its reference
point (message msg4), thus the self loop on state q4 is the last transition,
which is annotated. If the start had not been included, the first transition
to be annotated would have been the self loop on q2. If the end had been
included, the last transition annotated with the local invariant would have
been the one from q4 to q5.

6.2. FORMAL SEMANTICS 129

q1 ¬msg1

q2 ¬msg2 ∧ Inv1

msg1 ∧ Inv1

q3 ¬msg3 ∧ Inv1

msg2 ∧ Inv1

q4 ¬msg4 ∧ Inv1

msg3 ∧Cond1 ∧ Inv1

q5 true

msg4

qXtrue

¬Cond1 ∧msg3

Figure 6.16: Automata for mandatory local invariant in LSC Local Inv

Example (weak interpretation)

The automaton in figure 6.17 illustrates the case, where the mode of Inv1
is possible. From every state within the scope of Inv1 a transition to the exit
state is added and annotated with the negation of the local invariant. Note
that start and end require special attention. The transition from q1 to the
exit state needs to be annotated with the message corresponding to Inv1’s
reference point. This is necessary because the local invariant is active5 only
once msg1 has been observed. Otherwise it would be possible to enter the exit
state before msg1 occurred. Similarly must the annotation of the transition
from q4 to the exit state be extended by the negation of the reference point,
because the scope of Inv1 does not include msg4. A violation of Inv1 thus
is only relevant before msg4 is observed. Excluding msg1 from the scope of
Inv1 results in omitting the transition from q1 to the exit state. Inclusion of
msg4 results in annotating the transition from q4 to the exit state by ¬Inv1
only. �

5We call a local invariant active, if its start atom has been unwound, but not its end
atom.

130 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

q1 ¬msg1

q2 ¬msg2 ∧ Inv1

msg1 ∧ Inv1

q3 ¬msg3 ∧ Inv1

msg2 ∧ Inv1

q4 ¬msg4 ∧ Inv1

msg3 ∧ Cond1 ∧ Inv1

q5 true

msg4

qXtrue

¬Cond1 ∧msg3 ∨ ¬Inv1

¬Inv1 ∧msg1

¬Inv1

¬Inv1 ∧ ¬msg4

Figure 6.17: Automata for possible local invariant in LSC Local Inv

Example (weak interpretation)

Condition and Local Invariant Priorization

Figures 6.15, 6.16 and 6.17 also illustrate the interplay of local invariants and
conditions. The LSC in figure 6.15 contains a potential conflict between the
possible condition Cond1 and the mandatory local invariant Inv1: If Cond1
is evaluated to false and at the same time Inv1 is violated, should this be
considered an error or should the LSC be exited? The same problem exists
for the converse situation, when both a mandatory and possible condition are
present, or when both a mandatory and possible local invariant are active.

Since possible conditions and local invariants are intended to explicitly
weaken the requirement specified in the LSC, we prioritize the violation of
possible conditions or local invariants over mandatory ones. In the automa-
ton in figure 6.16 this is expressed by the annotation of the transition to
the exit state, which is taken, if the condition is violated, regardless of the
evaluation of the local invariant.

6.2. FORMAL SEMANTICS 131

6.2.7 The Unwinding Algorithm

The unwinding algorithm needs as input an LSC body l, including the sets
and functions defined in the preceding sections, and the interpretation (weak
or strict). The result is a timed symbolic automaton T SA = (Σ, Q, q0, C,−→
, F). Since no timing information is considered at this point, the set of
clocks is empty for the moment and all transitions will carry no clock reset
or constraints. Some auxiliary functions are needed, which are indicated by
small capitals font and whose behavior is described below. Algorithm 6.1
shows the main routine of the unwinding procedure.

Algorithm 6.1, lines 1 – 16: Initialization First the stable condi-
tion sc is constructed in line 2, which is only possible beforehand, if the
interpretation is strict, because only then are all stable conditions identi-
cal6. The auxiliary function Neg Conjunct takes a set of identifiers and
constructs the conjunction of the negation of all elements of this set. If
the set contains only one element, only the negation of this element is re-
turned. Thus Neg Conjunct({msg1, msg2}) produces ¬msg1 ∧ ¬msg2,
Neg Conjunct({msg1}) yields ¬msg1.

The set of properties, from which the transition annotations are built, is
made up of the identifiers used in the LSC (line 4). Note that message labels
are used instead of message identifiers, because for asynchronous messages
there need to be two annotations for each message, one for the sending and
one for the receipt. In addition to the identifiers also constants true and false
are allowed. The set of clocks is empty (line 5). phases in line 6 is the set
of phases and is initialized to the initial phase Phase0 (cf. definition 6.9 on
page 109), which also becomes the first state in Q and the initial state (lines 7
and 8). Function State establishes the relation between automaton states
and phases by assigning a unique state name to a phase, e.g. q0 for the initial
phase. If the phase has already been assigned a name, the existing one is
returned. If the initial cut is cold, then the set of fair states is initialized
with Q (line 10), which at this point only contains q0, otherwise F is empty
(line 12). Note that the exit node is always included to keep the algorithm
simple. In practice it is only added when needed. The transition relation is
initialized with the self loop of the exit state in line 14.

6The stable conditions may be not identical in the end due to local invariants, but the
base remains the same.

132 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Algorithm 6.1 Unwinding Algorithm
1: if interpretation = strict then

2: sc := Neg Conjunct(MsgLabels(l))
3: end if

4: Σ := MsgLabels(l) ∪ Conditions(l) ∪ Local Invariants(l) ∪ {true, false}
5: C := ∅
6: phases := {Phase0}
7: Q := {State(Phase0), qX}
8: q0 := State(Phase0)
9: if cut temp(Cut0) = cold then

10: F := Q

11: else

12: F := {qX}
13: end if

14: −→:= {(qX , true, ∅, ǫ, qX)}
15: poss invs0 := {li ∈ Local Invariants(l) | ∃scl ∃cl ∈ scl ∃a, a′ ∈ cl :

a ∈ Instheads(l) ∧ a′ ∈ LI starts(l) ∧ liID(a′) = li ∧ mode(a′) = possible}
16: mand invs0 := {li ∈ Local Invariants(l) | ∃scl ∃cl ∈ scl ∃a, a′ ∈ cl :

a ∈ Instheads(l) ∧ a′ ∈ LI starts(l) ∧ liID(a′) = li∧
mode(a′) = mandatory}

17: while phases 6= ∅ do

18: let ph = (Readyi, Historyi, Cuti) ∈ phases

19: if Readyi = ∅ then

20: F := F ∪ {State(ph)}
21: −→:=−→ ∪ {(State(ph), true, ∅, ǫ,State(ph))}
22: else

23: Generate Exits(Readyi , ph)
24: for all F iredik

∈ P(Readyi) do

25: successor := Step(ph,F iredik
)

26: let successor = (Readyj , Historyj , Cutj)
27: if successor = ph then

28: Insert Self Loop(ph, Readyi)
29: else

30: TransitionAnnot :=Construct Transition(ph, successor,

Readyi, F iredik
)

31:
32: if ∃q ∈ Q with State−1(q) = (Readyx, Historyx, Cutx) : Readyi = Readyx ∧ Historyi =

Historyx then

33: successor := State−1(q)
34: else

35: Q := Q ∪ {State(successor)}
36: phases := (phases \ {ph}) ∪ {successor}
37: if cut temp(Cuti) = cold then

38: F := F ∪ {State(ph)}
39: end if

40: end if

41: −→:=−→ ∪
{(State(ph), T ransitionAnnot, ∅, ǫ,State(successor))}

42: end if

43: Insert Skip Transition(TransitionAnnot, ph, successor)
44: end for

45: end if

46: end while

6.2. FORMAL SEMANTICS 133

Two sets are associated with each phase Phasei: poss invsi and
mand invsi, which contain the identifiers of all possible, resp. mandatory
local invariants, which are active in this phase. The initial sets poss invs0

and mand invs0 are initialized with those local invariants, whose start atoms
are attached to an instance head (lines 15 and 16).

Algorithm 6.1, lines 18 – 47: Main Part The remainder of algo-
rithm 6.1 iterates over the list of accumulated phases and computes the suc-
cessors for each by applying the step function of definition 6.10 on page 110.
As long as the list of phases is not empty (line 17) a phase ph is taken from
the list (line 18) and unwound.

Algorithm 6.1, lines 19 – 21: Final State Line 19 checks, if the current
phase is the final phase, which is indicated by an empty ready set. The final
phase need not be unwound using the step function, since it does not have a
successor. Thus it is sufficient to add the name corresponding to the phase
to the set of fair states7 (line 20) and to insert the true-annotated self loop
to the transition relation (line 21). Note the empty clock reset list and clock
constraint.

Algorithm 6.1, lines 23 – 46: Computing Successors If the current
phase is not the final one, the step function needs to be applied for all fired
sets Firedik computed for ready set Readyi (lines 24 – 26). Before the succes-
sors are computed the transition to the exit state is generated, if needed, in
line 23 by the function Generate Exits, which is shown in algorithm 6.2 on
page 135.

If the successor is identical to the current phase, this means that the
self loop for the corresponding state must be generated, which is handled
by function Insert Self Loop (line 28) and which is described in algo-
rithm 6.3 on page 137. If the successor phase is different from the current
phase, the annotation of the transition to the successor phase is generated
by function Construct Transition in line 30; for the behavior of this
function refer to algorithm 6.4 on page 138.

Lines 32 and 33 implement the optimization introduced in section 6.2.1:
If there already is an equivalent state in Q, this state is used as successor
(line 33), otherwise a new state is generated and inserted into Q (line 35),

7Recall that the final state is always fair.

134 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

the old phase is removed from the phases list and the new phase is appended
(line 36), and the state is added to the set of fair states, if the corresponding
cut is cold (lines 37, 38). The function State−1 is the inverse of function
State, i.e. it returns the phase associated with a state in Q.

In line 41 the transition is generated and added to −→. Line 43 contains
the treatment for cold asynchronous message receipts, if they require the
inserting of a skipping transition as described in section 6.2.5 on page 123.
This is handled by function Insert Skip Transition, which is described
in algorithm 6.5 on page 139.

Algorithm 6.2 on the next page creates the transition to the exit state for
each unwound phase, i.e. it is executed only once for each phase. It consists
of three major parts: checking for possible conditions and local invariants in
simultaneous regions (lines 2 – 25), handling possible conditions, which are
not part of a simultaneous region (lines 27 – 29) and generating the transition
to the exit state (lines 30 – 32). The annotation for the transition to the exit
state is initialized to true in line 1.

Algorithm 6.2, lines 2 – 5: Possible Conditions in Simulta-

neous Regions First, the simultaneous regions contained in the cur-
rent ready set are checked for possible conditions. The auxiliary func-
tion SimClasses(SimRegs(Readyi)) returns the set of simultaneous classes
in Readyi, which contain a simultaneous region, i.e. the set of clus-
ters, which contain more than one atom each. The auxiliary function
Poss CondIDs(scl) similarly returns the set of condition atom identifiers,
which are contained in SimClass scl and whose mode is possible. If such
identifiers exist, i.e. the set returned by Poss CondIDs(scl) is not empty
(line 3), the conjunction of the negation of these identifiers is disjunctively
added to the annotation of the transition to the exit state ExitAnnot (line 4)
conjoined with the conjunction of all message identifiers contained in the
same simultaneous region. The auxiliary function MsgLabels(scl) returns
the set of labels of messages contained in SimClass scl. This implements
the semantics for possible conditions within simultaneous regions described
in remark 6.8 on page 123: the evaluation point of a condition bound to a
message via a simultaneous region is given by the occurrence of this message.
The procedure described here is the generalization to a number of possible
conditions and several messages contained in a simultaneous region. Note
that the elements within one simultaneous region are assembled conjunc-

6.2. FORMAL SEMANTICS 135

Algorithm 6.2 Generate Exits(Readyi, ph)
1: ExitAnnot := false

2: for all scl ∈ SimClasses(SimRegs(Readyi)) do

3: if Poss CondIDs(scl) 6= ∅ then

4: ExitAnnot := ExitAnnot ∨
(Neg Disjunct(Poss CondIDs(scl))∧

Conjunct(MsgLabels(scl)))
5: end if

6: for all lis ∈ LIStarts(Readyi) do

7: if lis ∈ scl ∧mode(liID(lis)) = possible then

8: if incl(lis) then

9: ExitAnnot := ExitAnnot ∨ (¬liID(lis)∧
Conjunct(MsgLabels(scl)))

10: else

11: ExitAnnot := ExitAnnot ∨ ¬liID(lis)
12: end if

13: end if

14: end for

15: for all lie ∈ LIEnds(Readyi) do

16: if lie ∈ scl ∧mode(liID(lie)) = possible then

17: if incl(lie) then

18: ExitAnnot := ExitAnnot ∨ (¬liID(lie)∧
Neg Conjunct(MsgLabels(scl)))

19: else

20: ExitAnnot := ExitAnnot ∨ ¬liID(lie)
21: end if

22: end if

23: end for

24: end for

25:
26: for all pc ∈Poss CondIDs(Readyi)\

Poss CondIDs(SimClasses(Readyi) do

27: ExitAnnot := ExitAnnot ∨ ¬pc
28: end for

29:
30: if ExitAnnot 6= false then

31: −→:=−→ ∪ {(State(ph), ExitAnnot, ∅, ǫ, qX)}

32: end if

tively, but that several such regions are joined disjunctively, since violations
of distinct possible conditions (and local invariants) must each individually
lead to an exit.

136 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Algorithm 6.2, lines 6 – 14: Possible Local Invariant Starts The
auxiliary function LIStarts(Readyi) returns the set of local invariant start
atoms of Readyi. Only the possible ones, which are contained in the current
simultaneous region, are of interest here (line 7). If they also include the
simultaneous region they are bound to (line 8), the exit transition needs to be
annotated not only with the negation of the local invariant, but also with the
message identifiers of their simultaneous region as described in example 6.8 on
page 128 (line 9). If they are non-inclusive the negation of the local invariant
identifier is sufficient (line 11).

Algorithm 6.2, lines 15 – 24: Possible Local Invariant Ends A
similar treatment is necessary for possible local invariant ends, since they
also need a special treatment, if they include the simultaneous region they
are bound to. As explained in example 6.8 on page 128 it is necessary to
additionally annotate the negation of the local invariant identifier with the
negation of the messages contained in the currently considered simultaneous
region (line 18).

Algorithm 6.2, lines 26 – 28: Isolated Possible Conditions All pos-
sible conditions, which are not part of a simultaneous region (line 26) require
only their disjunctive inclusion into the annotation of the exit transition
(line 27).

Algorithm 6.2, lines 30 – 32: Exit Transition Generation The gen-
eration of a transition to the exit state is only necessary, if any possible
condition or local invariant is present in the current ready set, indicated by
a non-empty, i.e. other than false, ExitAnnot (line 30). If this is the case,
the transition to the exit state is added to the transition relation (line 31).

Algorithm 6.3 Algorithm 6.3 on the next page generates the self loop for
a state and adds it to the transition relation. For simplicity’s sake the two
sets of active local invariants are joined in line 1. If the interpretation is
strict, then the base stable condition has already been computed and only
the conjunction of the active local invariants needs to be added (line 3). For
the weak interpretation it has to be checked, if there are any messages in the
ready set (line 5). The auxiliary function MsgLabels is an extension of the
corresponding auxiliary function defined in algorithm 6.2. If Readyi contains

6.2. FORMAL SEMANTICS 137

Algorithm 6.3 Insert Self Loop(ph,Readyi)
1: let invsi = poss invsi ∪mand invsi

2: if interpretation = strict then

3: −→:=−→ ∪ {(State(ph), sc ∧ Conjunct(invsi), ∅, ǫ,State(ph))}
4: else

5: if MsgLabels(Readyi) 6= ∅ then

6: −→:=−→ ∪ {(State(ph),
Neg Conjunct(MsgLabels(Readyi)) ∧ Conjunct(invsi),
∅, ǫ,State(ph))}

7: else

8: −→:=−→ ∪
{(State(ph), true ∧ Conjunct(invsi), ∅, ǫ,State(ph))}

9: end if

10: end if

at least one message, the conjunction of the negation of their identifiers is
used for the transition annotation, in addition to the conjunction of active
local invariants (line 6). If no messages are present in Readyi the annotation
is simply true plus the conjunction of active local invariants (line 8).

Algorithm 6.4 Algorithm 6.4 on the following page constructs the an-
notation for the transition corresponding to the currently unwound fired set
and computes the new sets of active local invariants. The starting point
for these sets, poss invsj and mand invsj , are the current sets (lines 1, 2).
First the local invariants, whose end atoms are unwound in this step have to
be considered, since these local invariants must not appear in the transition
annotation and thus have to be removed first. This is done by function Han-
dle Local Invariant Ends (line 4), which returns the first part of the
transition annotation and adjusts the set of active local invariants and whose
behavior is detailed by algorithm 6.6. Lines 6 – 8 introduce some abbrevi-
ations for the set of all active local invariants, the set of identifiers of cold
message receipts contained in the current fired set, and the set of message
labels contained in simultaneous regions of Firedik. The auxiliary function
SimRegs(Firedik) yields the simultaneous regions contained in the fired set,
i.e. those clusters, which are comprised of more than one atom, ColdMsgR-
cvLabels(Firedik) returns the set of message labels of cold asynchronous
message receipt atoms in Firedik . If cold message receipts are present in
the current fired set, the transition annotation is extended appropriately by
the function Generate Main Annotation (line 10), which is presented

138 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Algorithm 6.4 transAnnot Construct Transition(ph, successor, Readyi,
Firedik)
1: mand invsj := mand invsi

2: poss invsj := poss invsi

3:
4: transAnnot := Handle Local Invariant Ends(true,

F iredik
, Readyi, j)

5:
6: let invsj = poss invsj ∪mand invsj

7: let cmr = ColdMsgRcvLabels(Firedik
)

8: let msr = MsgLabels(SimRegs(Firedik
))

9: if cmr 6= ∅ then

10: transAnnot :=Generate Main Annotation(Firedik
, cmr,

msr, invsj, transAnnot)
11: end if

12: if interpretation = strict then

13: transAnnot := transAnnot ∧
Neg Conjunct(MsgLabels(l) \ MsgLabels(Firedik

))
14: end if

15: if |SimClasses(Readyi)| > 1 ∧ interpretation = weak then

16: transAnnot := transAnnot∧
Neg Conjunct(MsgLabels(Readyi \ MsgLabels(Firedik

)))
17: end if

18:
19: transAnnot :=Handle Local Invariant Starts(transAnnot,

F iredik
, Readyi, j)

20:

21: return transAnnot

in detail in algorithm 6.8 on page 140.

In case of the strict interpretation the transition must contain the con-
junction of the negation of all message labels of the LSC, which are not
unwound in the current step, which is done in line 13. If the current ready
set contains more than one SimClass, which means that either (part of) a
coregion is unwound or independent LSC elements, the transitions leaving
the current state ph have to be made deterministic — as motivated in sec-
tion 6.2.2 on page 116 — by adding the negation of all elements, which are
not unwound, but are in the ready set (line 16).

Finally, the local invariant starts contained in the current fired set have
to be considered and added to the transition annotation. This is handled by
function Handle Local Invariant Starts in line 19, which is described

6.2. FORMAL SEMANTICS 139

by algorithm 6.7 on the following page.

Algorithm 6.5 Insert Skip Transition(TransitionAnnot, ph, successor)

1: for all (qx, ψ,State−1(ph)) ∈−→ do

2: let (Readyx, Historyx, Cutx) = State−1(qx)
3: if ColdMsgRcvs(Readyx) =Atoms(Readyx) then

4: −→:=−→ ∪ (qx, T ransitionAnnot∧
Neg Conjunct(ColdMsgRcvLabels)(Readyx),
State(successor))

5: end if

6: end for

Algorithm 6.5 Algorithm 6.5 generates the transitions, which skip the
receipt of cold asynchronous message receipts as explained in detail in sec-
tion 6.2.5. The strategy is to examine all transitions leading to the state,
for which a successor has just been computed (line 1), and find those states
immediately preceding the one for the current phase ph, which only contain
cold message receipt atoms (line 3). The auxiliary functions ColdMsgR-
cvs(Readyx), resp. Atoms(Readyx) return the set of cold message receive
atoms, resp. all atoms of the ready set. These states are the ones from
which a skipping transition originates and thus a correspondingly annotated
transition is added to −→ (line 4). As described in section 6.2.5 the annota-
tion consists of the annotation of the currently considered transition (from
State−1(ph) to State−1(successor)).

Algorithm 6.6 TransAnnot Handle Local Invariant
Ends(TransAnnot, F iredik , Readyi, j)

1: for all lie ∈ LIEnds(Readyi) do

2: if incl(lie) then

3: TransAnnot := TransAnnot ∧ liID(lie)
4: end if

5: if mode(liID(lie)) = mandatory then

6: mand invsj := mand invsj \ {liID(lie)}
7: else

8: poss invsj := poss invsj \ {liID(lie)}
9: end if

10: end for

11: return TransAnnot

140 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Algorithm 6.6 Algorithm 6.6 on the preceding page conjunctively adds
the identifiers of all local invariant end atoms to the annotation of the cur-
rent transition (line 3), if they are inclusive (line 2). Non-inclusive ones are
automatically handled by not being in the set of active local invariants. All
are removed from the respective sets for the successor phase (lines 5 – 8).

Algorithm 6.7 TransAnnot Handle Local Invariant
Starts(TransAnnot, F iredik , Readyi, j)

1: for all lis ∈ LIStarts(Readyi) do

2: if incl(lis) then

3: TransAnnot := TransAnnot ∧ liID(lis)
4: end if

5: if mode(liID(lis)) = mandatory then

6: mand invsj := mand invsj ∪ {liID(lis)}
7: else

8: poss invsj := poss invsj ∪ {liID(lis)}
9: end if

10: end for

11: return TransAnnot

Algorithm 6.7 Algorithm 6.7 is the dual of algorithm 6.6 and likewise
adds inclusive local invariants to the current transition (lines 2, 3) and adds
all unwound local invariants to the respective sets of active local invariants
for the next phase (lines 5 – 9).

Algorithm 6.8 transAnnot Generate Main Annotation(Firedik , cmr,
msr, invsj , transAnnot)

1: let msgs = MsgLabels(Firedik
) \ ColdInstLabels(Firedik

)
2:
3: if (cmr ⊂ msr) then

4: transAnnot := transAnnot ∧ Conjunct((msgs \ cmr)
∪ CondIDs(Firedik

) ∪ invsj)
5: else

6: transAnnot := transAnnot ∧ Conjunct(msgs ∪
CondIDs(Firedik

) ∪ invsj)
7: end if

8: return transAnnot

6.3. ACTIVATION AND QUANTIFICATION 141

Algorithm 6.8 Algorithm 6.8 on the facing page constructs the main
part of the transition annotation and also takes care of cold message re-
ceipts, except for the skipping transition, which is handled by function In-
sert Skip Transition described in algorithm 6.5 on page 139. Cold in-
stantaneous messages are taken care of in line 1, where they are removed
from the set of labels of fired messages; the auxiliary function ColdInst-
Labels(Firedik) returns the labels of all cold instantaneous messages in the
current fired set.

Then it is checked, whether asynchronous cold message receipts have to
be considered for the transition annotation. They can be neglected, if they
are contained in a simultaneous region, which also contains other messages
(cf. page 126). This is expressed by the strict subset requirement in line 3.
In this case the cold message receipts (cmr) are disregarded for the transition
annotation (line 4), otherwise they are included (line 6). In both cases the
condition identifiers and the active local invariants are added, if present.

6.3 Activation and Quantification

The symbolic automaton generated by the unwinding algorithm in the pre-
ceding section defines the behavior of the LSC body, disregarding the acti-
vation point, mode and quantification information. In order to define the
semantics of the entire LSC the system, whose behavior is specified by the
LSC, is needed; we call this the reference system of the LSC. In this section
we introduce an abstract representation of such a reference system, which is
used to define the complete semantics of an LSC.

6.3.1 Reference System

Informally, a system consists of a set of functional units, which are hierarchi-
cally organized, i.e. there are several levels of hierarchy, each consisting of a
set of functional units, which may be decomposed into sub-units and so on.
Each functional unit has a set of ports, which form its interface, the interfaces
of different units are connected by channels. Information from unit to unit
is passed along the channels, which can be delaying. Each unit also imple-
ments a behavior, whose concrete realization is unimportant for this thesis.
Figure 6.18 shows an example with three levels of hierarchy. Functional units
are depicted as boxes, channels by lines between units, interfaces by channels

142 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

U1

U11 U12

U13

U111 U112

Figure 6.18: Example for a hierarchical system

connecting to a unit, and hierarchy by the nesting of boxes.

6.12 Definition (Functional Unit)
Let T be a set of types. A functional unit FU is a tuple

FU = (Ports, SubFUs, Channels)

where

• Ports is the set of typed, directed ports, which makes variables of FU visible
outside of FU

• SubFUs = (FU1, . . . , FUn) is the set of functional sub-units, which are con-
tained in FU

• Channels is the set of channels connecting the functional sub-units with each
other and with the ports of FU

Each channel ch ∈ Channels connects two ports: ch =
(src port, dest port), where src port is the source port of the channel
and dest port the destination port. The port direction is given by the func-
tion dir : Ports −→ in, out8. The type of a port is given by the function:
port type : Ports −→ T . �

8Inout ports can be modeled by two separate sets of channels and source and destination
ports.

6.3. ACTIVATION AND QUANTIFICATION 143

6.13 Definition (Well-formedness of a Functional Unit)
A functional unit FU is well-formed iff

1. ∀ch ∈ Channels : port type(src port) = port type(dest port) (Ports must
be type compatible.)

2. ∀ch ∈ Channels : dir(src port) 6= dir(dest port) (A channel may only con-
nect an in port with an out port and vice versa.)

3. ∀ch = (src port, dest port), ch′ = (src port′, dest port′) ∈ Channels :
dest port 6= dest port′ (No multiple senders.)

�

6.14 Definition (Reference System)
A reference system S is a well-formed functional unit: S =
(Ports, SubFUs, Channels). �

Each functional unit contains internal variables, which may be made vis-
ible to other units or the outside world via the units’ ports. The ports are
typed according to the type of the variable, which is associated with the port.
The concrete types and nature of the variables is again abstracted from for
our purposes. The observables of the system thus are those variables, which
are made available via ports. The domain of variables, and hence of the
ports, of reference system S is denoted by DOMS. Valuation

θ : (Ports ∪ PortsFU1
∪ · · · ∪ PortsFUn

) −→ DomS

assigns to each port p ∈ Ports ∪ PortsFU1
∪ · · · ∪ PortsFUn

the value of the
variable associated with p. A sequence of such valuations makes up a run of
reference system (cf. section 5.3):

6.15 Definition (Reference System Run)
Let PropS := {p ⊲ v | p ∈ Ports ∪ PortsFU1

∪ · · · ∪ PortsFUn
, v ∈ DOMS ∨

v ∈∈ Ports∪PortsFU1
∪· · ·∪PortsFUn

,⊲∈ {=, <,>,≤,≥}} be the set of all
propositions over ports of reference system S = (Ports, SubFUs, Channels)
and let τ = τ0τ1τ2 . . . be a time sequence.

A timed run tr of reference system S is an infinite sequence of pairs
(θ, τ) : tr = (θ0, τ0)(θ1, τ1)(θ2, τ2) . . .
The i-th valuation of timed run tr is denoted by tri = (θi, τi) and the suffix

of a timed run tr, which starts at the i-th valuation is denoted by
−→
tri =

144 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

(θi, τi)(θi+1, τi+1) . . . The finite segment of a timed run, starting at the i-th
valuation and ending at the j-th, is denoted by trj

i = (θi, τi) . . . (θj , τj)
The satisfaction of a formula ψ ∈ BExprPropS

over basic propositions over
ports of S by the i-th valuation of tr is denoted by tri |= ψ.
Runs(S) is the set of all timed runs of reference system S. �

6.3.2 Complete Semantics

The complete semantics of an LSC is defined in terms of the runs, which are
produced by the system and accepted by the automaton of the LSC. The un-
winding algorithm operates on the identifiers, which are associated with the
unwound LSCs elements, and therefore the generated symbolic automaton
is annotated with formulas over these identifiers. The final step in relating
the LSC to the reference system is taken by mapping identifiers to concrete
design elements.

Since environment instances have to be mapped to the reference system
itself — which represents the border between the environment and the ac-
tual system under development — the function envInst(·) is introduced. It
returns true, if an instance is an environment instance and false, if it is a
normal instance:

envInst : Instances(l) −→ B

The mapping function map for an LSC L and a reference system S assigns
a functional unit to each instance identifier, and a proposition over ports of
S to each message label and condition and local invariant identifier:

• map(i) = FUj, for i ∈ Inst(l) with envInst(i) = false, FUj ∈
SubFUs, 1 ≤ j ≤ n

• map(i) = FU , for i ∈ Inst(l) with envInst(i) = true

• map(label) = p, for label ∈ MsgLabels(l) ∪ Conditions(l) ∪
Local Invariants(l), p ∈ PropS := {p ⊲ v | p ∈ Ports ∪ PortsFU1

∪
· · ·∪PortsFUn

, v ∈ DOMS∨v ∈∈ Ports∪PortsFU1
∪· · ·∪PortsFUn

,⊲∈
{=, <,>,≤,≥}}

Message labels should be mapped to ports of suitable types, suitable in
this context meaning event-based, since messages in LSCs express dynamic

6.3. ACTIVATION AND QUANTIFICATION 145

information exchange. Mapping a message e.g. to an integer port is typi-
cally not appropriate; mapping a message to a value change of an integer
port is suitable. Complementarily, should conditions be mapped to static
expressions, as they represent properties which are stable for several points
in time. Local invariants belong to both categories, since they express both
static and dynamic properties. Consequently, their mapping may consist of
event-based and static parts. The concrete definition of map(·) depends on
the reference system; see section 6.3.3 on the following page for an example.

For a symbolic automaton T SA we thus denote the substitution of all
identifiers by their corresponding proposition by map(T SA), the accepted
language is consequently denoted by L(map(T SA)).

The exact definition of the relation between both types of runs depends
on the activation mode and quantification. Initial LSCs are activated at
system start, whereas invariant and iterative LSCs are activated whenever
the activation condition is true. Iterative LSCs allow only one incarnation of
an LSC at a time, i.e. such an LSC may not be reactivated.

Recall from definition 6.1 on page 94 the formal LSC definition: L =
(l, assumptions, ac, pch, amode, quant). We assume here that the set of as-
sumptions is empty and no pre-chart is specified in order to focus on the LSC
constructs presented in this chapter. The semantics is extended to deal with
assumptions and pre-charts in chapters 8 and 9, respectively.

6.16 Definition (Satisfaction of an LSC)
Let L = (l, ∅, ac, ǫ, amode, quant) be an LSC, T SAl the timed symbolic
automaton generated for LSC body l by the unwinding algorithm, and S the
corresponding reference system.

L is existentially satisfied by S, denoted S |=∃ L, iff quant = existential ∧
∃tr ∈ Runs(S) : tr |=∃ L, where

tr |=∃ Liff

tr0 |= ac ∧
−→
tr1 ∈ L(map(T SAl)) amode = initial

∃i : tri |= ac∧
−−→
tri+1 ∈ L(map(T SAl)) amode = invariant

∃i : tri |= ac ∧ ¬active(L)∧
−−→
tri+1 ∈ L(map(T SAl)) amode = iterative

146 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

L is universally satisfied by S, denoted S |=∀ L,iff quant = universal∧∀tr ∈
Runs(S) : tr |=∀ L, where

tr |=∀ Liff

tr0 |= ac⇒
−→
tr1 ∈ L(map(T SAl)) amode = initial

∀i : tri |= ac⇒
−−→
tri+1 ∈ L(map(T SAl)) amode = invariant

∀i : tri |= ac ∧ ¬active(L) ⇒
−−→
tri+1 ∈ L(map(T SAl)) amode = iterative

with
the predicate active(L) is true, if there is another active incarnation of L,
which has not yet reached its final or exit state.

�

Note that for the universal satisfaction of an LSC a satisfaction of the
activation condition only implies the satisfaction of the LSC body. This
is due to the fact that in the universal quantification all states of all runs
have to be checked for activation: a conjunction as in the case of existential
satisfaction would require every state of every run to satisfy the activation
condition, which is not the intended semantics. The consequence of the
implication is that an LSC may be universally satisfied, even though it is
never activated. For practical applications it is thus recommended to check
for a satisfied universal LSC, if it is activated at least once. One such check
is e.g. to check the universal LSC for existential satisfaction.

6.3.3 Implications on the Interpretation

The types of the ports of the reference system have an impact on the inter-
pretation of the LSC, since the LSC messages, conditions and local invari-
ants use these ports. We will use Statemate as example in this section,
but the argument is valid independently of a particular modeling language.
We thus first give an informal overview of the mapping of LSC elements to
Statemateelements: the functional units are activities, so that instances
are mapped to activities and environment instances to environment activi-
ties. The channels are represented by information, control and data flows,
and the ports by the data items and events contained in them.

6.3. ACTIVATION AND QUANTIFICATION 147

Conditions should therefore be mapped to data items and conditions,
whereas messages should be mapped to events, explicit or derived ones. The
latter type of events are derived from data items and conditions by observing
actions on these. For data items events expressing the writing or change of
a data item are available — e.g. changed(int x) which is true when the
value of integer data item int x changes. For conditions derived events for
observing the falling and rising edge are available.

Example 6.9
In LSC securing yerr in figure A.33 on page 326 message switch2yellow is
e.g. mapped to event SWITCH ON (SWITCH ON = TRUE) and message opening

is mapped to condition CLOSED (false(CLOSED), falling edge of CLOSED). �

For the strict interpretation only certain types are usable, since duplicate
messages are forbidden. Assume e.g. that a message is mapped to a port
cond of type (Statemate) condition and the expression cond = true. Since
typically cond is true for more than a single point in time, the corresponding
LSC is immediately violated in the strict interpretation. The same holds for
integer data types and other data items. Thus, such data types must not be
used in the strict interpretation, unless it can be guaranteed, that during the
activation of the LSC(s) in question the expected value is observed only at
one single point in time, which is generally not the case.

A similar situation arises when messages are mapped to often recurring
events, like e.g. in Statemate implicit signals indicating that a data item
has been written or changed. Assume for instance that int x is an inte-
ger and that it is incremented every two steps. Mapping a message to the
port representing the implicit signal changed(int x) results in immediate
violations in the strict interpretation. Consequently, no two messages of an
LSC may be mapped to the same port or expression when this LSC is to
be interpreted strictly. Furthermore, in order to be able to use the strict
interpretation every message must be mapped to an expression, which is
completely disjunct from expressions other messages of the same LSC are
mapped to. Consider for instance two messages msg1 and msg2, which are
both mapped to the same port, say integer int x and expressions int x <

7 and int x > 2, respectively. Since the truth valuations of the two expres-
sions are not disjunct, both expressions become true when int x is e.g. set
to 4, immediately violating an LSC, which contains both messages and is
interpreted strictly. For the weak interpretation there is no restriction on
which ports to choose for a message, since duplicate messages are allowed.

148 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Therefore caution has to be exercised, if the strict interpretation is to be
used. Otherwise unexpected or unwanted violations of the LSC will result.

Another source of undesired behavior are cold cuts. In the weak interpre-
tation cold cuts should be used with care, because once a cold cut is reached
the LSC is essentially deactivated. The message(s) expected at this point are
either observed and the LSC continues or they are never observed without
any further restrictions (from the interpretation) on the subsequent behavior
of the system. Cold cuts in combination with the strict interpretation are
also potentially dangerous, since if the system never exhibits behavior, which
prompt the automaton to leave the state corresponding to the cold cut, all
messages contained in the LSC are forbidden forever. This may not be the
behavior intended by the specifier, so cold cuts should be used with care in
any case.

6.3.4 Well-formedness Rules

In conclusion we here summarize the well-formedness rules, which have been
identified in this chapter and in chapter 4. Henceforth we assume that all
LSCs are well-formed.

1. Instantaneous messages may not cross other instantaneous ones.

2. For each method call there is a return message and vice versa.

3. On an instance axis which has emitted a method call there are no
messages either sent or received between the call and the return.

4. Every local invariant start or end atom must be encapsulated in a
simultaneous region.

5. Simultaneous regions involving an instance head may only contain the
start of a local invariant.

6. Every condition should be bound to at least one hot message.

6.4. RELATED WORK 149

6.4 Related Work

In this section we relate our approach to other work from the literature,
which either extend the feature set as given by MSCs or SDs and/or provide
formal characterizations for standard or extended sequence charts. Chapter
4 has already highlighted the points, where the language of LSCs presented
in this thesis differs from the one proposed in [DH98, DH01]. In this section
we thus focus on the differences of the formal semantics.

The semantics of LSCs as defined in [DH01] are similar to our approach
due to the characterization by a symbolic transition system called skeleton
automaton, which is vaguely similar to our symbolic automaton, but differs
in definition of acceptance of a run. It is encoded into different parts of the
skeleton automaton and is defined on the one hand by reaching either the
final or the exit state and on the other hand by stopping somewhere along
the way as long as all progress requirements, which are collected in separate
set, have been met. Our notion of acceptance in contrast hinges only on one
concept: the set of fair states of the generated symbolic automaton.

The skeleton automaton includes an explicit error state, called abort,
which is implicit in the symbolic automaton. The abort state does not cap-
ture all violations of the LSC, since unfulfilled liveness requirements are de-
tected via a different mechanism, a set of promises.

Whereas the automaton of [DH01] defines a pure interleaving semantics,
the symbolic automaton additionally allows in certain circumstances more
than one instance to advance in a step. For concurrently enabled LSC ele-
ments the latter solution is more appropriate, since simultaneity is explicitly
supported by simultaneous regions.

[DH01] only considers the strict interpretation, which is not formalized.
All messages appearing in an LSC are collected in a list, which may addition-
ally contain other messages, which are forbidden during activation of the LSC
(forbidden messages). Such additional forbidden messages are not explicitly
treated in our approach, but can be easily added by using mandatory local
invariants. This moreover allows the selective prohibition of messages within
specific segments of the LSC only. Cold asynchronous message receipts are
treated identically to our approach, i.e. they are ignored.

The evaluation point for isolated conditions is not considered in detail
in [DH01], it is rather left open, when such a condition is evaluated, which
corresponds to the default solution of our approach.

150 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

Bontemps [Bon01] gives a semantics definition for LSCs, which closely
follows [DH01], but constructs a finite automaton. The semantics cover only
a subset of the LSC features leaving out conditions, local invariants, simul-
taneous regions and time. In addition to existential and universal quantifica-
tion [Bon01] considers also a third possibility, called no-stories, which simply
is the negation of the existential quantification.

There are other approaches, which aim at defining a richer, more expres-
sive variant of MSCs or a suitable formal semantics. Krüger [Krü00] takes
up some of the ideas presented in [DH98] and enhances (a subset of) MSC-96
with a number of concepts; a formal semantics based on streams is also pro-
vided. Among the new concepts is the possibility to specify quantification
information, i.e. to designate MSCs as existential or universal, in the same
fashion as in [DH98]. In addition to these two modes (called interpretations
in [Krü00]) an exact mode, which forbids all behavior not explicitly specified
in the MSC, and the negation of an MSC are introduced.

There is no possibility to distinguish between mandatory and possible
elements within the chart in this approach; all messages must be observed,
i.e. all locations and messages are hot in LSC terminology. The underlying
communication paradigm is synchronous, i.e. there is no distinction between
the points of sending and receiving of a message, although a potential in-
terpretation for asynchronous message exchange is offered, which assumes
that messages are buffered by the channels they are sent on, similar to an
event queue in UML. Conditions are not given a semantics directly, but can
be modeled by guarded MSCs, i.e. MSCs, which are guarded by a boolean
condition. Since the final MSC may be composed from smaller parts, which
are MSCs themselves, this concept can be used to give meaning to conditions
and also to model activation conditions. The use of an activation condition
is not required though, so that in general the point of activation is not re-
solved. If an MSC starts with a guard, this would correspond to the invariant
activation mode; other activation modes are not considered.

Local invariants, simultaneous regions and an activation mode are not
covered in [Krü00]. Duplicate messages are not constrained, except in the
exact interpretation. Thus for all modes except the exact the interpretation
— in our terminology — is weak, whereas the constraint imposed by the
exact mode is more restrictive than our strict interpretation, since only those
system behaviors are allowed, which are explicitly specified in the LSC. This
level of strictness is unnecessary for our approach, since we do not aim at
specifying the entire behavior of a system in one LSC.

6.4. RELATED WORK 151

The (to our knowledge) first to bring together liveness and MSCs were
Ladkin and Leue [LL92b, LL92a, LL95], who define a formal, automata-
based semantics for part of MSC-93. Their approach to derive an automaton
from an MSC is similar to the one presented in this chapter, although the
set of features covered is much smaller, since they only consider messages.9

A construct similar to a cut, called global system state, and a transition
relation on these states is used to generate the automaton. Liveness is added
to the generated automaton by manually designating states as fair in the
sense of Büchi automata. These liveness properties are not expressible in the
graphical MSC representation, but added only as a finishing touch on the
generated automaton.

Firley et al. [FHD+99] translate Sequence Diagrams with timing annota-
tions into timed automata in order to check the SDs for timing consistency
using the UPPAAL model checker [LPY97]. Inspired by [DH99] they distin-
guish between mandatory and optional behavior on the chart level, which
nevertheless differs from the LSC concept of quantification. There exists
also a third type of behavior, called If-Then-Behavior, which is similar to
pre-charts and therefore covered in section 9.3 on page 218.

The goal in [FHD+99] is to check, if a given SD is consistent with respect
to its timing constraints. This property only requires one run of the system,
which completely traverses the entire SD. The quantification, in our termi-
nology, is thus always existential. Given the fact that no liveness properties,
no conditions and no local invariants can be specified within the consid-
ered SDs, the notion of existential satisfaction is slightly different than in
our approach. [FHD+99] always require the complete traversal of the SD,
which is not necessarily required in our existential interpretation, where the
LSC is also fulfilled, if a possible condition or local invariant is evaluated to
false or we get stuck in a cold cut forever. The timed automata constructed
in [FHD+99] thus do not contain an exit state; in contrast to our timed
symbolic automata they do have an explicit error state, however.

The distinction between mandatory and optional SD behavior corre-
sponds rather to strict, resp. weak interpretation of LSCs. The issue of
activating the SD is addressed partly, again depending on the SD behavior.
Mandatory SDs are activated when the first message is observed, optional
and If-Then-SDs are activated non-deterministically on observation of the

9Asynchronous ones in the MSC-93 case, but also synchronous ones in the more general
case of Message Flow Graphs, which are similar to MSCs.

152 CHAPTER 6. SEMANTICS OF THE LSC KERNEL LANGUAGE

first message.10 Since the quantification is inherently existential in this ap-
proach, there exists no possibility for multiple or concurrent activations of an
SD. The non-deterministic activation for optional and If-Then-SDs, however,
allows to consider SD incarnations other than the first.

Within an SD there is no distinction between mandatory and possible
behavior, so that no progress is enforceable. The timing constraints in a
mandatory SD allow to express bounded liveness requirements, however, but
in the other SD types progress is not required. Conditions and local invari-
ant are not covered and messages are limited to synchronous ones, which
additionally have to totally ordered.

Padilla and Jonsson [JP01] define a formal semantics for MSC-2000, which
is given as an abstract execution machine, which is constructed according to
a set of production rules from an MSC and is intended to serve either as a
monitor or generator of test sequences. They consider boolean conditions,
which has become possible due to the introduction of data in MSC-2000.
The question of what the consequence of a violated condition is, is resolved
by waiting for the rising edge. The issues of activation, simultaneity and
progress are not covered.

There are several approaches, which are concerned with adding timing
information to MSCs and SDs. These approaches allow to specify a limited
version of liveness by placing upper or exact bounds on the occurrence times
of messages, etc. Typically it is not clear, if the elements constrained by the
time bound must occur within the allotted time or whether, if they occur,
it has to be within the time bound. Some also allow to use ∞ as an upper
bound, so that real liveness can be specified, although the semantics provided
are of varying degrees of formalization. We will discuss these approaches in
more detail in the section 7.3 on page 167.

10Activation on observation of the first message works in this case, because only SDs
with totally ordered messages are considered.

Chapter 7

Adding Time

Being able to specify time constraints in property specifications is a key
point, especially but not exclusively in the field of safety-critical systems,
where a timely behavior is essential. One essential property of an airbag
controller e.g. is that it activates the firing capsule within a certain amount
of time after a crash has been detected. As presented in chapter 3 both MSCs
and SDs provide constructs for the expression of time like timer or timing
intervals, although the semantics, if existing, do not treat time quantitatively,
as criticized in sections 3.1.4 and 3.2.

LSCs allow the specification of time constraints either in form of an MSC-
style timer or in interval notation, with a lower and an upper bound. The
semantics of the time constraints is defined by using a timed symbolic au-
tomaton instead of an untimed one and associating a clock with each time
constraint. Transitions containing elements constrained by a timer or timing
interval are annotated with a corresponding clock constraint.

This chapter is structured in the following manner: section 7.1 introduces
the time constraints used in LSCs, the formal syntax and semantics are given
in section 7.2. This chapter concludes with a comparison to the other works
dealing with time in sequence charts in section 7.3.

7.1 Time Constraints in LSCs

Formulating requirements about the behavior of a system over time is essen-
tial for most modern computer systems and even more so for safety-critical
systems. The LSC in figure 4.9 on page 78 shows an example from our train

153

154 CHAPTER 7. ADDING TIME

systems application: the train is required to issue a status request to the
crossing a certain amount of time after receiving the acknowledgment for the
activation message.

As presented in chapter 3 several constructs for expressing time require-
ments are available in MSCs and SDs: MSCs offer timers and in MSC-2000
also an interval notation and time stamps (absolute and relative) are intro-
duced, SDs provide an interval-like graphical notation and textual capabilites
for the specification of timing requirements. The timing constructs chosen
for LSCs are based on MSC-96-style timers and the interval notation. The
intuitiveness of the graphical representation of timers and timing intervals in
MSCs motivated us to use these constructs.

The graphical representation of timers is identical to the one given in
MSC-96 and MSC-2000, i.e. the setting of a timer is represented by an hour
glass symbol, which is annotated by a name and a duration; a timeout symbol
is represented by an hour glass symbol, which is connected to the instance
axis by an arrow; a timer reset is represented by a large X, which is connected
to the instance axis by a simple line. The relation between a timer set and
its corresponding query (timeout or reset) is established either by a vertical
line, which connects the two symbols or by using the same name for setting
the timer and the query. In the former case the second hour glass symbol can
be omitted for a timeout. The second alternative (identification via name)
offers more flexibility in placing timer atoms and thus increases readability.
Figure 7.1 gives an example. T1 shows a timeout, which is connected to its
timer setting by a vertical line; T2 shows an example, where the timer reset
is identified with its corresponding timer set by the name instead of a line.
Note that resetting a timer implies that in the meantime the timer has not
expired, i.e. no timeout has occurred. As for MSCs there may be at most one
timer reset or timeout per timer set and they are confined to one instance.

Timing intervals express quantitative local liveness properties, since they
refer to neighboring atoms. They are used to give both a minimum and
a maximum delay between two directly consecutive atoms. The delimiting
atoms (or rather clusters) can either be located on the same instance axis,
one directly after the other, or be the sending and receipt of an asynchronous
message. They deviate in this respect from the intervals available in UML
SDs and MSC-2000, which can connect arbitrary clusters. These more gen-
eral intervals can, however, be modeled by timers and can thus be seen as
shorthand notations. We therefore restrict the timing features in this thesis
to the basic ones introduced above.

7.1. TIME CONSTRAINTS IN LSCS 155

Inst2

Act

LSC: Timer Example

InvariantAM:
AC:

Inst3Inst1

msg2

T2

msg1

msg3

T2(12)

msg4

[2,3]

T1(7)

[1,5)

Figure 7.1: Examples of LSC timing constraints

The interval notation has already been used in Real-Time Symbolic
Timing Diagrams [Fey96, FJ97] and also been proposed for MSC-96 in
[AHP96, BAL97a, BAL97b, LL99a, GDO98]. Timing constraints in STDs
are also used to express unbounded liveness requirements by using and ex-
cluding ∞ as an upper bound; this is catered for by location and message
temperatures in LSCs. The intervals are placed next to the instance axis
between the two locations which delimit them or are attached to the identi-
fier of the constrained asynchronous message. Two types of parenthesis are
available: one to indicate inclusion of a bound (‘[’ or ‘]’) and one for exclusion
(‘(’ or ‘)’) yielding closed (’[n,m]’), half-open (‘[n,m)’ or ‘(n,m]’) and open
(‘(n,m)’) intervals. Obviously the upper bound must be greater or equal to
the lower bound: n ≤ m. Figure 7.1 shows two examples: the transmission
of msg2 should take at least 2 and at most 3 time units and after receiving
msg2, msg3 should be sent at least 1 time unit later, but before 5 time units
pass.

Timer set atoms should be bound to (a set of) message(s) via a simulta-
neous region, because they need reference points, similar to local invariants,

156 CHAPTER 7. ADDING TIME

as pointed out in our criticism of MSCs in section 3.1.4 on page 57. The most
typical use case for timers is that they are set when some event is observed,
e.g. the receipt of a message, and some reaction is expected within a certain
span of time. The situation is slightly different for timeouts and timer resets:
Timeouts are observable themselves, so that they need no reference point,
but can rather act as reference points themselves. They can thus be used to
delimit local invariants, conditions and other timer sets, and of course mes-
sages. Timer resets can not be used as reference points, since they do not
indicate a specific point in time. They may nevertheless be used in isolation,
since this allows the expression of upper bounds: Since they indicate that the
associated timer has not yet expired, this means that the occurrence times of
all atoms between the timer set and reset occur before the timer expires. The
reference points of timing intervals are clear, since they are always bound to
two adjacent locations.

As figure 7.1 illustrates for T1, timer sets can be associated with an in-
stance head in order to express timing constraints, which measure time from
the point of activation. Timing intervals may also be attached to instance
heads just like they are attached to other locations.

Timing intervals, due to being constrained to two adjacent locations, are
intended for local constraints, whereas timers are intended to range over
larger parts of an instance. Timers ranging over several instances are gen-
erally conceivable, but require more care, since it is not immediately clear,
if the timer is always set before it is queried. We thus constrain the use of
timer to one instance.

7.2 Formal Semantics

Before the unwinding algorithm is adapted to handle timer and timing in-
tervals in section 7.2.2 these constructs are added to the abstract syntax
representation in section 7.2.1.

7.2.1 Formal Syntax

Analogous to the atoms defined in section 6.1 on page 94 we introduce the fol-
lowing sets for the timer atoms of LSC body l and instance i ∈ Instances(l),
respectively:

• T imer Set(i), T imer Set(l) : sets of timer set atoms

7.2. FORMAL SEMANTICS 157

• T imer Reset(i), T imer Reset(l) : sets of timer reset atoms

• T imeouts(i), T imeouts(l) : sets of timeout atoms

We collect all timer related atoms in the sets

T imer(i) := T imer Set(i) ∪ T imer Reset(i) ∪ T imeouts(i)

T imer(l) := T imer Set(l) ∪ T imer Reset(l) ∪ T imeouts(l)

These sets have to be added to the set of atoms of an instance, resp. entire
LSC body:

Atoms(i) := {⊥i} ∪
Msgsnd(i) ∪
Msgrcv(i) ∪
Conds(i) ∪
LI starts(i) ∪
LI ends(i) ∪
T imer(i)∪
{⊤i}

Atoms(l) := Instheads(l) ∪
Msgsnd(l) ∪
Msgrcv(l) ∪
Conds(l) ∪
LI starts(l)∪
LI ends(l) ∪
T imer(l)∪
Instends(l)

As for most other atoms it is necessary to be able to identify timers and map
timer atoms to their corresponding identifier. The set of timer identifiers
is given by T imerIDs(l). Moreover, the duration of a timer needs to be
known. Timing intervals are not handled by atoms of their own, since they
are not observable entities to be unwound. Thus mappings from locations
and asynchronous message sendings to timing intervals are defined, which
provide the information on upper and lower bounds and if they are inclusive.
Timing intervals are attached to the location of the first cluster. There are
thus the following functions:

158 CHAPTER 7. ADDING TIME

timID : T imer(l) −→ T imerIDs(l)

duration : T imerIDs(l) −→ N

lowBound : Locations(l) ∪AsyncMsgSnd(l) −→ ǫ ∪N

lowIncl : Locations(l) ∪AsyncMsgSnd(l) −→ B

upBound : Locations(l) ∪AsyncMsgSnd(l) −→ ǫ ∪N

upIncl : Locations(l) ∪AsyncMsgSnd(l) −→ B

The set AsyncMsgSnd(l) is the set of all asynchronous message send
atoms: {m ∈ Msgsnd(l) | sync type(msgID(m))) = async}. The functions
lowBound(·) and upBound(·) give the lower, resp. upper bound of a timing
interval. They return ǫ, if there is no timing interval associated with the
location or message. The functions lowIncl(·) and upIncl(·) return true, if
the respective bound is inclusive.

Well-formedness Rules

1. Timer set atoms must be bound to a cluster of an observable atom.

2. A timer must be set before it expires or is reset.

3. For each timer set atom there is at most one reset or timeout atom.

4. The upper bound of a timing interval must be greater or equal to its
lower bound.

The first rule is motivated by the fact that — similar to local invariants—
there has to be a reference point for the start of a timer, as has been remarked
in section 3.1.4 on page 57. Note that a timeout atom can be a reference
point, since it identifies a single point in time, whereas a timer reset can not.
Timer resets may be used in isolation in order to specify a lower bound.

7.2. FORMAL SEMANTICS 159

7.2.2 The Timed Unwinding Algorithm

So far the semantics of the presented LSC elements were expressible in an
untimed symbolic automaton, whereas now we need the time properties in-
troduced in section 5.3. The timed unwinding algorithm extends the one
presented in section 6.2.7 by incorporating the timing features introduced
above and producing a timed symbolic automaton. The general idea is to
associate a clock with every timer and timing interval, which is set to zero
when the corresponding timer is set or the location of the timing interval is
reached. When the timer is either reset or a timeout is observed or the loca-
tion following the one with the timing interval is reached, a clock constraint is
placed on the corresponding transitions in the automaton, which reflects the
nature and duration of the timer or timing interval. For a timeout atom this
means that the value of the associated clock must be equal to the duration
of the timer. For a timer reset atom the clock must be strictly less than the
timer duration, because no timeout has been observed so far, i.e. the clock
must not have reached its maximal value. For timing intervals the clock must
be equal to or greater than the lower bound and less than or equal to the
upper bound depending on the type of interval (open, closed). Note that
timing intervals and timer atoms which are bound via a simultaneous region
to some observable do not alter the structure of the TBA. Only when a timer
atom occurs without a simultaneous region the structure is changed; then a
new node and a new transition are inserted.

Recall from definition 5.8 on page 89 that a set C of clocks is needed for
a timed symbolic automaton. We use variables z0, z1, . . . to denote clocks,
with the number of clocks for an automaton being the sum of timer set atoms
plus locations, which carry a timing interval annotation, plus the number of
asynchronous message send atoms, which are guarded by an interval.

Time Constraints and Exits

Clock constraints do not only influence the transitions, on which they ap-
pear, they also have an impact on transitions to the exit state, which start
in the same state as the constrained transition. Consider e.g. the LSC in
figure 7.2 on the following page and the corresponding automaton shown in
figure 7.3 on the next page. The clock z0 associated with the timing interval
is reset when observing msg1 and the transition from q1 to q2 is constrained
by a clock constraint corresponding to the interval. Additionally, the tran-

160 CHAPTER 7. ADDING TIME

AM: Invariant

AC: act

LSC Exit_vs_Time

Inst1 Inst2

msg1

msg2 [2,7]

Cond1

Figure 7.2: LSC illustrating the relation between timing constraints and
possible conditions

q0 ¬msg1

q1 ¬msg2

msg1{z0 := 0}

q2 true

msg2 ∧ Cond1[z0 ≥ 2 ∧ z0 ≤ 7]

qXtrue

msg2 ∧ ¬Cond1[z0 ≥ 2 ∧ z0 ≤ 7]

Figure 7.3: Automata for LSC Exit vs Time (weak interpretation)

sition for the violation of condition Cond1 must be annotated by the clock
constraint as well. Otherwise it would be possible to enter the exit state
from q1, if msg2 occurs outside of the timing interval. We could e.g. wait
for 10 time units in state q1, then observe msg2 while Cond1 is evaluated
to false and take the transition into the exit state. In order to avoid this
incorrect behavior the timing constraint for msg2 must also be attached to
the transition leading to the exit state. This rule applies to all situations,
where there is both a clock constrained transition to a non-exit successor
state and a transition to the exit state, i.e. whenever possible conditions and
local invariants are overlapping with timers or timing intervals.

7.2. FORMAL SEMANTICS 161

Timed Unwinding Algorithm

Algorithm 7.1 shows the timed version of algorithm 6.1 on page 132,
which generates a timed symbolic automaton T SA := (Σ, Q, q0, C,−→, F)
as given by definition 5.8 on page 89. The core of the algorithm is identical
to algorithm 6.1, therefore only the extensions for the treatment of time are
discussed in detail here. The set C of clocks is defined in line 5, with k
being the maximum number of clocks necessary for the LSC under consid-
eration, i.e. k := |T imerSets(l)| + |{loc ∈ Locations(l) | lowBound(loc) 6=
ǫ}| + |{ams ∈ AsyncMsgSnd(l) | lowBound(ams) 6= ǫ}|. The set of clocks,
which are reset in this unwinding step, is computed by the function Com-
pute Resets (line 31), and the clock constraints for the current transition
are computed by the function Compute Constraints (line 32), which are
described in detail by algorithms 7.3, resp. 7.4. The computed clock resets
and constraints are added to the transition in line 42. Self loops do not have
any timing constraints or clock resets, thus the corresponding parts of the
transition remain empty (line 21). Note that the function inserting the skip-
ping transition for cold asynchronous message receipts in line 44 is extended
by the set of clock resets and the current clock constraints, since these have
to be applied to the skipping transition as well.

The algorithms, which construct the annotation of the tran-
sition to the successor node (Construct Transition, Han-
dle Local Invariant Ends, Handle Local Invariant Starts,
Generate Main Annotation), need not be altered and are thus not
repeated here.

The algorithm for the computation of the transition to the exit state
needs to be slightly adjusted as shown in algorithm 7.2 on page 163. For
the transition to the exit state for violated possible conditions and local
invariants the clock constraints of all normal transitions leaving the current
state need to be applied as well (cf. page 159 above). Note that the this
entails the computation of the clock constraints for the entire ready set by
function Compute Constraints (see algorithm 7.4 on page 165 below) in
line 30 and adding them to the transition to the exit state in line 33. Since
both the ready set and the fired sets are sets of SimClasses the same function
can be used. On this transition no clock needs to be reset, so the set of clock
resets is empty.

Algorithm 7.3 collects the clock resets for all timer sets and starting in-
tervals, which are unwound in the current step. Clocks are reset for each

162 CHAPTER 7. ADDING TIME

Algorithm 7.1 Timed Unwinding Algorithm
1: if interpretation = strict then

2: sc := Neg Conjunct(MsgLabels(l))
3: end if

4: Σ := MsgLabels(l) ∪ Conditions(l) ∪ Local Invariants(l) ∪ {true, false}
5: C := {z0, z1, . . . , zk}
6: phases := {Phase0}
7: Q := {State(Phase0), qX}
8: q0 := {State(Phase0)}
9: if cut temp(Cut0) = cold then

10: F := Q

11: else

12: F := {qX}
13: end if

14: −→:= {(qX , true, ∅, ǫ, qX)}
15: poss invs0 := {li ∈ Local Invariants(l) | ∃scl ∃cl ∈ scl ∃a, a′ ∈ cl :

a ∈ Instheads(l) ∧ a′ ∈ LI starts(l) ∧ liID(a′) = li ∧ mode(a′) = possible}
16: mand invs0 := {li ∈ Local Invariants(l) | ∃scl ∃cl ∈ scl ∃a, a′ ∈ cl :

a ∈ Instheads(l) ∧ a′ ∈ LI starts(l) ∧ liID(a′) = li∧
mode(a′) = mandatory}

17: while phases 6= ∅ do

18: let ph = (Readyi, Historyi, Cuti) ∈ phases

19: if Readyi = ∅ then

20: F := F ∪ {State(ph)}
21: −→:=−→ ∪ {(State(ph), true, ∅, ǫ,State(ph))}
22: else

23: Generate Exits(Readyi , ph)
24: for all F iredik

∈ P(Readyi) do

25: successor := Step(ph,F iredik
)

26: let successor = (Readyj , Historyj , Cutj)
27: if successor = ph then

28: Insert Self Loop(ph, Readyi)
29: else

30: TransitionAnnot :=Construct Transition(ph, successor,

Readyi, F iredik
)

31: ClkResets := Compute Resets(F iredik
)

32: ClkConstr := Compute Constraints(F iredik
)

33: if ∃q ∈ Q with State−1(q) = (Readyx, Historyx, Cutx) : Readyi = Readyx ∧ Historyi =
Historyx then

34: successor := State−1(q)
35: else

36: Q := Q ∪ {State(successor)}
37: phases := (phases \ {ph}) ∪ {successor}
38: if cut temp(Cuti) = cold then

39: F := F ∪ {State(ph)}
40: end if

41: end if

42: −→:=−→ ∪ {(State(ph), T ransitionAnnot, ClkResets,

ClkConstr,State(successor))}
43: end if

44: Insert Skip Transition(TransitionAnnot, ph, successor,

ClkResets, ClkConstr)
45: end for

46: end if

47: end while

7.2. FORMAL SEMANTICS 163

Algorithm 7.2 Generate Exits(Readyi, ph)
1: ExitAnnot := false

2: for all scl ∈ SimClasses(SimRegs(Readyi)) do

3: if Poss CondIDs(scl) 6= ∅ then

4: ExitAnnot := ExitAnnot ∨
(Neg Disjunct(Poss CondIDs(scl))∧

Conjunct(MsgLabels(scl)))
5: end if

6: for all lis ∈ LIStarts(Readyi) do

7: if lis ∈ scl ∧mode(liID(lis)) = possible then

8: if incl(lis) then

9: ExitAnnot := ExitAnnot ∨ (¬liID(lis)∧
Conjunct(MsgLabels(scl)))

10: else

11: ExitAnnot := ExitAnnot ∨ ¬liID(lis)
12: end if

13: end if

14: end for

15: for all lie ∈ LIEnds(Readyi) do

16: if lie ∈ scl ∧mode(liID(lie)) = possible then

17: if incl(lie) then

18: ExitAnnot := ExitAnnot ∨ (¬liID(lie)∧
Neg Conjunct(MsgLabels(scl)))

19: else

20: ExitAnnot := ExitAnnot ∨ ¬liID(lie)
21: end if

22: end if

23: end for

24: end for

25:
26: for all pc ∈Poss CondIDs(Readyi) \ Poss CondIDs(SimClasses(Readyi) do

27: ExitAnnot := ExitAnnot ∨ ¬pc
28: end for

29:
30: ClkConstr := Compute Constraints(Readyi)
31:
32: if ExitAnnot 6= false then

33: −→:=−→ ∪ {(State(ph), ExitAnnot, ∅, ClkConstr, qX)}

34: end if

timer set atom occurring in the fired set and every location and asyn-
chronous message send atom, which carry a non-empty time interval. The
auxiliary functions TimerSetIDs(Firedik), Locs(Firedik) and AsyncMs-

164 CHAPTER 7. ADDING TIME

Algorithm 7.3 ClkResets Compute Resets(Firedik)

1: for all timset ∈ TimerSetIDs(Firedik
) do

2: ClkResets := ClkResets∪ {AssignClk(timset)}
3: end for

4:
5: for all loc ∈ Locs(Firedik

) do

6: ClkResets := ClkResets∪ {AssignClk(loc)}
7: end for

8:
9: for all ams ∈ AsyncMsgSnds(Firedik

) : lowBound(ams) 6= ǫ do

10: ClkResets := ClkResets∪ {AssignClk(ams)}

11: end for

gSnds(Firedik) yield all timer identifiers, all locations of clusters, resp. all
asynchronous message send atoms of the fired set. The auxiliary function
AssignClk() assigns a unique, unused clock name from C to each timer set
and each location or asynchronous message send atom, which are guarded
by a time interval.

Algorithm 7.4, lines 1 – 7: Timer Treatment Algorithm 7.4 con-
structs and collects all clock constraints, which are unwound in the cur-
rent step. As seen in algorithm 7.2 on the preceding page this function
is used to compute the clock constraints for the entire ready set. In this
first part of the algorithm the clock constraints for timeout and timer re-
sets are constructed. The auxiliary functions TimerResetIDs(Firedik) and
TimeoutIDs(Firedik) return the identifiers of all timer reset, resp. timeout
atoms, which are currently unwound. The auxiliary function ClkName()
looks up the clock name, which has been assigned to the timer by function
AssignClk above and which has to be used in the clock constraint for the
timer reset or timeout. For a timer reset the only statement, which can be
made about the clock, is that the duration of the corresponding timer has
not yet elapsed, i.e. that presently the value of the associated clock is strictly
less than the duration of the timer (line 2). For timeout atoms the constraint
is more specific, since the timer expires at this moment, so that the clock
must be equal to the duration of the associated timer (line 6).

Algorithm 7.4, lines 9 – 33: Timing Interval Treatment This
part of the algorithm constructs the clock constraints for timing intervals,

7.2. FORMAL SEMANTICS 165

Algorithm 7.4 ClkConstr Compute Constraints(Firedik)

1: for all timres ∈ TimerResetIDs(Firedik
) do

2: ClkConstr := ClkConstr ∧ ClkName(timres) < duration(timres)
3: end for

4:
5: for all to ∈ TimeoutIDs(Firedik

) do

6: ClkConstr := ClkConstr ∧ ClkName(to) = duration(to)
7: end for

8:
9: for all loc ∈ PredecLocs(Firedik

) do

10: if lowIncl(loc) then

11: ClkConstr := ClkConstr ∧ ClkName(loc) ≥ lowBound(loc)
12: else

13: ClkConstr := ClkConstr ∧ ClkName(loc) > lowBound(loc)
14: end if

15: if upIncl(loc) then

16: ClkConstr := ClkConstr ∧ ClkName(loc) ≤ upBound(loc)
17: else

18: ClkConstr := ClkConstr ∧ ClkName(loc) < upBound(loc)
19: end if

20: end for

21:
22: for all amr ∈ AsyncMsgRcvs(Firedik

) : ∃ams ∈ AsyncMsgSnd(l) :
msgID(amr) = msgID(ams) ∧ lowBound(ams) 6= ǫ do

23: if lowIncl(ams) then

24: ClkConstr := ClkConstr ∧ ClkName(ams) ≥ lowBound(ams)
25: else

26: ClkConstr := ClkConstr ∧ ClkName(ams) > lowBound(ams)
27: end if

28: if upIncl(ams) then

29: ClkConstr := ClkConstr ∧ ClkName(ams) ≤ upBound(ams)
30: else

31: ClkConstr := ClkConstr ∧ ClkName(ams) < upBound(ams)
32: end if

33: end for

which are currently unwound. The auxiliary function PredecLocs(Firedik)
yields for all locations in the current fired set the set of their imme-
diate predecessor locations, which are annotated by a timing interval:
PredecLocs(Firedik) := {loc ∈ Locations(l) | ∃scl ∈ Firedik∃cl ∈ scl :
loc ∈ predecessor(location(cl)) ∧ lowBound(loc) 6= ǫ}. The lower and up-
per bounds are constructed, depending on them being inclusive or exclusive.

166 CHAPTER 7. ADDING TIME

Note that for timing intervals two terms are added to the clock constraint,
one for the lower and one for the upper bound.

A similar procedure is carried out for asynchronous messages, which are
constrained by a timing interval. For each receipt of an asynchronous mes-
sage, which is annotated by an interval (line 22), a corresponding clock con-
straint is added, the exact form again depending on the type of bound and
if it is inclusive or not.

Algorithm 7.5 Insert Skip Transition(TransitionAnnot, ph, successor,
ClkResets, ClkConstr)

1: for all (qx, ψ, ρ, γ,State−1(ph)) ∈−→ do

2: let (Readyx, Historyx, Cutx) = State−1(qx)
3: if ColdMsgRcvs(Readyx) =Atoms(Readyx) then

4: −→:=−→ ∪ (qx, T ransitionAnnot, ClkResets, ClkConstr,State(successor))
5: end if

6: end for

Algorithm 7.5 shows the adapted version of the function In-
sert Skip Transition, which inserts the skip transition for cold asyn-
chronous message receipts. Since the skipping transition is derived from the
currently constructed transition, the current clock resets and constraints are
applied also to the skip transition (line 4).

Example 7.1
Figure 7.4 shows the automaton for the LSC from figure 7.1; setting a clock
is represented by a corresponding expression in curly braces, whereas clock
constraints are shown in square brackets. Clock z0 is associated with T1,
z1 with T2, z2 with the interval on msg2 and z3 with the interval between
the receipt of msg2 and the sending of msg2 on instance Inst3. Note that
z0 is not reset explicitly, because all clocks are initially zero as given in
definition 5.8 on page 89.

The clock constraint between states q3 and q4 is the conjunction of the
two constraints generated for T1 and the timing interval on Inst3. The
final transition is only annotated with true, since no observable atoms are
unwound. It is nevertheless constrained by the clock constraint for the timer
reset of T2. �

The definition of satisfaction of an LSC, definition 6.16 on page 145, does
not need to be changed, since it already considers timed runs and timed
symbolic automata.

7.3. RELATED WORK 167

q0 ¬msg1

q1 ¬!msg2

msg1{z1 := 0}

q2 ¬?msg2

!msg2{z2 := 0}

q3 ¬msg3

?msg2{z3 := 0}[z2 ≥ 2 ∧ z2 ≤ 3]

q4 ¬msg4

msg3[z0 = 7 ∧ z3 ≥ 1 ∧ z3 < 5]

q5 true

msg4

q6 true

true[z1 < 12]

Figure 7.4: Automaton for LSC in figure 7.1 using weak interpretation

7.3 Related Work

Time constraints in sequence charts have been addressed rather uniformly
by other approaches. In the field of MSCs almost all researchers dealing
with time add the timing interval, often also called delay interval, to the
standard MSC timers. It has to be noted, though, that all these publications
are prior to the MSC-2000 standard, which provides a richer set of timing
features (cf. section 3.1.3). All approaches, which deal with timed SDs only
use the textual capabilities to express timing constraints, since they are more
general and more expressive than the one graphical notation. Surprisingly
no one seems to have missed a more general graphical way to specify timing
constraints in SDs.

The original LSC paper [DH01] does not consider time at all. Harel and
Marelly [HM02] extend LSCs by an explicit clock and special variables of

168 CHAPTER 7. ADDING TIME

domain time. Time variables are assigned the current clock value and can be
queried within conditions. Their approach is similar to the one we propose for
specifying timing constraints in terms of supersteps in Statemate’s asyn-
chronous semantics (cf. section 11.3), except that their counter is unbounded,
which is unsuitable for model checking. By using conditions [HM02] are
able to encode complex timing constraints more concisely. The distinction
between mandatory and possible conditions allows to specify assumptions
about the time behavior of the environment with the same effect as plac-
ing timing constraints on the environment axis in our LSCs (cf. chapter 8).
However, we feel that our graphical representation of timing constraints is
more intuitive.

Alur et al. [AHP96] extend MSC-96 by time intervals on subsequent lo-
cations and (asynchronous) messages, but do not provide a formal semantics
for either untimed or timed MSCs. Infinity is allowed as an upper bound,
thus allowing to specify unbounded liveness, which is covered by location
and message temperatures in our approach. The focus of this article is the
analysis of MSCs, including the checking for timing consistency. The used
method is a conversion of the MSC into a graph, whose nodes are the events
(atoms in LSC terminology) of the MSC. Edges are inserted for all timing an-
notations, with unannotated messages and instance segments being assigned
the default interval (0,∞), and weighted according to the upper bounds for
the occurrence of each pair of events. Timing consistency is then checked
by computing negative cost cycles in this graph, where the existence of a
negative cost cycle between two events means that there is no run, which
can fulfill the timing constraints imposed by the MSC. This kind of check
corresponds to the existential verification of LSCs (cf. chapter 10).

Leue and Ben-Abdallah [BAL97a, BAL97b] use the same approach as
[AHP96] for basic MSCs and extend it to HMSCs by checking every path,
i.e. every possible concatenation of basic MSCs in the HMSC graph, for tim-
ing consistency. All three approaches also consider other consistency checks
more concerned with implementation issues, e.g. detection of process diver-
gence, influence of queuing strategies, etc.

Grabowski et al. [GDO98] also extend MSC-96 by time intervals and de-
fine the semantics in terms of Duration Calculus formulae via translation of
MSCs into a set of Constraint Diagrams. They also allow to express un-
bounded liveness by assuming a default interval of (0,∞) between ordered
events. The time model is dense time.

7.3. RELATED WORK 169

Lilius and Li [LL99a] do not provide a formal semantics for MSCs, but
rather check, if an MSC is timing consistent or not. Each timing constraint,
expressed by a timer or an interval, is translated into a linear inequality, thus
yielding a set of linear inequalities. The problem of checking, if all timing
annotations of the MSC are consistent, is then reduced to finding a solution
for this group of linear inequalities, which can be solved efficiently by linear
programming. The MSC is timing consistent, if a solution exists. [LL99a]
deal with HMSCs in the same manner as [BAL97a, BAL97b]. The same
approach is applied to Sequence Diagrams in [LL99b].

Firley et al. [FHD+99] also propose a timing consistency check for SDs
via translation into timed automata, which can be analyzed by the UPPAAL
model checker. The timing annotations used are the textual ones proposed in
the UML standard [OMG01], i.e. labels are used to identify message send and
receive events and from these labels textual constraints are formulated. The
timing constraints result in clocks, which are reset and queried, in the timed
automaton, similar to timed symbolic automata. As detailed in section 6.4 on
page 149 UPPAAL is employed to find out, if it is possible to reach the
final state of the timed automaton constructed from the SD. This procedure
corresponds to the formal verification of existential LSCs we propose.

Seemann and von Gudenberg [SvG98] also use SD-style textual timing
constraints and check SDs for timing consistency, but use the negative cost
cycle procedure of [AHP96].

170 CHAPTER 7. ADDING TIME

Chapter 8

Integrated Assumption

Treatment

Modern computer systems typically are not stand-alone installations, but
are deployed in a certain context. The train control system which serves as
our running example e.g. relies on input from sensors like the information
that the train has passed the crossing. On the other hand it controls other
entities external to the currently developed ones, like the train brake or the
barrier. Thus a system is developed with this context or environment in
mind. Typically, assumptions about the possible values and combination of
input signals in this environment are made. For the crossing we e.g. assume
that the barrier can not be simultaneously open and closed. The environment
can represent a number of things:

• Other soft- or hardware components, which are either part of the devel-
oped system or are completely external. The communication channel
for instance belongs to the environment, if we look at the train in iso-
lation, but it still belongs to the system under design. The operation
center on the other hand is an external environmental component.

• Sensors or actuators which gather information, resp. affect the real
world.

• Persons, which interact with the system.

When verifying a system under design, the model checker plays the role
of the environment and supplies the inputs of the model. Since the model

171

172 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

checker does not know anything about the particular application, which is
being developed, it may apply input combinations, which cannot occur in
the real environment of the system under development, i.e. which violate
the assumptions made by the designers about the deployment context. An
unsuccessful verification can thus result from unexpected behavior of the
environment or it is a real error in the design. The former type is often very
easy for the model checker to cause by not supplying the required inputs or
supplying them at the wrong time. Such violations are typically the first
ones, which are produced by the model checker, but the ones of real interest
are of the latter type. Since the model checker is unaware of the assumptions,
which have been made about the system’s environment, they have to be made
explicit in order to be respected. This is called assumption/commitment or
also assume/guarantee style specification (cf. [Jos93]), with the property to
be checked being the commitment.

One of the advantages of LSCs is that expected environment behavior
can be included in the chart itself by using dedicated environment instances
as described in section 4.1.1 on page 66. On such an instance all features
offered by LSCs can be used and thus assumptions about the environment
can be formulated and exploited. Environment instances can be handled in
two ways: Their treatment can be incorporated into the normal unwinding
of the commitment LSC or the assumption part of the commitment LSC
can be extracted into a separate, explicit assumption. We call the former
internal assumptions and the latter extracted assumptions. A third type of
assumptions is also considered in this chapter: assumptions, which the user
specifies separately from the commitment LSC, i.e. which do not use the
environment instances of the commitment LSC. We subsume extracted and
user specified assumptions under the term external assumptions.

It has to be noted, that internal assumptions are — strictly speaking —
not proper assumptions, but rather have the same semantical effect. Techni-
cally, assumptions are typically handled by intersecting the runs allowed by
the assumptions with the runs allowed by the model; see e.g. [Jos93]. As-
sumptions thus restrict the runs a model can perform and consequently the
number of possible interactions for the model checker. Internal assumptions
do not decrease the number of allowed runs of the model, but rather deac-
tivate the LSC (via an exit), if a run does not conform to the expectation
specified on the environment axis. An actual restriction of system runs can
be achieved by using extracted assumptions.

8.1. INTERNAL ASSUMPTIONS 173

Internal assumptions are presented in section 8.1, while external assump-
tions are discussed in section 8.2, with extracted assumptions being the focus
in section 8.2.1 and user specified ones in section 8.2.2. The semantics of an
LSC with associated external assumptions is defined in section 8.3. This
chapter closes with a review of related work in section 8.4.

8.1 Internal Assumptions

Internal assumptions aim at not allowing the model checker to violate an
LSC specification by simply applying unexpected inputs. The expected en-
vironment behavior is specified by the user on the dedicated environment
instances using the normal LSC features (cf. section 4.1.1 on page 66). The
way to achieve this goal is to treat wrong behaviors of the environment not as
errors, but as a deactivation of the LSC, i.e. if the environment does not con-
form to the expected behavior (as given by the elements on the environment
instance axes), this is treated as an exit from the LSC, similar to possible
conditions or possible local invariants. Thus the model checker has to fulfill
the assumptions expressed on the environment instances in order to progress
through the automaton and possibly find a real error in the model.

Barrier Crossing

AM: Invariant

AC: Lights_on

LSC securing_barrier

lower

close_barrier

barrier_closed

closed

Env

[1,1]

Figure 8.1: LSC for the Crossing component specifying the barrier closing

Figure 8.1 shows an example from the train control system case study: the
protocol for successfully closing the barrier. Once the lights have been turned

174 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

on (AC: Lights on) the crossing controller instructs the barrier controller to
close the barrier, which in turn sends the signal to the barrier actuator, which
is part of the environment. As is indicated by the hot part of the environment
axis and the attached timing interval, the barrier is expected to be closed
after one time unit and this result must be reported back to the crossing
controller. The environment axis thus expresses the assumption that the
barrier is operational and closes in time. Making the LSC robust against a
misbehaving environment in this case means that the LSC is deactivated, if
the closed message does not arrive at all or not within the given interval
(which would typically be captured in a seprate LSC). The special treatment
necessary for each LSC element defined on the environment instance is listed
in the following:

instantaneous messages Need no special treatment, since it is either ob-
served or not. The occurrence of an instantaneous message can be
required only by a hot location temperature. In the strict interpreta-
tion messages sent by the environment must not result in an error, if
they occur at a time when they are not supposed to. The correct treat-
ment rather is to exit from the LSC. This means that for each state in
the automaton, where such a message is not supposed to be observed,
a transition to the exit state must be added.

asynchronous messages sent from the environment Need no special
treatment. As for instantaneous messages the location temperature
indicates, if a message must be sent. The message temperature is al-
ways hot, since an assumption about a message, which need not arrive,
is useless. In the strict interpretation the same treatment as for instan-
taneous messages is necessary.

asynchronous messages received by the environment The message
temperature is set to cold, because the environment can not be forced
to receive the message. In the strict interpretation the same treatment
as for the previous message types is necessary.

conditions All conditions on the environment instance are treated as pos-
sible ones, since the environment can not be forced to satisfy a given
condition. Thus, exits are inserted into the automaton for all conditions
defined on the environment axis regardless of their mode.

8.1. INTERNAL ASSUMPTIONS 175

local invariants They are treated as possible ones, analogously to condi-
tions.

timer and timing intervals Timing constraints of the environment, which
are violated, are treated as exits from the LSC. This means that addi-
tional transitions to the exit node are inserted into the automaton and
are annotated by the negation of the constraints.

Recall that timing intervals of the form [n,m] constrain two clusters,
e.g. two messages, and translate into a clock constraint of the form
[z3 ≥ n∧z3 ≤ m] in the automaton. This timing annotation is violated,
if the second atom, e.g. msgX occurs either too early or too late, which
translates into the following annotation for the transition to the exit
state: msgX[z3 < n ∨ z3 > m]. Open and half-open timing intervals
are treated analogously.

Timeouts result in clock constraints of the form [z1 = dur], where dur
is the duration given for the timer. Assuming that the timeout is bound
to some message msgX this leads to an annotation of the corresponding
exit transition of msgX[z1 < dur ∨ z1 > dur]. Timer resets result in
clock constraints of the form [z1 < dur], which leads to an annotation
of the corresponding exit transition of msgX[z1 ≥ dur].

location temperatures Location temperatures are set to cold, because
progress of the environment can not be enforced. The system under
development can e.g. not force the environment to respond to a request;
this requires an explicit assumption (see section 8.2.1 on page 195 be-
low).

simultaneous regions A simultaneous region is violated, if not all mes-
sages of this region are observed simultaneously; other LSC elements
are already taken care of by the procedures described above. Thus,
whenever only a strict subset of messages of the simultaneous region
is observed, this should result in an exit, if one of the missing mes-
sages should have been sent by the environment. The same treatment
is necessary for simultaneous regions, which are not defined on the en-
vironment axis, but which contain messages sent by the environment.

coregions No special treatment necessary.

176 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

8.1.1 Adjustment of the Formal Semantics

Since the treatment of LSC elements differs depending on the type of instance
axis (environment or normal) they appear on, this information has to be
made available to the unwinding algorithm. This is done by the function
envInst(·), which returns true, if an instance is an environment instance
and false, if it is a normal instance:

envInst : Instances(l) −→ B

For convenience’s sake similar functions are defined for atoms, resp. clusters
of each instance:

isEnv : Atoms(i) −→ B

isEnv(a) :=

{

true if envInst(i) = true

false else
, a ∈ Atoms(i)

isEnv : Clusters(i) −→ B

isEnv(cl) :=

{

true if ∃a ∈ cl : isEnv(a) = true

false else
, cl ∈ Clusters(i)

Since hot location temperatures on the environment instance must be
treated as cold, the computation of the cut temperature has to be adjusted
accordingly. This ensures that the model checker can not violate the property
simply by doing nothing, provided progress only hinges on the environment
instance(s). If progress is additionally required by the commitment part of
the LSC, then this may still result in a violation depending on the system
behavior. This exemplifies the benefit of assigned a hot temperature only to
those locations of an LSC, which are actually responsible for progressing.

Thus the function cut temp(·) (cf. definition 6.11 on page 117), which
computes the cut temperature and thus determines the set of fair states,
is extended in the following manner: A hot location temperature is only
regarded, if the location is not situated on the environment instance.

8.1. INTERNAL ASSUMPTIONS 177

8.1 Definition (Cut Temperature)

cut temp : Cuts(l) −→ {hot, cold}

cut temp(cut) :=

hot if ∃ clj ∈ cut : temp(location(clj)) = hot

∧ ¬isEnv(clj)

cold else

,

for cut = (cl1, . . . , cln), 1 ≤ j ≤ n. �

8.1.2 Unwinding Algorithm for Internal Assumptions

ENV Inst1

AM: Invariant

AC: act

LSC Strictexit_vs_Time

msg1

msg2

msg3
[3,5]

Figure 8.2: LSC illustrating the relation between timing constraints and
possible conditions

The correct treatment of the other elements described above requires the
adjustment of the unwinding algorithm, which is presented in the following.
Special care has to be taken for exits caused by environment messages in
the unwinding, similar to the case of possible conditions and local invariants,
which are covered by a timing annotation (see page 159). The LSC shown
in figure 8.2 and the corresponding TSA (figure 8.3) illustrate the problem.
The occurrence of msg3 is constrained to at least three and at most five time
units after observing msg2. The treatment of internal assumptions prescribes
that the two transitions to the exit state are added. The automaton shown
in figure 8.3 is incorrect inasmuch as a second receipt of msg2 after more

178 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

than five time units, assuming msg3 has not been observed within this time,
results in satisfaction of the LSC, even though the timing constraint for msg3
is violated. Once the upper limit given by the timing constraint has been
reached without observing the expected message, an out of turn receipt of
messages sent by the environment should thus not be interpreted as an exit
but as an error, since at this point it is impossible to still satisfy the specified
property.

This problem is overcome by adding the upper bound of the timing con-
straint to the transition to the exit state. The lower bound must not be used,
since observing the environment message before the expected message must
not result in an error.

Algorithm 8.1 on the facing page shows the main part, which is largely
unaffected by the adjustments. The special treatment for local invariants
on the environment axis is done in line 15 and 16, where the initial sets of
active possible and mandatory local invariants are computed. Local invari-
ants defined on the environment axis are added to the possible set in line 15,
regardless of their mode. The mandatory set is consequently restricted to
those local invariants, which are specified on a normal instance (line 16). Ad-
ditionally note that the changed cut temperature computation takes effect
in lines 9 and 38.

Algorithm 8.2 on page 180, which takes care of the transitions to the
exit state, is primarily affected by the adjustments. Because mandatory con-

q0 ¬msg1 ∧ ¬msg2 ∧ ¬msg3

q1 ¬msg1 ∧ ¬msg2 ∧ ¬msg3

msg1 ∧ ¬msg2 ∧ ¬msg3

q2 ¬msg1 ∧ ¬msg2 ∧ ¬msg3

msg2 ∧ ¬msg1 ∧ ¬msg3{z0 := 0}

q3 true

msg3 ∧ ¬msg1 ∧ ¬msg2[z0 ≥ 3 ∧ z0 ≤ 5]

qXtrue

msg2

msg2

Figure 8.3: Automata for LSC Strictexit vs Time (strict interpretation)

8.1. INTERNAL ASSUMPTIONS 179

Algorithm 8.1 Timed Unwinding Algorithm (Internal Assumptions)
1: if interpretation = strict then

2: sc := Neg Conjunct(MsgLabels(l))
3: end if

4: Σ := MsgLabels(l) ∪ Conditions(l) ∪ Local Invariants(l) ∪ {true, false}
5: C := {z0, z1, . . . , zk}
6: phases := {Phase0}
7: Q := {State(Phase0), qX}
8: q0 := {State(Phase0)}
9: if cut temp(Cut0) = cold then

10: F := Q

11: else

12: F := {qX}
13: end if

14: −→:= {(qX , true, ∅, ǫ, qX)}
15: poss invs0 := {li ∈ Local Invariants(l) | ∃scl ∃cl ∈ scl ∃a, a′ ∈ cl :

a ∈ Instheads(l) ∧ a′ ∈ LI starts(l) ∧ liID(a′) = li ∧ (mode(a′) = possible ∨ isEnv(a′))}
16: mand invs0 := {li ∈ Local Invariants(l) | ∃scl ∃cl ∈ scl∃a, a′ ∈ cl :

a ∈ Instheads(l) ∧ a′ ∈ LI starts(l) ∧ liID(a′) = li∧
mode(a′) = mandatory ∧ ¬isEnv(a′)}

17: while phases 6= ∅ do

18: let ph = (Readyi, Historyi, Cuti) ∈ phases

19: if Readyi = ∅ then

20: F := F ∪ {State(ph)}
21: −→:=−→ ∪ {(State(ph), true, ∅, ǫ,State(ph))}
22: else

23: Generate Exits(Readyi, ph)
24: for all F iredik

∈ P(Readyi) do

25: successor := Step(ph,F iredik
)

26: let successor = (Readyj , Historyj , Cutj)
27: if successor = ph then

28: Insert Self Loop(ph, Readyi)
29: else

30: TransitionAnnot :=Construct Transition(ph, successor,

Readyi, F iredik
)

31: ClkResets := Compute Resets(F iredik
)

32: ClkConstr := Compute Constraints(F iredik
)

33: if ∃q ∈ Q with State−1(q) = (Readyx , Historyx, Cutx) : Readyi = Readyx ∧ Historyi =
Historyx then

34: successor := State−1(q)
35: else

36: Q := Q ∪ {State(successor)}
37: phases := (phases \ {ph}) ∪ {successor}
38: if cut temp(Cuti) = cold then

39: F := F ∪ {State(ph)}
40: end if

41: end if

42: −→:=−→ ∪ {(State(ph), T ransitionAnnot, ClkResets,

ClkConstr,State(successor))}
43: end if

44: Insert Skip Transition(TransitionAnnot, ph, successor,ClkResets, ClkConstr)
45: end for

46: end if

47: end while

180 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

Algorithm 8.2 Generate Exits(Readyi, ph)
1: ExitAnnot := false

2: for all scl ∈ SimClasses(SimRegs(Readyi)) do

3: if (Poss CondIDs(scl)∪Mand Env CondIDs(scl)) 6= ∅ then

4: ExitAnnot := ExitAnnot ∨
(Neg Disjunct(Poss CondIDs(scl) ∪ Mand Env CondIDs)∧

Conjunct(MsgLabels(scl)))
5: end if

6: for all lis ∈ LIStarts(Readyi) do

7: if lis ∈ scl ∧ (mode(liID(lis)) = possible ∨ isEnv(lis)) then

8: if incl(lis) then

9: ExitAnnot := ExitAnnot ∨ (¬liID(lis)∧
Conjunct(MsgLabels(scl)))

10: else

11: ExitAnnot := ExitAnnot ∨ ¬liID(lis)
12: end if

13: end if

14: end for

15: for all lie ∈ LIEnds(Readyi) do

16: if lie ∈ scl ∧ (mode(liID(lie)) = possible ∨ isEnv(lie)) then

17: if incl(lie) then

18: ExitAnnot := ExitAnnot ∨ (¬liID(lie)∧
Neg Conjunct(MsgLabels(scl)))

19: else

20: ExitAnnot := ExitAnnot ∨ ¬liID(lie)
21: end if

22: end if

23: end for

24: if EnvMsgs(scl) 6= ∅) ∧ |MsgLabels(scl)| > 1 then

25: ExitAnnot := ExitAnnot ∨ Handle Env SimReg(scl)
26: end if

27: end for

28: for all pc ∈ (Poss CondIDs(Readyi) ∪ Mand Env CondIDs(Readyi)) \
(Poss CondIDs(SimRegs(Readyi)) ∪ Mand Env CondIDs(SimRegs(Readyi))) do

29: ExitAnnot := ExitAnnot ∨ ¬pc

30: end for

31:
32: Add Env Msg Exits(Readyi , ph)
33:
34: ClkConstr := Compute Constraints(Readyi)
35: if ExitAnnot 6= false then

36: −→:=−→ ∪ {(State(ph), ExitAnnot, ∅, ClkConstr, qX)}
37: end if

38:
39: Handle Env Timer(ph, Readyi)

40: Handle Env Timing Intervals(ph, Readyi)

ditions on the environment axis should be treated as possible ones, these
have additionally to be taken into account, when generating the exit transi-
tions for cold conditions. Mandatory conditions specified within simultane-
ous regions on the environment instance — given by the auxiliary function
Mand Env CondIDs — are treated as possible conditions by adding them

8.1. INTERNAL ASSUMPTIONS 181

to the set of possible conditions in lines 3 and 4 of algorithm 8.2. Solitary
mandatory environment conditions are analogously added to the correspond-
ing sets of solitary possible conditions in line 28.

Local invariants require a similar treatment, which is carried out in lines 7
and 16 by considering not only the mode of a local invariant, but also if it is
defined on the environment instance using the isEnv(·) function.

Lines 24 and 25 are concerned with the treatment of simultaneous re-
gions, which contain messages sent by the environment. Such a simultane-
ous region can only be violated by the environment, if it contains at least
two messages (second part of the conjunction in line 24) and one of them
is sent by the environment (first part of the conjunction). The auxiliary
function EnvMsgs(scl) computes the message atoms, which are either sent
by the environment or are asynchronous receipts of environment messages,
i.e. it sums up all messages of the environment, which can interfere with the
specified property, if they do not occur when expected. All other combina-
tions of LSC elements in a simultaneous region are already handled by other
parts of this algorithm (one message and a number of conditions by lines 3
and 4, local invariants by lines 6 to 20, timer and timing intervals by lines 39
and 40). The generation of this part of the exit transition annotation is done
by function Handle Env SimReg, which is described in algorithm 8.5 on
page 183. The treatment of messages sent by the environment in the strict
interpretation is done by function Add Env Msg Exits (line 32), whose
details are given by algorithm 8.3.

Algorithm 8.3 Add Env Msg Exits (Readyi, ph)
1: ExitAnnot := true

2: if interpretation = strict then

3: for all m ∈ (EnvMsgSndLabels(l) \ MsgLabels(Readyi)) do

4: ExitAnnot := ExitAnnot ∨m
5: end for

6: end if

7: ClkConstr := Compute Constraints Upper Bounds(Readyi)
8:
9: if ExitAnnot 6= true then

10: −→:=−→ ∪ (State(ph), ExitAnnot, ∅, ClkConstr, qX)

11: end if

182 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

Algorithm 8.4 ClkConstr Compute Constraints Upper Bounds(Readyi)
1: for all timres ∈ TimerResetIDs(Readyi) do

2: ClkConstr := ClkConstr ∧ ClkName(timres) < duration(timres)
3: end for

4:
5: for all to ∈ TimeoutIDs(Readyi) do

6: ClkConstr := ClkConstr ∧ ClkName(to) = duration(to)
7: end for

8:
9: for all loc ∈ PredecLocs(Readyi) do

10: if upIncl(loc) then

11: ClkConstr := ClkConstr ∧ ClkName(loc) ≤ upBound(loc)
12: else

13: ClkConstr := ClkConstr ∧ ClkName(loc) < upBound(loc)
14: end if

15: end for

16:
17: for all amr ∈ AsyncMsgRcvs(Readyi) : ∃ams ∈ AsyncMsgSnd(l) :

msgID(amr) = msgID(ams) ∧ lowBound(ams) 6= ǫ do

18: if upIncl(ams) then

19: ClkConstr := ClkConstr ∧ ClkName(ams) ≤ upBound(ams)
20: else

21: ClkConstr := ClkConstr ∧ ClkName(ams) < upBound(ams)
22: end if

23: end for

Lines 2 to 4 of algorithm 8.3 handle exits in the strict interpretation,
which are due to messages sent by the environment at a wrong point in
time. EnvMsgSndLabels(l) is the set of all messages, which are sent by the
environment: EnvMsgSndLabels(l) := {msglabel ∈ MsgLabels(l) | ∃m ∈
Msgsnd(l) : isEnv(m) ∧ msgLabel(m) = msglabel}. Only those message
labels must be included in the exit transition annotation, which are not
enabled in the current state, i.e. which are not in the current ready set.
Thus, these message labels are removed from the environment message labels
in line 3. All other messages sent by the environment are added disjunctively
to the exit transition annotation (line 4).

Function Compute Constraints Upper Bounds in line 7 collects
the upper bounds of the clock constraints, which appear on non-exit tran-
sitions in the current unwinding step, and returns their conjunction. The
details of this function are given by algorithm 8.4; the algorithm is identical
to the algorithm computing the clock constraints for the normal transitions

8.1. INTERNAL ASSUMPTIONS 183

(cf. algorithm 7.4 on page 165), except that the lower bounds are not consid-
ered. The remainder of algorithm 8.3 inserts the transition to the exit state, if
needed. Note that this transition, if present, is separate from the one, which
is computed in algorithm 8.2, because the transition, which is generated by
algorithm 8.2 may in general contain clock constraints with upper and lower
bounds, whereas the transition generated by algorithm 8.3 must not contain
lower bounds. Since transition annotations and clock constraints can not be
mixed arbitrarily, a separate transition is required (see the explanation of
algorithm 8.6 below for details).

Algorithm 8.5 ExitAnnot Handle Env SimRegs(scl)
1: let msgpset = P(MsgLabels(scl))
2: for all msgs ∈ msgpset do

3: if msgs 6= ∅ ∧msgs 6= msgpset ∧ EnvMsgs(MsgLabels(scl) \msgs) 6= ∅ then

4: ExitAnnot := ExitAnnot ∨ (Conjunct(msgs)∧
Neg Conjunct(MsgLabels(scl) \msgs))

5: end if

6: end for

7: return ExitAnnot

Algorithm 8.6 Handle Env Timer(ph,Readyi)
1: for all timres ∈ TimerResets(Readyi) : isEnv(timres) = true do

2: −→:=−→ ∪(State(ph),¬ StableCond(ph), ∅,
ClkName(timres) ≥ duration(timres), qX)

3: end for

4:
5: for all to ∈ Timeouts(Readyi) : isEnv(to) = true do

6: let scl = SimClass(to)
7: if scl 6= ∅ then

8: exit annot := Conjunct(MsgLabels(scl)
9: else

10: exit annot := true

11: end if

12: −→:=−→ ∪(State(ph), exit annot, ∅,ClkName(to) < duration(to), qX)
13: −→:=−→ ∪(State(ph),¬ StableCond(ph), ∅,

ClkName(to) > duration(to), qX)

14: end for

Exits due to violations of timing constraints by the environ-
ment are handled by the functions Handle Env Timer and Han-
dle Env Timing Intervals, which are presented in algorithm 8.6, resp.
algorithm 8.7 on the next page.

184 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

Algorithm 8.7 Handle Env Timing Intervals(ph,Readyi)
1: for all loc ∈ PredecLocs(Readyi) do

2: let loc′ = Succ(loc)
3: let scl = SimClass(loc′)
4: if ∃cl = Cluster(loc′) : isEnv(cl) = true then

5: exit annot := Conjunct(MsgLabels(scl))
6: if lowIncl(loc) then

7: ExitConstr := ClkName(loc) < lowBound(loc)
8: else

9: ExitConstr := ClkName(loc) ≤ lowBound(loc)
10: end if

11: −→:=−→ ∪(State(ph), exit annot, ∅, ExitConstr, qX)
12:
13: if upIncl(loc) then

14: ExitConstr := ExitConstr ∨ ClkName(loc) > upBound(loc)
15: else

16: ExitConstr := ExitConstr ∨ ClkName(loc) ≥ upBound(loc)
17: end if

18: −→:=−→ ∪(State(ph),¬ StableCond(ph), ∅, ExitConstr, qX)
19: end if

20: end for

21:
22: for all amr ∈ AsyncMsgRcvs(Readyi) : ∃ams ∈ AsyncMsgSnd(l) : msgID(amr) =

msgID(ams) ∧ lowBound(ams) 6= ǫ ∧ (isEnv(amr) = true ∨ isEnv(ams) = true) do

23:
24: if isEnv(amr) = true then

25: let scl = SimClass(amr)
26: else

27: let scl = SimClass(ams)
28: end if

29: exit annot := Conjunct(MsgLabels(scl))
30: if lowIncl(ams) then

31: ExitConstr := ClkName(ams) < lowBound(ams)
32: else

33: ExitConstr := ClkName(ams) ≤ lowBound(ams)
34: end if

35: −→:=−→ ∪(State(ph), exit annot, ∅, ExitConstr, qX)
36:
37: if upIncl(ams) then

38: ExitConstr := ExitConstr ∨ ClkName(ams) > upBound(ams)
39: else

40: ExitConstr := ExitConstr ∨ ClkName(ams) ≥ upBound(ams)
41: end if

42: −→:=−→ ∪(State(ph),¬ StableCond(Stateph), ∅, ExitConstr, qX)
43: end for

8.1. INTERNAL ASSUMPTIONS 185

Algorithm 8.5 on page 183 generates the part of the exit transition an-
notation, which deals with simultaneous regions, which depend on messages
sent by the environment. If the environment does not send the messages it
is supposed to send within the considered simultaneous region1, this should
result in a transition to the exit state. This means that all combinations of
messages, which are part of the simultaneous region, have to be considered.
Therefore the powerset of all messages in the current simultaneous region is
computed in line 1. Each set of the powerset corresponds to one combina-
tion of messages and is interpreted here as the occurrence of the messages
contained in the set. All messages, which are missing from the set, i.e. the
complementary set, is interpreted as messages, which are not observed.

The empty set and the set containing all messages can be ignored, as
they correspond to the self loop, resp. the good case. Since only violations
caused by the environment should lead to an exit, it is sufficient to add a
corresponding annotation, if one of the messages sent by the environment
is missing (line 3). If this is the case, the observed messages (msgs) are
recorded positively in the exit transition annotation and all other messages
in a negated form (line 4).

Algorithm 8.6 on page 183 constructs the exits for timing constraints,
which are due to timeouts and timer resets and which are violated by the
environment. The first part (lines 1 to 2) considers violated timer resets,
the second part (lines 5 to 13) violated timeouts. The transition annotation
is the negation of the stable condition and the clock constraint for the exit
transition is the negation of the normal constraint for a timer reset (line 2;
also cf. algorithm 7.4 on page 165). The annotation is the negation of the
stable condition rather than the single label of the message to which the
timer refers, because otherwise in the strict interpretation the occurrence of
any message contained in the LSC would lead to an undesired error, once
the upper bound given by the timer reset is violated. The auxiliary func-
tion StableCond(ph) returns the annotation of the self loop on the state
corresponding to the current phase.

The treatment of violated timeouts is different inasmuch as it requires two
separate transitions to the exit state, each carrying one part of the negation
of the original clock constraint. The computation of the transition annota-

1We are using the term simultaneous region here out of convenience, although we
are actually dealing with the SimClass, which contains the simultaneous region under
consideration.

186 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

tion for the first transition (lines 6 to 10) covers the early occurrence of the
constrained messages. The auxiliary function SimClass(to) yields the Sim-
Class, which contains the current timeout atom (line 6). The annotation then
carries the conjunction of all messages occurring in the considered SimClass
(line 8) or simply true, if the timeout is isolated (line 10). A separate second
condition is needed, because a different transition annotation is required for
the case that the expected messages arrive too late or not at all (line 13). We
refer the reader to example 8.1 on page 189 for a detailed justification and
explanation why the second, different annotation is needed and why timer
resets are treated in the way described above.

Algorithm 8.8 transAnnot Construct Transition(ph, successor, Readyi,
Firedik)
44:1: mand invsj := mand invsi

2: poss invsj := poss invsi

3:
4: transAnnot := Handle Local Invariant Ends(true,

F iredik
, Readyi, j)

5:
6: let invsj = poss invsj ∪mand invsj

7: let cmr = ColdMsgRcvLabels(Firedik
) ∪

EnvHotAsyncRcvLabels(Firedik
)

8: let msr = MsgLabels(SimRegs(Firedik
))

9: if cmr 6= ∅ then

10: transAnnot :=Generate Main Annotation(Firedik
, cmr,msr, invsj,

transAnnot)
11: end if

12: if interpretation = strict then

13: transAnnot := transAnnot ∧
Neg Conjunct(MsgLabels(l) \ Firedik

)
14: end if

15: if |SimClasses(Readyi)| > 1 ∧ interpretation = weak then

16: transAnnot := transAnnot∧
Neg Conjunct(MsgLabels(Readyi \ Firedik

))
17: end if

18:
19: transAnnot :=Handle Local Invariant Starts(transAnnot,

F iredik
, Readyi, j)

20:

21: return transAnnot

8.1. INTERNAL ASSUMPTIONS 187

Different transition annotations, which are associated with distinct clock
constraints, always require separate transitions. Assume for instance that
there are two messages, msgX andmsgY , with clock constraints clkconstrX,
resp. clkconstrY . Considered in isolation the transition annotation would
be msgX[clkconstrX], resp. msgY [clkconstrY] or more explicitly msgX ∧
clkconstrX, resp. msgY ∧ clkconstrY . Using a single transition for both
messages including clock constraints, i.e. disjunctively adding annotations
and constraints would result for instance in (msgX∨msgY)∧(clkconstrX ∨
clkconstrY). This is incorrect, since the association of each message to its
constraint is lost. The correct annotation should read (msgX∧clkconstrX)∨
(msgY ∧clkconstrY) and can only be expressed by two separate transitions;
cf. example 8.1.

Algorithm 8.7 on page 184 constructs the exit transitions for violated
timing intervals. The basic procedure is similar to the one used in algo-
rithm 8.6 on page 183, although the concrete execution is slightly different.
As in algorithm 7.4 on page 165 the function PredecLocs(Readyi) yields
for all locations in the current ready set the set of their immediate prede-
cessor locations, which are annotated by a timing interval (line 1). In line 2
the location, which marks the end of the timing interval, i.e. the successor of
loc, is computed by the auxiliary function Succ(loc), which is used to find
the SimClass containing this location (line 3). Line 4 determines if there is
a cluster (given by the auxiliary function Cluster(loc′); line 4) defined on
the environment instance in this location. The SimClass is needed for the
transition annotation (line 5).

Since a timing interval is always bound to two locations, the annotation
cannot be empty as for timer resets or timeouts. Similar to the treatment of
violated timeouts, two separate transitions to the exit state are needed (see
example 8.1 on page 189 for the details). The clock constraint for the case
where the lower bound is violated is constructed in lines 6 to 9, depending
on the nature of the interval (open, half-open, closed). The constraint is
the negation of the normal constraint, as for timer resets and timeouts. The
corresponding transition is added to −→ in line 11. The transition for the case
where the upper bound is violated is constructed analogously in lines 13 to 18.
The treatment for timing intervals of asynchronous messages is analogous;
the transition annotation depends on the message atom, which is defined on
the environment instance (lines 22 to 42).

Algorithm 8.8 on the facing page shows the adjusted version of the algo-
rithm for the construction of the transition to the successor state. Only a

188 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

minor adjustment is necessary here: the hot asynchronous messages, which
are received by the environment (given by the auxiliary function EnvHotA-
syncRcvLabels (Firedik)) are added to the cold asynchronous messages
in line 7, thus treating them as cold ones.

Algorithm 8.9 TransAnnot Handle Local Invariant
Ends(TransAnnot, F iredik , Readyi, j)

1: for all lie ∈ LIEnds(Readyi) do

2: if incl(lie) then

3: TransAnnot := TransAnnot ∧ liID(lie)
4: end if

5: if mode(liID(lie)) = mandatory ∧ ¬isEnv(lie) then

6: mand invsj := mand invsj \ {liID(lie)}
7: else

8: poss invsj := poss invsj \ {liID(lie)}
9: end if

10: end for

11:

12: return TransAnnot

Algorithm 8.10 TransAnnot Handle Local Invariant
Starts(TransAnnot, F iredik , Readyi, j)

1: for all lis ∈ LIStarts(Readyi) do

2: if incl(lis) then

3: TransAnnot := TransAnnot ∧ liID(lis)
4: end if

5: if mode(liID(lis)) = mandatory ∧ ¬isEnv(lis) then

6: mand invsj := mand invsj ∪ {liID(lis)}
7: else

8: poss invsj := poss invsj ∪ {liID(lis)}
9: end if

10: end for

11:

12: return TransAnnot

The algorithms for handling local invariants, algorithm 8.9 and algo-
rithm 8.10, also require only a minor adjustment. Those mandatory local
invariants, which are defined on the environment instance, need to be added
to, resp. subtracted from the set of possible local invariants instead of manda-
tory ones. Thus, local invariants are only added to/subtracted from the set

8.1. INTERNAL ASSUMPTIONS 189

Algorithm 8.11 Insert Skip Transition(TransitionAnnot, ph, successor,
ClkResets, ClkConstr)

1: for all (qx, ψ, ρ, γ,State−1(ph)) ∈−→ do

2: let (Readyx, Historyx, Cutx) = State−1(qx)
3: let cmsgs = ColdMsgRcvLabels(Readyx) ∪

EnvHotAsyncRcvLabels(Readyx)
4: if cmsgs =Atoms(Readyx) then

5: −→:=−→ ∪ (qx, T ransitionAnnot, ClkResets,
ClkConstr, successor)

6: end if

7: end for

of mandatory local invariants, if they are not defined on the environment
instance (line 5 in both algorithms).

Algorithm 8.11, which computes the skipping transition for cold asyn-
chronous messages, also has to be altered, so that it considers hot asyn-
chronous messages received by the environment as cold ones as well. This is
done in line 3.

Example 8.1
Figure 8.4 on the next page shows the automaton for the LSC in figure 8.1 on
page 173 for the weak interpretation, which treats the hot part and timing
interval of the environment instance correctly. Note that state q2 is fair,
because the hot temperature of the location on the environment instance is
disregarded. This disallows the model checker to violate the LSC by never
sending the closed message. Assuming that the LSC specification holds
up to this point, intuitively stated, the model checker now has to send the
closed message in order to proceed to the lower part of the automaton of
figure 8.4 and check for a possible violation there.

Even though the model checker can not violate the LSC specification by
never sending closed, it still can send the message at a wrong point in time,
e.g. after 4 time units, thus violating the timing interval. In order to prohibit
this undesired behavior, the transitions from q2 to the exit state have been
added. The reason for the two separate transition becomes apparent in the
strict interpretation only.

Figure 8.5 on the next page shows an incorrect automaton for the strict
interpretation; for readability the self loop annotations have been abbreviated
to sc, which stands for ¬close barrier∧¬lower∧¬closed∧¬barrier closed.
In this automaton transitions to the exit state have been added for each

190 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

q0 ¬close

q1 ¬lower

close

q2 ¬closed

lower{z0 := 0}

q3 ¬barrier closed

closed[z0 ≤ 1 ∧ z0 ≥ 1]

q4 true

barrier closed

qXtrue

closed[z0 < 1]

closed[z0 > 1]

Figure 8.4: Automaton for LSC securing barrier with special treatment
of environment elements included (weak interpretation)

q0 sc

q1 sc

close barrier ∧ ¬lower ∧ ¬closed∧
¬barrier closed

q2 sc

lower ∧ ¬close barrier ∧ ¬closed∧
¬barrier closed {z0 := 0}

q3 sc

closed ∧ ¬close barrier ∧ ¬lower∧
¬barrier closed [z0 ≥ 1 ∧ z0 ≤ 1]

q4 true

barrier closed ∧ ¬close barrier ∧ ¬lower
∧¬closed

qXtrue

closed

closed

closed

closed

[z0 < 1 ∨ z0 > 1]

Figure 8.5: Incorrect automaton for LSC securing barrier with special
treatment of environment elements included (strict interpretation)

8.1. INTERNAL ASSUMPTIONS 191

state, in which the closed message should not occur (q0, q1, and q2). Note
that the transition from q2 is due to the timing interval and not because of
the strict interpretation; without the timing interval this transition would be
missing.

This transition is the incorrect part of the automaton, since it should be
represented by two separate transitions as in the automaton of figure 8.4. It
is used here to demonstrate that the straight-forward way to represent a vio-
lation of the timing interval by simply negating the original clock constraint
as done here, is insufficient when using the strict interpretation. Consider the
situation that the automaton in figure 8.5 has progressed to state q2, i.e. that
we are waiting to observe closed within the given time bound. In the weak
interpretation there was no problem, if the environment never sent closed,
since q2 is an fair state. In the strict interpretation the case is different,
because the stable condition expressed by the self loop annotation can be vi-
olated by other messages. Assume e.g. that the automaton in figure 8.5 has
remained in state q2 for five time units and now we observe barrier closed:
We have a violation of the property even though the environment did not
obey the (internal) assumption expressed by the timing constraint.

In order to prohibit this undesired behavior by the model checker, we
exploit the knowledge that after the time given by the upper bound of the
timing interval has passed, the LSC can not be fulfilled anymore regardless
of the occurrence of the required message. Once more time has passed than
allowed by the upper bound, without observing the expected message from
the environment (closed in our example), in the strict interpretation the
occurrence of any message, which is present in the LSC, causes an error as a
late effect of the not sent environment message. Consequently a violation of
the stable condition of the state, where the environment message is expected,
should lead to an exit, if this occurs after the time given by the upper bound
has elapsed. In our example this results in a transition to the exit state with
annotation ¬sc[z0 > 1] or more explicitly: close barrier ∨ lower ∨ closed ∨
barrier closed[z0 > 1].

A second transition to the exit state is required for a violation of the lower
bound, since here a different annotation and a different clock constraint is
required. Before the time for the lower bound elapses only the occurrence
of the environment message must result in an exit. Should any of the other
messages in the LSC be observed in this time span, the consequence must be
an error (in the strict interpretation). In our example here the annotation of
the first transition thus reads closed[z0 < 1]. This strategy is correct for the

192 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

weak interpretation as well, as the automaton in figure 8.4 illustrates.
This treatment covers all cases: If the expected message arrives too early,

the first transition is taken. If it is observed within the time bound given,
the normal transition is taken to the successor state in the automaton. If
the message arrives too late, the second exit transition is taken. If it never
arrives and the stable condition holds forever, we remain in this state. If it
never arrives and the stable condition is violated after the time given by the
upper bound has passed, again the second exit transition is taken. If the
stable condition is violated at any other time, an error is indicated.

Figure 8.6 shows the corrected version of the automaton for LSC
securing barrier in the strict interpretation. Note that the special con-
siderations above also apply to other timing constraints, which involve the
violation of an upper bound, i.e. timeouts and timer resets as shown in algo-
rithm 8.6 on page 183.

q0 sc

q1 sc

close barrier ∧ ¬lower ∧ ¬closed∧
¬barrier closed

q2 sc

lower ∧ ¬close barrier ∧ ¬closed∧
¬barrier closed {z0 := 0}

q3 sc

closed ∧ ¬close barrier ∧ ¬lower∧
¬barrier closed [z0 ≥ 1 ∧ z0 ≤ 1]

q4 true

barrier closed ∧ ¬close barrier ∧ ¬lower
∧¬closed

qXtrue

closed

closed

closed

closed[z0 < 1]

¬sc[z0 > 1]

Figure 8.6: Correct automaton for LSC securing barrier with special
treatment of environment elements included (strict interpretation)

�

Example 8.2
Figure 8.7 on the facing page shows another example illustrating the ad-
justed unwinding algorithm. The corresponding symbolic automaton, using

8.1. INTERNAL ASSUMPTIONS 193

ENV Inst1 Inst2

msg3

msg4

Cond

AC:
AM: Invariant

Exit_exampleLSC:
Act

msg2

ret_msg2

msg1

ret_msg1

Figure 8.7: Example LSC for the treatment of environment violations

weak interpretation, is shown in figure 8.8 on the next page. q1 is a fair
state, because the temperature of the second location on the environment
instance (receipt of msg1) is treated as cold, thus resulting in a cold cut.
The temperature of the penultimate environment location (receipt of msg3)
is also treated as cold, but does not result in a cold cut and a fair state q4,
because the location of Inst2, which is part of the corresponding cut, is hot.
The mandatory condition Cond on the environment instance is treated like a
possible one resulting in a corresponding transition from q1 to the exit state.
The asynchronous message msg3 is treated like a cold one, since it is not
guaranteed that the environment will receive it. This means that a skipping
transition is inserted from q4 to q6. q6 also shows an example for the treat-
ment of simultaneous regions containing messages sent by the environment:
If msg4 does not arrive at Inst1 at the correct time, i.e. when method call
msg2 returns, the automaton moves into the exit state. �

194 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

q0 ¬msg1

q1 ¬ret msg1

msg1

q2 ¬msg2

ret msg1 ∧Cond

q3 ¬!msg3

msg2

q4 ¬?msg3

!msg3

q5 ¬!msg4

?msg3

q6 ¬?msg4 ∧ ¬ret msg2

!msg4

q7 true

?msg4 ∧ ret msg2

qXtrue

¬Cond ∧ ret msg1

ret msg2 ∧ ¬?msg4

!msg4 ∧ ¬?msg3

Figure 8.8: Automaton for the LSC of figure 8.7

8.2 External Assumptions

The previous section has illustrated that the treatment of most LSC ele-
ments, which occur on the environment instance, can be integrated into the
unwinding algorithm and that there is one case, where this is not possible:
liveness (hot location temperatures). In order to require the environment to
send a message, an external assumption has to be employed, which actually
restricts the behavior of the environment. Since the assumptions about the
environment behavior are already present in the LSC in form of the LSC
elements specified on the environment axis, this information can also be ex-
ploited for the automatic derivation of external assumptions, i.e. assumptions
which actually enforce the behavior specified on the environment instance.

8.2. EXTERNAL ASSUMPTIONS 195

Section 8.2.1 describes how this is realized by extracting an assumption LSC
from the originally specified commitment LSC, whereas section 8.2.2 intro-
duces external assumption LSCs, which are explicitly specified by the user.

8.2.1 Extracting Assumptions from LSCs

The assumptions extracted from a commitment LSC are represented by an
LSC as well, although of a slightly restricted type. Such assumption LSCs
contain only two instances, one for the environment and one for the system
under development. This is sufficient, since assumptions are concerned with
the items observable at the interface between the system and its environment.
The environment can only observe and influence the system behavior via this
interface, all internal actions are hidden from it. The extraction thus involves
the hiding of internal communication and internal elements, i.e. only those
elements of the commitment LSC are extracted into the assumption LSC,
which either have originally been specified on the environment instance or
are messages leading to or coming from the environment. The environment
instance axis of the commitment LSC is consequently retained in the assump-
tion LSC and all other elements are projected onto the external interface of
the system represented by the system instance axis.

For the message atoms, which are projected onto the system axis, the
question of their ordering arises. In the case of instantaneous messages the
position of the complementary message atom on the system instance is easily
determined, since the positions of both the sending and receiving atom and
cluster are identical. In the case of asynchronous messages the position of
the complementary message atoms is more difficult to determine, because
the positions of one can not be derived from the position of the other. The
observance of the complementary atoms, however, is not necessary in the
assumption LSC, since only the message atoms on the environment instance
carry relevant information. The fact that messages received have been sent
earlier by the system or that messages sent to the system are eventually re-
ceived is non-essential in this view. Messages received by the environment
provide ordering information for the sending of messages and validity of con-
ditions and local invariants. But the concrete ordering of the atoms/clusters
on the system instance is irrelevant in the assumption, so that the position
of the complementary message atoms is in this case copied from the corre-
sponding atom on the environment axis and all clusters of the system axis are
placed into a coregion, if the environment instance contains at least one asyn-

196 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

chronous message atom. Care has to be taken when an asynchronous message
atom is part of a simultaneous region on the environment axis. In this case
the complementary asynchronous message atoms must not be placed in a
simultaneous region on the system axis, since no simultaneity between send-
ing and receipt is enforced for asynchronous messages. The complementary
message atom is then placed either in a not already occupied cluster above
the current one for complementary message sends or below for receipts. In-
stantaneous messages are not affected, because their point of observation is
still uniquely determined by the position of the corresponding atom on the
environment axis.

The role of the environment axis in an assumption LSC differs from the
one in a commitment LSC. In the former the behavior specified on the envi-
ronment axis has to be guaranteed, whereas it is only expected in the latter.
The environment axis in an external assumption is therefore not treated dif-
ferently than a normal instance axis. The elements used on the system axis of
an extracted assumption are needed by the environment to determine when
to send which messages, etc. Therefore only messages, simultaneous regions
and coregions will appear on the system axis of an extracted assumption.
Hence all location temperatures on the newly introduced system instance
are cold, because liveness requirements on the system are expressed in the
commitment LSC.
Assumption extraction is performed for each environment instance axis of
the commitment LSC, i.e. for each environment instance an assumption LSC
is derived.

Assumption Extraction Algorithm

The extracted assumption LSCs obviously share the activation information of
the commitment, i.e. take over the activation mode and activation condition.
The quantification is always universal, because assumptions express universal
constraints on the behavior of the environment.

Recall from definition 6.1 on page 94 that an LSC is a tuple
L = (l, assumptions, ac, pch, amode, quant). The (possibly empty)
set assumptions contains the assumption LSCs linked to commitment
LSC l. The extraction algorithm thus constructs from a commitment
LSC Lcomm = (lcomm, assumptions, ac, pch, amode, quant) a new LSC
Lass = (lass, ∅, ac, pch, amode, universal) for each environment instance
of Lcomm and adds it to the set of assumptions of Lcomm: Lcomm =
(lcomm, assumptions ∪ {Lass}, ac, pch, amode, quant).

8.2. EXTERNAL ASSUMPTIONS 197

Algorithm 8.12 Assumption Extraction
1: for all ienv ∈ Inst(lcomm) : envInst(ienv) = true do

2: Inst(lass) := {ienv, isys}
3: Atoms(lass) := Atoms(ienv) ∪ {⊥isys

,⊤isys
}

4: async msgs := false

5:
6: for all cl ∈ SortByPos(Clusters(ienv)) do

7: for all a ∈ cl : a ∈Msgsnd(ienv) do

8: let m ∈Msgrcv(lcomm) : msgID(m) = msgID(a)
9: Msgrcv(isys) := Msgrcv(isys) ∪ {m}

10: if sync type(msgID(m)) = async then

11: async msgs := true

12: if |cl| > 1 then

13: position(m) := InsertBelow(position(a))
14: else

15: position(m) := position(a)
16: end if

17: end if

18: end for

19:
20: for all a ∈ cl : a ∈Msgrcv(ienv) do

21: let m ∈Msgsnd(lcomm) : msgID(m) = msgID(a)
22: Msgsnd(isys) := Msgsnd(isys) ∪ {m}
23: if sync type(msgID(m)) = async then

24: async msgs := true

25: if |cl| > 1 then

26: position(m) := InsertAbove(position(a))
27: else

28: position(m) := position(a)
29: end if

30: end if

31: end for

32: end for

33: end for

34:
35: if async msgs then

36: Coregions(isys) := Clusters(isys) \ {{⊥isys
}, {⊤isys

}}
37: else

38: Coregions(isys) := CopyCoregs(Coregions(ienv))
39: end if

40: for all loc ∈ Locations(isys) do

41: temp(loc) := cold

42: end for

198 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

Algorithm 8.12 on the page before gives the details how the assumption
LSC body lass is derived from the commitment LSC body lcomm. A separate
assumption is extracted for each environment instance of the commitment
LSC (line 1). In line 2 the set of instances for the assumption LSC is con-
structed by taking over the chosen environment instance from the commit-
ment LSC and adding a new instance isys for the system under development.
In line 3 the atoms on the environment instance of the commitment are
copied into the new LSC and instance head and end atoms are added for the
system instance. The indicator for the presence of asynchronous messages is
initialized to false in line 4. Then each cluster of the environment instance is
examined (line 6) and for each message send atom (message receive atom) a
corresponding receive atom (send atom) is added to the system instance. In
order to be able to correctly determine the positions of asynchronous message
atoms, whose complementary atoms on the environment axis are part of a si-
multaneous region, the clusters are examined from top to bottom. Therefore
the clusters are first sorted according to their position by auxiliary function
SortByPos().

ENV Inst1 Inst2

msg3

msg4

Cond

AC:
AM: Invariant

Exit_exampleLSC:
Act

msg2

ret_msg2

msg1

ret_msg1

(a) commitment LSC

AC:
AM: Invariant

Exit_example_assexLSC:
Act

ENV SYS

msg3

msg4

Cond

msg1

ret_msg1

(b) extracted as-
sumption

Figure 8.9: Assumption extraction example

8.2. EXTERNAL ASSUMPTIONS 199

For each message send atom the corresponding complementary receive
atom (m in line 8) is copied from the commitment LSC and added to the
message receive atoms of the system instance (line 9). If the synchronization
type of the message is asynchronous, more actions ensue. First, the occur-
rence of an asynchronous message is recorded in line 11, then the position of
the complementary atom is determined. If the asynchronous message atom
on the environment instance is part of a simultaneous region, indicated by
the current cluster containing more than one atom (line 12), the position is
set to an unoccupied value, which is lower than the position of the send-
ing atom on the environment (using auxiliary function InsertBelow (),
line 13). Otherwise the position is copied from the message atom on the
environment instance (line 15). Message receive atoms on the environment
instance are treated analogously in lines 20 - 28.

If the extracted assumption LSC contains asynchronous messages, the
clusters of the system axis, save the ones containing the instance head and end
atom, are placed into a coregion (line 36). If no asynchronous messages are
present, the coregions on the environment axis are transferred to the system
axis via auxiliary function CopyCoregs() in order to correctly capture the
coregion semantics for instantaneous messages (line 38). In lines 40 and 41
the temperatures of location on the system axis are set to cold.

Example 8.3 (Assumption Extraction)
Figure 8.9 on the facing page gives an example for the assumption extraction
algorithm. Figure 8.9(a) shows the LSC from figure 8.7 on page 193, which
we use as the commitment LSC in this example, figure 8.9(b) shows the result
of the assumption extraction. The two internal messages msg2 and ret msg2

have disappeared, only those messages, which involve the environment, are
retained in the extracted assumption. The asynchronous messages msg3 and
msg4 have been projected onto the system axis and the simultaneous region
containing msg3 and ret msg2 disappeared, since the latter message is not
observable at the interface. The entire system instance axis is covered by
a coregion due to the presence of the two asynchronous messages in the
assumption LSC.

Figure 8.10 on the following page shows a second example, which more
noticeably illustrates the hiding of internal LSC elements by the extraction
algorithm. Only the timing interval and the condition C2 on the environment
instance remain, the internal timing constraint and the internal condition C1

vanish as well as all internal messages (m1, m4, m7). Note in both examples

200 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

Invariant
act

I1

LSC
AC:
AM:

Extraction_Exa

m1

I3 EnvI2

m2

m3

[2,5]
m4

C1

[4,4]

C2

m5

m6

m7

(a) commitment LSC

Invariant
act

LSC
AC:
AM:

Extraction_Exa_ass

SYS Env

[4,4]

C2

m5

m6

m3

m2

(b) extracted as-
sumption

Figure 8.10: Assumption extraction example

that the system instance is entirely made up of cold locations. �

8.2.2 User Specified Assumptions

In addition to assumptions, which are either internal to the commitment LSC
or extracted from it, user specified external assumptions are needed as well.
Since internal and extracted assumptions discussed in the previous sections
share the activation information of their respective commitment LSC, they
are bound to its activation scope, i.e. they are only effective, if the commit-
ment LSC is activated. There are situations, where this is not sufficient: An
invariant LSC may e.g. depend on the correct initialization of the model, or
the behavior of the environment is to be constrained before the commitment
LSC is activated. The latter requirement can also be realized by using an
appropriate pre-chart, but using separate assumptions can be easier in some
cases. See section 11.3 for concrete examples.

8.3. SEMANTICS OF EXTERNAL ASSUMPTIONS 201

User specified assumptions are identical to extracted assumptions, except
that they are not derived automatically from the commitment LSC. They
hence contain exactly two instance axes, environment and system, since the
environment can only observe communication at the interface to the system.
Similarly, only messages, simultaneous regions and coregions should be used
on the system axis and all location temperatures should be cold.

8.3 Semantics of External Assumptions

The semantics of internal assumptions is already taken care of by the modified
unwinding algorithm presented in section 8.1. The semantics of external
assumptions is expressed as a restriction of the system under design, since
they disallow certain runs of the system. Technically these restrictions need
not only concern the behavior of the environment, i.e. constrain input signals,
but may in general restrict any variable of the system under design. Great
care has to be exerted when constraining system variables in assumptions,
because prohibiting — via assumptions — certain runs of the system, which
are actually possible in the system, means that model check results become
untrustworthy. In the worst case a violation of a property, which has been
specified as an LSC, is only possible in the part of the system behavior, which
has been disallowed by such an assumption, so that the property seems to
hold, but is in reality not guaranteed when considering the complete system.
For this reason we only allow assumptions about inputs in the practical
application of LSCs.

Since assumptions, both extracted and user specified, are expressed as
LSCs, their semantics is defined by unwinding them into a timed symbolic
automaton, as for commitment LSCs. Because assumptions express the
expected environment behavior, i.e. are formulated from the environment’s
point of view, there is no treatment for internal assumptions in the unwinding
algorithm, i.e. both instances are treated as normal ones.

It is therefore necessary to know, whether an LSC is an assumption or a
commitment. This is indicated by the usagemode, which can have the values
comm or ass. The usage mode is an additional input for the unwinding
algorithm, which comes into play when determining which LSC elements
should be treated as belonging to the environment: in a commitment LSC
these are the elements defined on the environment instance, in an assumption
LSC no special treatment of these elements is necessary. Thus only the

202 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

isEnv(·) function for atoms has to be adjusted:

isEnv : Atoms(i) −→ B

isEnv(a) :=

{

true if usagemode = comm ∧ envInst(i)

false else
, a ∈ Atoms(i)

Thus the LSC semantics including assumptions are given in the following by
extending definition 6.16 on page 145:

8.2 Definition (Satisfaction of an LSC with Assumptions)
Let Lcomm = (lcomm, {Lass1

, . . . , Lassn
}, ac, ǫ, amode, quant) be a

commitment LSC with assumption LSCs Lass1
, . . . , Lassn

, let
T SAlcomm

, T SAlass1
, . . . , T SAlassn

be the timed symbolic automata gener-
ated for the LSC bodies lcomm, lass1

, . . . , lassn
, and let S be the corresponding

reference system.

Lcomm is existentially satisfied by S, denoted S |=∃ Lcomm, iff

quant = existential ∧ ∃tr ∈ (Runs(S) ↓ (Lass1
, . . . , Lassn

)) : tr |=∃ Lcomm

Lcomm is universally satisfied by S, denoted S |=∀ Lcomm, iff

quant = universal ∧ ∀tr ∈ (Runs(S) ↓ (Lass1
, . . . , Lassn

)) : tr |=∀ Lcomm

with
Runs(S) ↓ (Lass1

, . . . , Lassn
) := {tr′ ∈ Runs(S) | tr′ |=∀ Lass1

∧ . . . ∧ tr′ |=∀

Lassn
} and tr |=∃ L and tr |=∀ L as given in definition 6.16 on page 145. �

The major difference between definition 8.2 and definition 6.16 lies in
the set of (timed) system runs, which are allowed to be checked against
the commitment LSC. Here the number of possible system runs is re-
stricted to the ones, which fulfill the assumptions, expressed by Runs(S) ↓
(Lass1

, . . . , Lassn
). This corresponds to the standard treatment of assump-

tions, where the system runs are intersected with the runs allowed by the
assumptions [Jos93]. Definition 6.16 corresponds to the special case, where
the assumptions list of the commitment LSC is empty: an empty assumption
does not constrain any system run.

8.4. RELATED WORK 203

8.4 Related Work

To our knowledge there are no other approaches, which deal with integrated
assumptions in sequence charts. Krüger [Krü00] considers external assump-
tions, which are not represented graphically, however. Assumptions appear
in the context of the decomposition of a global specification, given in terms
of an extended MSC (MSC-96), into local specifications of the participating
instances. For each local specification the other instances of the MSC are
part of its environment and therefore the desired behavior of this instance
is only guaranteed, if the other instances conform to their role in the global
specification. No concrete application, like e.g. model checking, is presented,
however.

The basic approach is similar to our extraction procedure: One instance is
singled out and the message exchanges of the entire MSC are projected onto
the interface between the chosen instance and the remaining instances. But
whereas in our case the commitment part is the entire LSC and the assump-
tion part becomes another LSC, the result of [Krü00] is not an MSC, but
rather sets of textual properties for both the commitment and the assump-
tion part. The properties are further divided into a safety and a liveness part,
while in our approach there is only one assumption containing all individual
properties. In contrast to our work [Krü00] does not allow the possibility to
specify assumptions about the environment of an entire chart.

204 CHAPTER 8. INTEGRATED ASSUMPTION TREATMENT

Chapter 9

Upgrading Activation:

Pre-charts

So far the activation of an LSC is guarded by activation condition and mode.
It turns out that these constructs do not always sufficiently characterize the
activation point of a property specification. Often it is necessary to know
more about the history of a run, before being able to decide, whether the
LSC should be activated. There may be e.g. more than one way for a run
to arrive at a certain system state (characterized by a condition), but the
LSC should only be activated, if the run has followed a specific “route”. We
are for instance only interested in activating an LSC, when no errors have
occurred so far. This motivates the introduction of pre-charts which allow
to specify a prefix of a run acting as a trigger for the actual LSC.

The formal semantics of a pre-chart is defined by an altered unwinding
algorithm yielding a second automaton, in addition to the one for the LSC
itself. The pre-chart automaton acts as a filter on the system runs letting
only those pass, which fulfill the pre-chart.

Section 9.1 introduces the pre-chart concept in detail, whereas the formal
semantics is presented in section 9.2. As usual we close this chapter with a
discussion of related work in section 9.3.

9.1 Pre-charts

This chapter deals once more with the issue of when an LSC is activated.
So far two means for specifying the activation point have been presented in

205

206 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

section 4.2 on page 75: activation condition and activation mode. The former
specifies a single point in time, at which the LSC is activated. Depending on
the activation mode the LSC may be activated a number of times, if this point
is reached more than once. Such a single point in time is not always sufficient
for triggering an LSC, since there may be several distinct possibilities to reach
a system state, where the activation condition holds. Consider for instance
the LSC in figure 9.1, which repeats the LSC for successfully closing the
barrier of the train control system of figure 8.1 on page 173. There are two
basic ways to arrive at the state, where the signal lights on is sent: the
barrier was operational in the previous securing cycle or there was an error,
either during closing or opening. In the latter case the securing procedure
for the next train will not be able to successfully secure the crossing, i.e. the
protocol shown in the LSC in figure 9.1 does not hold. In order to successfully
verify that the barrier is closed, the prerequisite is thus that the barrier
has been successfully opened during the previous securing procedure. This
requires that a sequence of messages must be observed, i.e. several points in
time, instead of only one.

Barrier Crossing

AM: Invariant

AC: Lights_on

LSC securing_barrier

lower

close_barrier

barrier_closed

closed

Env

[1,1]

Figure 9.1: LSC for the Crossing component specifying the barrier closing

9.1. PRE-CHARTS 207

Pre-charts take care of this requirement by allowing to specify a prefix
or history, which must be fulfilled by a run in order to activate the LSC. A
pre-chart is essentially an LSC, i.e. all language constructs can be used in a
pre-chart, but its semantics is different, since the message sequence of the
pre-chart is not required to hold in the system, but rather must be observed
before activating the actual LSC.

Pre-charts do not replace the activation condition, but extend it; the acti-
vation condition in the presence of a pre-chart indicates the starting point of
the prefix. The pre-chart may be empty as has been assumed in the previous
sections. The informal semantics of an LSC with pre-chart is consequently:
If the activation condition holds and afterwards the pre-chart is completed,
then the LSC is activated. The key point here is that the pre-chart has to be
traversed completely in order to activate the LSC. This explicitly disallows
activation of the actual LSC, if the pre-chart is exited, e.g. due to a violated
possible condition. Thus, only when the entire prefix described in the pre-
chart has been observed is the LSC considered. A violation of the pre-chart
consequently is not a violation of the actual LSC, but rather means that the
LSC is not activated.

Graphically pre-charts are represented by a large possible condition sym-
bol covering the pre-chart elements. The pre-chart is placed above the actual
LSC. Figure 9.2 shows LSC securing barrier (cf. figure 9.1), extended by
an appropriate pre-chart. The new activation condition is the opening com-
mand for the barrier actuator (raise barrier). Since the goal is to require
a successful opening of the barrier in order to check the LSC describing the
closing procedure for the following train, the environment must send the
messages opening and open as shown at the beginning of the pre-chart. The
time bounds between the instance head and opening, resp. opening and
open ensure that both barrier and crossing controller return to their initial
states: The barrier controller in the Statemate model (cf. section 2.2.4)
must receive the open message at most two steps after the event to raise
the barrier (RAISE) has been issued in order to return to its initial state
(OPENED). Because the barrier has to first leave its closed position (event
BARRIER OPENING, to which the opening message is mapped) before it can
reach its upper end position, the tight timing as given on the environment
axis of the LSC in figure 9.2 is necessary. Once the barrier and crossing con-
troller have returned to their respective initial states, the message originally
activating the LSC in figure 9.1, lights on, should be sent triggering the
activation of the actual LSC. Another requirement for the prefix is that the

208 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

BarrierEnv

AM: Invariant
AC: raise_barrier
LSC securing_barrier

LightsCrossing

lights_on

opening

open

close_barrier

lower

closed

barrier_closed

[1,1]

[1,1]

[1,1]

no_red_err

Figure 9.2: LSC securing barrier with pre-chart

traffic lights are fully operational, because otherwise the crossing controller
will not send the closing command to the barrier controller. This is in part
ensured by the fact that lights on occurs, which can only happen, if the
lights are functioning up to this point. The condition no red err is needed
to ensure that the traffic lights remain operational also when the lights on

message is sent. Thus the message, which activated the LSC without pre-
chart (figure 9.1), still plays this role as it has moved to the end of the
pre-chart.

The early versions of the original LSC paper, [DH98, DH99], did not
consider pre-charts, in the latest version of the paper [DH01] the authors
follow our suggestion and include pre-charts, although the details are not
spelled out.

9.2. FORMAL SEMANTICS 209

9.2 Formal Semantics

The semantics of an LSC with pre-chart hinges on the connection of pre-
chart and LSC. The LSC must be activated immediately after the pre-chart
has been fulfilled, analogously to the case where only an activation condition
is present. Once the desired prefix has been observed the control lies in
the hands of the actual LSC, which determines which communications are
allowed and if progress is enforced. Since the semantics of both individual
charts are given as automata, the issue to be solved is the connection between
the two automata.

One way to effect the connection of pre-chart and LSC is by concatenation
of the respective automata, which is proposed by [DH01] in order to describe
the semantics of an LSC with pre-chart. The pre-chart automaton needs to
be modified in order to correctly capture the semantics: Since the purpose of
a pre-chart is to observe an activating prefix, violations of the pre-chart must
not result in a violation of the LSC and exits from the pre-chart must not
activate the actual LSC. Both situations do not reflect a complete traversal
of the pre-chart and should thus have no influence on the actual LSC. The
generation of the pre-chart automaton as described in [DH01] consequently
merges the error state with the exit state in order to cater for the first
requirement stated above, and merges the exit states of pre-chart and LSC
during the concatenation process in order to ensure the second requirement.

The semantics of an LSC including its pre-chart are thus informally de-
fined as (disregarding the activation mode for the moment): If a run satisfies
the activation condition, then in the remainder it must be accepted by the
concatenated automaton.

The automaton construction described informally in [DH01] is correct
only for the universal quantification; existential LSCs require a different
treatment, which is omitted in [DH01]. Consider for instance the automaton
in figure 9.3, which shows how the concatenation proposed in [DH01] looks
like for LSC securing barrier of figure 9.1 on page 206. The states of the
pre-chart part of the automaton are all accepting, since progress violations
in the pre-chart should not result in a violation of the LSC. For the same rea-
son is condition no red err treated as possible instead of mandatory. This
automaton allows violations only once the pre-chart has been fulfilled, all
possibilities for a violation of the pre-chart have been removed, similar to
the treatment of internal assumptions (cf. section 8.1 on page 173). The
depicted automaton is correct only in the universal quantification. For the

210 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

q0 ¬opening

q1 ¬open

opening{z1 := 0}
[z0 ≤ 1 ∧ z0 ≥ 1]

q2 ¬lights on

open[z1 ≤ 1 ∧ z1 ≥ 1]

q3 ¬close barrier

lights on ∧ no red err

q4 ¬lower

close barrier

q5 ¬closed

lower{z2 := 0}

q6 ¬barrier closed

closed[z2 ≤ 1 ∧ z2 ≥ 1]

q7 true

barrier closed

qXtrue

opening[z0 < 1]

opening[z0 > 1]

open[z1 < 1]

open[z1 > 1]

lights on ∧ ¬no red err

closed[z2 < 1]

closed[z2 > 1]

Figure 9.3: Concatenated automaton for LSC securing barrier for univer-
sal quantification

existential quantification there must be at least one run, which satisfies the
LSC. This requires that the LSC is activated at least once, a case not cov-
ered by the automaton in figure 9.3. The concatenated automaton accepts
not only those runs satisfying the LSC, but also those, which violate the
pre-chart or cause exits from it. A run for instance, which shows all the
messages of the pre-chart at their allotted places and times, but violates
condition no red err when lights on is observed, is accepted by this au-
tomaton, even though the LSC is not activated. It would thus be possible
that an LSC is existentially satisfied, even though it is never activated.

In order to correctly reflect the semantics a different automaton would
have to be generated for the pre-chart, which — instead of being as fair,

9.2. FORMAL SEMANTICS 211

q0 ¬opening

q1 ¬open

opening{z1 := 0}[z0 ≤ 1 ∧ z0 ≥ 1]

q2 ¬lights on

open[z1 ≤ 1 ∧ z1 ≥ 1]

q3 ¬close barrier

lights on ∧ no red err

q4 ¬lower

close barrier

q5 ¬closed

lower{z2 := 0}

q6 ¬barrier closed

closed[z2 ≤ 1 ∧ z2 ≥ 1]

q7 true

barrier closed
qXtrue

closed[z2 < 1]

closed[z2 > 1]

Figure 9.4: Concatenated automaton for LSC securing barrier for exis-
tential quantification

i.e. accepting, as possible as the one shown in figure 9.3 — needs to be as
unfair as possible in order to reach the actual LSC part of the concatenated
automaton, which is shown in figure 9.4. Removing the states belonging to
the pre-chart from the set of fair states in combination with omitting all
transitions to the exit state in the pre-chart ensures that the pre-chart must
be traversed. All runs which do not fulfill the pre-chart result in an error,
which is inconsequential in the existential quantification as long as there is
one run, which activates and satisfies the LSC.

The drawback of this approach is thus that a different automaton con-
struction is required depending on the quantification. In order to avoid this
unnecessary dependency, we use a different approach, which does not rely

212 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

on the quantification. Our approach builds on the fact that a pre-chart de-
scribes only a finite sequence of messages: from the time when the activation
condition holds until the pre-chart is traversed completely. This means that
a finite (timed) run and consequently a finite (timed) automaton are suf-
ficient to recognize an activating prefix. The only accepting state of this
finite automaton is the final state representing the complete traversal of the
pre-chart.

In definition 9.1 on page 215 below we will see that pre-charts are treated
uniformly in the semantics, independent of the quantification, thus effecting a
simpler treatment of pre-charts in the semantics. The pre-chart automaton
is separated from the LSC automaton and treated in the same manner as
the activation condition. For universally quantified LSCs this results in the
following informally stated implication: If the activation condition holds and
the pre-chart is fulfilled, then the LSC is considered. Our approach thus
yields a clearer separation of concerns between activation and satisfaction
of an LSC. The concatenation approach of [DH01] mixes both aspects and
results in a more complex semantics.

Since pre-charts only observe, if the desired prefix is part of a run, there is
no need for internal assumptions, i.e. to treat environment axes in a special
way for the unwinding. The effect of internal assumptions is guaranteed by
the fact that the actual LSC is only activated once the complete pre-chart
has been traversed. Thus, no exit state is needed.

The treatment of extracted assumptions for the LSC does not need
to be adjusted in the presence of a pre-chart. The required syn-
chronization with the activation of the actual LSC is already incor-
porated into the assumption extraction described in section 8.2.1 on
page 195. Recall that for the assumption extraction an assumption LSC
Lass = (lass, ∅, ac, pch, amode, universal) is generated for a commitment LSC
Lcomm = (lcomm, assumptions, ac, pch, amode, quant). In particular, the ex-
tracted assumption inherits the pre-chart of its commitment LSC. The correct
activation of the extracted assumption is thus guaranteed.

9.2. FORMAL SEMANTICS 213

9.2.1 Pre-chart Unwinding Algorithm

Since the environment axis does not need to be treated specially for
pre-charts, the pre-chart unwinding algorithm is similar to algorithm 7.1 on
page 162 for timed LSCs. Algorithm 9.1 generates a timed finite automaton
T FApch = (Σ, Q, q0, C,−→, F) from a pre-chart pch (cf. definition 5.9 on
page 90).

Algorithm 9.1 on the following page shows the main part of the pre-chart
unwinding algorithm. Note that the cut temperature is disregarded for the
determination of the set of accepting states and no exit state is added. The set
of accepting states is consequently initialized to the empty set (line 9). The
treatment of local invariants does not distinguish possible and mandatory
ones, since the mode is irrelevant in a pre-chart. Thus the set of active
possible local invariants is initialized to the empty set (line 10) and all local
invariant starts are treated like mandatory ones (line 11). Line 15 contains
the definition of the set of accepting states, which contains only the final state
indicated by the empty ready set. Since this is a finite automaton, there is
no need for a self loop on the final state. Reaching this state is sufficient to
determine the acceptance of a timed run.

Since no exit state exists, there is no need to generate exit transitions,
so function Generate Exits() is eliminated completely. The remaining
functions of the pre-chart unwinding algorithm do not touch the acceptance
criterion and are therefore identical to the ones found in section 7.2.2.

Note that pre-chart and LSC have separate scopes due to being of a differ-
ent nature. The pre-chart consequently possesses a separate set of identifiers,
i.e. in the strict interpretation only the messages occurring in the pre-chart
are thus restricted in the corresponding automaton, but not the ones occur-
ring in the actual LSC. If a restriction of messages occurring in the LSC is
desired in the pre-chart, this can be done selectively by the user by adding
appropriate local invariants.

9.2.2 Pre-charts Semantics

In this section we extend the definition of satisfaction of an LSC as given
by definition 8.2 on page 202 in section 8.3 to LSCs with pre-charts. Note
that a pre-chart is not concerned by the quantification or activation mode,
since this information pertains to the complete LSC: activation condition,
pre-chart and LSC, as is seen in the definition below. The interpretation

214 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

Algorithm 9.1 Pre-chart Unwinding Algorithm
1: if interpretation = strict then

2: sc := Neg Conjunct(MsgLabels(pch))
3: end if

4: Σ := MsgLabels(pch)∪ Conditions(pch) ∪ Local Invariants(pch) ∪ {true, false}
5: C := {z0, z1, . . . , zk}
6: phases := {Phase0}
7: Q := {State(Phase0)}
8: q0 := {State(Phase0)}
9: F := ∅

10: poss invs0 := ∅
11: mand invs0 := {li ∈ Local Invariants(l) | ∃scl ∃cl ∈ scl ∃a, a′ ∈ cl :

a ∈ Instheads(l) ∧ a′ ∈ LI starts(l) ∧ liID(a′) = li

12: while phases 6= ∅ do

13: let ph = (Readyi, Historyi, Cuti) ∈ phases

14: if Readyi = ∅ then

15: F := {State(ph)}
16: else

17: for all Firedik
∈ P(Readyi) do

18: successor := Step(ph, F iredik
)

19: let successor = (Readyj , Historyj, Cutj)
20: if successor = ph then

21: Insert Self Loop(ph,Readyi)
22: else

23: TransitionAnnot :=Construct Transition(ph, successor,
Readyi, F iredik

)
24: ClkResets := Compute Resets(Firedik

)
25: ClkConstr := Compute Constraints(Firedik

)
26: if ∃q ∈ Q with State−1(q) = (Readyx, Historyx, Cutx) : Readyi =

Readyx ∧Historyi = Historyx then

27: successor := State−1(q)
28: else

29: Q := Q ∪ {State(successor)}
30: phases := (phases \ {ph}) ∪ {successor}
31: end if

32: −→:=−→ ∪ {(State(ph), T ransitionAnnot, ClkResets,
ClkConstr,State(successor))}

33: end if

34: Insert Skip Transition(TransitionAnnot, ph, successor,
ClkResets, ClkConstr)

35: end for

36: end if

37: end while

9.2. FORMAL SEMANTICS 215

affects both the pre-chart and the LSC as well, although no messages of the
pre-chart are constrained in the actual LSC and vice versa.

9.1 Definition (Satisfaction of an LSC with Pre-chart)
Let Lcomm = (lcomm, { Lass1

, . . . , Lassn
}, ac, pch, amode, quant)

be a commitment LSC with assumption LSCs Lass1
, . . . , Lassn

, let
T SAlcomm

, T SAlass1
, . . . , T SAlassn

be the timed symbolic automata gen-
erated for the LSC bodies lcomm, lass1

, . . . , lassn
, let T FApch be the timed

finite automaton generated for pre-chart pch, and let S be the corresponding
reference system.

Lcomm is existentially satisfied by S, denoted S |=∃ Lcomm, iff

quant = existential ∧ ∃tr ∈ (Runs(S) ↓ (Lass1
, . . . , Lassn

)) : tr |=∃ Lcomm,
with

tr |=∃ Lcommiff

∃j ≥ 0 : tr0 |= ac ∧ amode = initial

trj
1 |= pch ∧

−−→
trj+1 ∈ L(map(T SAlcomm

))

∃i ∃j ≥ i : tri |= ac ∧ amode = invariant

trj
i+1 |= pch ∧

−−→
trj+1 ∈ L(map(T SAlcomm

))

∃i ∃j ≥ i : tri |= ac∧

¬active(Lcomm)∧ amode = iterative

trj
i+1 |= pch ∧

−−→
trj+1 ∈ L(map(T SAlcomm

))

216 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

Lcomm is universally satisfied by S, denoted S |=∀ Lcomm, iff

quant = universal ∧ ∀tr ∈ (TRuns(S) ↓ (Lass1
, . . . , Lassn

)) : tr |=∀ Lcomm,
with

tr |=∀ Lcommiff

∀j ≥ 0 : tr0 |= ac ∧ amode = initial

trj
1 |= pch⇒

−−→
trj+1 ∈ L(map(T SAlcomm

))

∀i ∀j ≥ i : tri |= ac ∧ amode = invariant

trj
i+1 |= pch⇒

−−→
trj+1 ∈ L(map(T SAlcomm

))

∀i ∀j ≥ i : tri |= ac∧

¬active(Lcomm)∧ amode = iterative

trj
i+1 |= pch⇒

−−→
trj+1 ∈ L(map(T SAlcomm

))

with

• trj
i+1 |= pch denoting the satisfaction of pch by trj

i+1 :

trj
i+1 |= pch iff trj

i+1 ∈ L(map(T FApch)),

• (Runs(S) ↓ (Lass1
, . . . , Lassn

)) as given by definition 8.2 on page 202,
active(L) and L(map(T SAl)) as given by definition 6.16 on page 145.

�

For existential satisfaction of an LSC all three components must hold,
i.e. for at least one run the activation condition must be evaluated to true
and the pre-chart must be fulfilled and the LSC must be satisfied. For uni-
versal satisfaction of an LSC the pre-chart is placed on the left-hand side
of the implication: If the activation condition holds and the pre-chart is
fulfilled, then the actual LSC must be satisfied. For existential satisfaction
the implication is simply exchanged for a conjunction. The pre-chart is thus
treated in an identical manner to the activation condition.

The transition from the pre-chart to the LSC upon complete traversal is
achieved using index j, which marks the valuation of timed run tr reaching
the final state in the pre-chart automaton and thus the transition into the
LSC. The next valuation j + 1 is the first step of run tr, which is within

9.2. FORMAL SEMANTICS 217

the scope of the actual LSC. Note that j = i in case of an empty (i.e. non-
existent) pre-chart, so that the run segment tri

i+1 is empty as well, which
means that tri

i+1 |= pch is trivially true. Definition 8.2 hence is a special case
of the complete definition given here.

Note that the quantification of j conforms to the overall quantification
of the LSC. In the existential case only one such j need exist in order to
fulfill the LSC. In the universal case a universal quantification of j allows
non-determinism in the pre-chart automaton, which can for instance arise
due to isolated conditions (cf. section 6.2.4 on page 118). The use of non-
deterministic pre-charts is strongly discouraged, however.

q0 ¬opening

q1 ¬open

opening{z1 := 0}[z0 ≤ 1 ∧ z0 ≥ 1]

q2 ¬lights on

open[z1 ≤ 1 ∧ z1 ≥ 1]

q3

lights on ∧ no red err

Figure 9.5: Finite automaton for pre-chart of LSC securing barrier using
weak interpretation

Example 9.1 (Pre-chart)
Figure 9.5 shows the finite timed automaton for the pre-chart of LSC
securing barrier from figure 9.1 on page 206. The only accepting state
is the final state q3. Note that there is no self loop on the final state due
to the finite nature of the automaton and that the elements specified on the
environment instance are not treated as internal assumptions. The treat-
ment of the other elements and timing constraints in this finite automaton
is identical to the one for timed symbolic automata.

Figure 9.6 on the next page shows the timed symbolic automaton for
the actual LSC of figure 9.1. Note that the LSC automaton respects the
special nature of elements defined on the environment instance, in this case

218 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

q0 ¬close barrier

q1 ¬lower

close barrier

q2 ¬closed

lower{z0 := 0}

q3 ¬barrier closed

closed[z0 ≤ 1 ∧ z0 ≥ 1]

q4 true

barrier closed

qXtrue

closed[z0 < 1]

closed[z0 > 1]

Figure 9.6: Automaton for LSC securing barrier using weak interpretation

the closed message and the associated timing interval, whereas the pre-
chart automaton includes no special treatment for elements specified on the
environment instance.

�

9.3 Related Work

We have already discussed in detail the pre-charts approach proposed
in [DH01] and the differences to our own in the motivation of our semantics
definition in section 9.2 on page 209 and thus do not repeat the argumenta-
tion here.

The pre-charts considered by Bontemps in [Bon01] conform to the treat-
ment presented in [DH01], i.e. pre-chart and LSC automaton are concate-
nated. This only works in [Bon01], because only messages and hot tem-
peratures are considered, otherwise the abovementioned problems wrt. the
concatenation approach would arise.

Krüger [Krü00] (cf. section 6.4 on page 149) proposes a composition
operator called trigger composition, which shows some traits of a pre-chart.
This operator joins two MSCs: α 7→ β. Its meaning is: If the behavior
specified by MSC α has been observed, then the behavior specified by MSC β

9.3. RELATED WORK 219

is inevitable. This notion is similar to the pre-chart concept presented in this
section, but not identical as the trigger composition operator expresses rather
a liveness requirement than a history of behavior, since β need not start
immediately after the completion of α. This is a key property of pre-charts,
which can not be expressed by the MSC language presented in [Krü00]. The
trigger composition rather corresponds to a liveness requirement, i.e. a hot
cut, in LSCs.

Firley et al. [FHD+99] (cf. section 6.4 on page 149) present a pre-chart-
like concept as well, called If-Then-Behavior, which is applied to SDs. It
corresponds more closely to pre-charts than the trigger composition, since
the second SD is entered immediately after the first one is completed. The
connection between the first and second SD is established by concatenation,
which does not provoke the problem with the quantification described in
section 9.2, since SDs are viewed only existentially in [FHD+99].

220 CHAPTER 9. UPGRADING ACTIVATION: PRE-CHARTS

Chapter 10

Embedding LSCs into the

Development Process

The practical usefulness of a language not only depends on its immediate
properties like features, graphical representation or expressiveness, but also
on guidelines how and when to apply it. The users need to know for which
tasks in the design process the language is intended and how it should be
applied to get the best results. Hence, in addition to the description of the
language and its meaning (syntax and semantics) a methodology should be
provided, which indicates what the primary use cases of this language are.
After introducing the language features and defining their semantics in the
preceding chapters, this chapter presents such a methodology for LSCs on the
basis of a model-based development process. There are several standardized
process models, like the waterfall model [Roy70], spiral model [Boe88] or
V-model [ESt97], to name but a few.

Regardless of the particular process model there are recurring common
phases. Since we do not want to focus on a specific development process, we
look at an abstract process model, which consists of these typical, recurring
development phases. In section 10.1 we thus introduce such an abstract
process model and its phases. We assume that the process is model-based
and focus on the phases on the use case of formal verification and the phases
affected thereby. Section 10.2 outlines our methodology by embedding LSCs
into this abstract development process. We conclude this chapter with a
review of related work in section 10.3.

221

222 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

10.1 Abstract Development Process

Phase 1: Initial System Analysis Phase embedded controller devel-
opment typically starts with a textual requirements specification, which de-
scribes the basic functionality using natural language. It also contains non-
functional constraints like timing requirements, side conditions due to limited
resources, interoperability demands, etc. For the documentation of the major
functionality Use Case Diagrams are often used.

Phase 2: Architectural Design Phase The Architectural Design Phase
is concerned with structuring the system under design (SUD). Based on the
results of the previous phase the SUD is decomposed in a top-down manner,
iteratively breaking the complete system down into sub-components. Simul-
taneously the interfaces, including the interface between the system itself
and its environment, and the connections between the different sub-systems
are defined. In a model-based development process the functional decom-
position of the system can e.g. be represented by classes (if for instance the
UML is employed) or activities (if Statemate is used). The system struc-
ture, including connections between entities, is then for example modeled by
Class, Collaboration or Sequence Diagrams or Activity Charts. The result is
a model of the hierarchical system architecture with defined interfaces and
connections.

Phase 3: Behavioral Design Phase Assuming a model-based process,
the detailed behavior of each sub-system is modeled in this phase. This model
can be analyzed, simulated and verified, depending on the tool support. For
Statemate designs the behavioral specification is given as Statecharts, in
the UML State Diagrams are typically used. The goal of this phase is a
reference model, which has been thoroughly analyzed and implements the
key properties specified in the requirements document. It thus serves as a
reference for the following phases, which is the most important advantage of
a model-based development process.

Phase 4: Implementation Phase This phase entails the actual imple-
mentation of the SUD in hard- and software. The tasks to be performed
here are thus primarily the partitioning into software and hardware parts
and the derivation of code (manually or automatically). The model, which

10.2. ADVANCED USE CASES FOR LSCS 223

is the outcome of the previous phase, serves as a reference against which the
implementation is measured. The particular steps in this phase strongly de-
pend on the type of application being developed and the tools used; several
modeling tools e.g. offer automatic code generation capabilities.

Phase 5: Test Phase The goal of this phase is to ensure that the im-
plementation generated in the previous phase is free of any major errors
and meets the initially specified requirements. This entails first testing each
sub-system in isolation (module test) and later in conjunction with other sub-
systems (integration testing). For embedded controllers prototypes, realized
either in hard- or software, are often hooked up to the physical environment
they are built for (hardware or software in the loop testing). The final part
of this stage is the acceptance test, where the conformance of the complete
system to the customer’s requirements is demonstrated. Note that in most
process models this phase consists of several individual phases.

10.2 Advanced Use Cases for LSCs

In this section we outline the methodology for embedding LSCs into a model-
based development process, with special attention to the use case of formal
verification. We use the abstract development process introduced in the pre-
vious section as a guideline through the methodology. In the Initial System
Analysis Phase LSCs are typically not used, since LSCs are not intended for
specifying non-functional requirements, except timing information. More-
over, the structure of the SUD is only developed in the following phase,
which constitutes the first use case for LSCs:

10.2.1 Capturing Typical System Interactions

At the beginning of Architectural Design Phase existential LSCs are used for
the illustration of the major use cases, similar to the use Sequence Diagrams
are put to in the UML. During elaboration of the use cases in the form of
LSCs the primary participants are identified and become instances in the
LSC. In this manner a first view of the system architecture evolves and thus
the first level of hierarchy is created.

By allowing to capture the typical communication scenarios as LSCs the
designer is supported in identifying the entities needed for the realization

224 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

of the major functionality and in determining their interfaces. This process
is iterated as the entities identified at the top level are further decomposed
yielding a hierarchical structuring of the SUD where at each level the typical
interactions are specified by a set of existential LSCs.

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

safe_rec

safe_snd

status_req_rec

status_req_snd

train_passed

raise_barrier

opened

switch_off_lights

closed

lower_barrier

yellow_on

red_on

ack_rec

Invariant
activation_point_reached
securing_all

AM:
AC:
LSC

Figure 10.1: Existential LSC showing the desired interaction on the top level
of the train control system (Architectural Design Phase)

The scenarios expressed show overall interaction sequences, i.e. the LSCs
are extensive and contain a substantial number of messages. A typical ap-
proach for instance is to first draw an LSC depicting the good case, the

10.2. ADVANCED USE CASES FOR LSCS 225

desired behavior, and then diversify this scenario by considering error cases
and alternate behaviors. Figure 10.1 on the preceding page e.g. shows the
good case for the top level of the train control system; see section A.1.1 for
an extensive set of existential LSCs for the top level.

LSCs in this phase consist mainly of messages, some conditions and only
occasionally of local invariants or timing annotations. Mandatory elements
and hot temperatures are prevailing, because due to the existential quan-
tification only one run showing the interactions specified need exist. This
run should show all of the specified behavior, however, not only parts of
it, i.e. exits due to violated possible conditions or local invariants or getting
stuck in a cold cut are not desired here. Activation is guarded in the ma-
jority of cases by activation conditions only, since the knowledge about the
system’s details are not needed for the description of typical interactions and
may not even be available at this point. For similar reasons coregions are
used in cases, where the exact ordering is unimportant or unknown at the
moment. Moreover, environment instances are not distinguished from ordi-
nary instances, since assumptions (internal or external) are irrelevant in the
existential view.

Complementary to the description of expected interactions existential
LSCs can also be employed for the specification of undesired communica-
tion sequences, i.e. negative scenarios, which should never be observed. This
usage becomes especially useful in the subsequent phase when existential ver-
ification is available. Then the absence of such undesired behavior can be
proven.

Description of typical interactions is also the prime use case for standard
sequence charts, although the purpose is mostly documentary. LSCs improve
on this informal usage of sequence charts in two ways. On the one hand
implicit information is made explicit by increasing the expressiveness, e.g. by
allowing to specify the activation point or to group several elements together
in simultaneous regions. The methodology presented here on the other hand
aims at reusing the existential LSCs in later phases (see below), thereby
raising their value above a mere documentary level.

Example 10.1
Figures 10.2 and 10.3 show examples of existential LSCs for the crossing:
Depicted are the good case (no errors occur, the crossing is secured; fig-
ures 10.2) and the error case, where the train does not reach the crossing

226 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

AM: Invariant
AC: Activate_Crossing
LSC securing

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

switch2red

lights_on

status_req

crossing_safe

barrier_closed

lower

closed

barrier_open

raise

opening

turn_off

switch_off

open_barrier

Sensor

train_passed

close_barrier

Figure 10.2: Existential LSC showing the desired interaction at the crossing
(Architectural Design Phase)

in time and sends the release message (free), which results in reversing the
securing process by starting to open the barrier (figure 10.3). Note that the
environment axis is not distinguished from the other instances. These two
examples, in addition to the LSC depicted in figure 10.1 on page 224, show

10.2. ADVANCED USE CASES FOR LSCS 227

AM: Invariant
AC: Activate_Crossing
LSC securing_free

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

switch2red

lights_on

lower

closed

barrier_closed

free

open_barrier

barrier_open

opened

turn_off

switch_off

raise

close_barrier

Figure 10.3: Existential LSC for the crossing showing an error case (Archi-
tectural Design Phase)

that LSCs in the Architectural Design Phase can become quite large and that
the prevailing feature used are messages. Also note that the exact ordering
between the acknowledge sent to the train (ack) and the command to turn
on the traffic lights (turn on) is not expressed, since this detail is not yet
worked out. �

228 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

10.2.2 Debugging by Existential Verification

At the end of the Architectural Design Phase the system architecture is
known and for each hierarchy level a set of existential LSCs has been drawn
to capture the typical communications between (sub-)systems/entities at this
level. The next step is to define the behavior of each entity and thus of
the complete system, which is done in the Behavioral Design Phase. In a
model-based development process the goal is to produce a reference model
for the subsequent phases. Steps toward this goal are simulation, analysis
and formal verification. We present those related to LSCs in this and the
following section.

Once a suitable portion of the behavior has been modeled, the existential
LSCs specified in the previous phase can be reused for verification. Since
these LSCs are existential, it is checked if the part of the system constructed
so far, is indeed capable of performing the typical communication sequence at
least once. Or in other words: Is there at least one run, which conforms to the
specified scenario? We call this use case existential verification. This check
can be applied as the model is built, i.e. the model need not be complete.
The developer decides if and when existential verification is to be applied,
which LSCs are to be checked, etc.

Existential verification can hence be employed as a debugging aid early in
the development in order to verify that the current state of the SUD model
is able to perform the basic interactions as specified by the existential LSCs.
The LSCs created in the previous phase can be used directly without any
modifications, allowing a facile reuse.

Negative scenarios are verified in the same way as normal existential
LSCs, only the result is interpreted differently. If a negative scenario is
proven to be possible in the model, this indicates an error, since the absence
of the specified interaction sequence is expected. Checking negative scenarios
is thus performed at the same stage as universal verification, i.e. at the end
of the Behavioral Design Phase when the model has reached a mature and
stable state.

10.2. ADVANCED USE CASES FOR LSCS 229

10.2.3 From Scenarios to Protocol Specifications

Modularization of Existential LSCs

Existential verification, potentially in conjunction with simulation and anal-
ysis of the model, increases the confidence in the correctness of the model
being built compared to a traditional design process. These measures do not
ensure, however, that a requirement is fulfilled under all circumstances, since
not all possible cases are covered. This can be achieved by formally verifying
key properties specified as universal LSCs, which is applied towards the end
of the Behavioral Design Phase, i.e. when the model is mature and stable.

The question at this point is where do these universal LSCs come from.
The existential LSCs specified in the Architectural Design Phase already
contain these key properties. The aim is thus to reuse these LSCs for the
specification of the properties to be model checked. Since such existential
LSCs tend to be rather large as the LSCs in figures 10.1 - 10.3 illustrate
(see also sections A.1.1, A.2.1 and A.3.1), the relevant protocols have to be
identified and extracted.

The procedure for producing smaller, more concise universal LSCs from
extensive existential LSCs is guided by identifying fragments belonging to-
gether, i.e. forming one sub-protocol, one property. A first indication in this
direction is gained by recognizing identical or similar parts in a set of ex-
istential LSCs. The existential LSCs produced in the preceding phase are
not completely disjunct, but partially overlapping, since an LSC showing a
good case, is often complemented by others, which describe potential error
situations. The LSCs in figure 10.2 on page 226 and figure 10.3 on page 227
for instance are largely identical. At the developers discretion the overlap-
ping parts are factored out yielding a number of shorter, core communication
sequences. We call this extraction of universal protocols from an existential
LSC modularization.

Strengthening the LSCs

Before the extracted sub-protocols can be verified they have to be adjusted
to the changed usage. In a first step the quantification is changed to uni-
versal and environment instances, if present, are distinguished from normal
instances in order to enable the consideration of internal and extracted as-
sumptions. Generally, other modifications have to be applied as well to
enable formal verification of the extracted universal LSCs. We refer to this

230 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

second part of the transformation from existential scenarios to universal pro-
tocol specifications as strengthening. The strengthening activities can also be
viewed as a generalization, since general behavior is deduced from particular
runs.

The typical interaction sequences created in the previous phase can usu-
ally be expressed by basic LSC features, mostly messages. As the aim now
is to prove that the specified interaction is executed under all circumstances,
more information and precision is needed, requiring more advanced features.
Mandatory conditions or timing constraints, are e.g. added and indetermined
ordering of messages expressed e.g. by coregions is made more precise by re-
quiring a specific order or employing simultaneous regions.

In order to prove that the model conforms to the behavior specified by
a universal LSC, generally the environment actions have to be restricted
in addition to specifying more precise charts. The assumptions effecting
these restrictions can be grouped into two categories: Assumptions ensuring
reactions of the environment and assumptions expressing case distinctions.
The former category comprises hot locations and timing annotations on the
environment axis. The latter category of assumptions is used to focus on a
specific behavior of the SUD. In order to successfully verify that the barriers
are closed, the barriers have to be operational, i.e. the system behavior has
to be restricted to this case. Conditions and local invariants are typically
used for this purpose. Both internal and external assumptions can be used,
although it is recommended to use internal assumptions if possible, since
they are more intuitive due to the fact that they are contained directly in
the commitment LSC.

Activation conditions of universal LSCs often need to be made more pre-
cise, i.e. more restricted, in order to rule out undesired activations of the
LSC. For some charts it will become apparent that more information about
the history of a run is needed in order to determine, if the LSC should be ac-
tivated. Activation conditions are thus in such cases extended to pre-charts.

The process of model checking the resulting LSC specifications typically
requires several iterations, in which the mentioned strengthening actions are
performed incrementally. First the commitment side of an LSC is strength-
ened in conjunction with some basic restrictions of the environment. If the
specified property does not hold, there is either an error in the model or
the LSC is not precise enough. In the first case the model is corrected and
the proof is executed again. Each change to the model moreover requires

10.2. ADVANCED USE CASES FOR LSCS 231

a re-assessment of the other LSCs, i.e. it has to be determined, if they are
affected by the altered model behavior. In the second case the LSC has to
be analyzed and corrected, e.g. by adding an assumption.

Care has to be taken when specifying assumptions in order to be consis-
tent with the initial requirements. Before an assumption is added to a com-
mitment LSC the designer has to determine that the assumption is valid,
i.e. conforms to the initial requirements document and is justified by the
environment.

The result of this phase is a model, which serves as a reference for the fur-
ther steps in the development process. The verification activities described
above are an important step towards such a reference model, in addition to
other measures like simulation and analysis. The reference model constitutes
an early, virtual integration of the components of which the SUD is com-
prised. Existential and universal LSC-based verification allows to check the
integration and interplay of the individual components prior to their imple-
mentation.

Note that verification does not ensure the complete correctness of the
model, but only wrt. the specified properties. If the specified and verified
properties cover all the requirements stated in the initial document or if those
requirements are complete themselves, has to be determined in a different
way. Such considerations are beyond the scope of this thesis.

Example 10.2 (Modularization and Strengthening)
In this example we illustrate part of the modularization and strengthening
process described above at the level of the crossing component of the train
control system. For the strengthening we will not present all intermediate
versions of the universal LSCs, but rather only show the final one.

The LSCs in figures 10.2 on page 226 and 10.3 on page 227 show two of the
existential LSCs for this component, more can be found in section A.3.1 in the
appendix. LSC securing (figure 10.2) shows the good case, the remaining
ones describe error scenarios, which are identical in large parts. A natural
modularization is to separate the activities necessary for a train approaching
the crossing from those for a train, which has already passed the crossing.
This cuts off the lower part of the LSCs, from message open barrier on
downward; figure 10.4 shows the resulting already strengthened, universal
LSC.

232 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

Barrier Lights

AM: Invariant
AC:
LSC

Env Crossing

opening
lights_on_no_red_err

open_barrier

turn_off

raise

barrier_open

barrier_closed

opening

switch_off

no_red_err

no_open[1,1]

Figure 10.4: Universal LSC for the opening of the barrier

The strengthening of this LSC for the successful verification required
adding of some assumptions (in the form of local invariants and timing inter-
vals) and the extension of the activation condition to a pre-chart. The pre-
chart is needed in order to express that the barrier has really been closed for
the approaching train; otherwise the shown protocol can not be guaranteed.
The barrier should remain closed the whole time after it has been lowered.
This is expressed by local invariant no open, which starts right after activa-
tion of the LSC and ends simultaneously to the barrier leaving its lower end
position. The message for the opening of the barrier (open barrier) trig-
gers the activation of the actual LSC. It is additionally necessary to require
that the lights are operational the whole time, because a failure occurring
before the command to turn off the lights (turn off lights) is sent results
in a premature switching off of the traffic lights. This would entail that the
liveness property, which requires the lights controller to send the switch off
signal to the physical lights once it receives the corresponding command can
not be fulfilled. The last assumption to be made is that the barrier functions
correctly and starts opening within the allotted time, which is expressed by
the timing interval on the environment axis.

10.2. ADVANCED USE CASES FOR LSCS 233

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

switch2red

lights_on

turn_on

securing_lights

no
_r

ed
_e

rr

nre

Figure 10.5: Universal LSC for the turning on of the traffic lights

The part of the scenarios describing the securing procedure before the
train arrives at the crossing can be broken down into several sub-protocols.
The first such piece is the turning on of the lights, which is identical in the
LSCs of figures 10.2, A.38, A.39, A.41 and A.40 and which is only slightly
modified in the remaining existential LSC shown in figure 10.3. The next
sub-protocol covers the closing of the barrier and is not present in all LSCs,
but in the ones shown in figures 10.2, 10.3, A.33 and A.41.

Figure 10.5 shows the universal LSC for the turning on of the traffic
lights, again already strengthened. For this requirement to hold the physical
parts of the crossing have to be operational when the activation request
arrives from the train, otherwise no action on part of the crossing controller
will ensue. This means that the activation condition has to be extended,
which is reflected by the new condition identifier. We furthermore assume
that the traffic lights are operational at least until the red light has been
on for the required amount of time, which is indicated by the two local
invariants no red err and nre. The third part of the LSC, which has been
strengthened, is the coregion covering the messages ack and turn on, which
has become a simultaneous region due to more detailed knowledge about the
system.

Figure 10.6 shows the universal LSC for the closing of the barrier. Here
the LSC itself is strengthened by adding the mandatory condition that the
crossing has to be in a safe state one step after the barrier controller reports
the closing of the barriers. Additionally a timing interval is added to the

234 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

Env

AM: Invariant
AC: raise_barrier
LSC securing_barrier

LightsCrossing

lights_on

opening

open

close_barrier

lower

Barrier

closed

barrier_closed

[1,1]

[1,1]

no_red_err

[1,1]

safe

[1,1]

no_closed

Figure 10.6: Universal LSC for the closing of the barrier

environment instance in order to ensure that the closed message is sent in
time. Again the activation condition has to be extended to a pre-chart in
order to be able to successfully verify this LSC; see the description accom-
panying figure 9.2 on page 208 in section 9.1 for a detailed explanation and
justification of the pre-chart elements.

Since the pre-chart of this LSC requires that there has been a successful
opening of the barrier during the previous securing procedure, the require-
ment shown in figure 10.6 covers only barrier closing processes after the first
train has passed the crossing. Therefore a separate, initial LSC covering this
case has to be additionally verified. It contains only the LSC itself and is
shown in figure 10.7. Note that the activation condition is empty, i.e. true,

10.2. ADVANCED USE CASES FOR LSCS 235

barrier_closed

closed

AM: Initial
AC:
LSC securing_barrier_init

Env Crossing

empty

close_barrier

lower

Barrier

no_closed

safe

[1,1]

[1,1]

Figure 10.7: Initial universal LSC for the closing of the barrier

since no restriction is imposed on the system start.

The remaining parts of the existential LSCs, which are not covered by
a universal LSC are either black-box requirements (the scenario for timeout
in figure A.41 on page 334 only concerns the crossing controller and the
environment) or belong on a different level of hierarchy (the scenarios for
answering or not answering the status request and sending the free message).

�

10.2.4 Test Vector Generation

The reference model developed in the Behavioral Design Phase is ideally
suited to derive test vectors for the Test Phase. LSCs created in earlier
phases can therefore be reused for the automatic generation of test vectors
for integration testing. They have been specified wrt. to the reference model
and have already been used in the verification of the virtual integration, so
that it is guaranteed that they specify relevant test cases.

236 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

10.3 Related Work

Damm and Harel [DH01] outline some use cases for LSCs using a UML-
based development process as an example. They also advocate the use of
existential LSCs in order to add more contents to Use Case Diagrams and
further develop those LSCs during the object analysis phase, which corre-
sponds to the Architectural Design Phase and partly the Behavioral Design
Phase. They propose testing and formal verification activities as well, which
largely coincide with the ones presented here, since both are inspired by the
same activities at OFFIS. While advocating a transition from existential to
universal LSCs to be used for formal verification, no details on how this
transition is to be achieved are offered.

In [KL01, BKL01] we have presented an LSC-based approach for testing
UML designs modeled with Rhapsody. The basic idea is that during a simula-
tion session a watchdog is generated, which monitors if a set of user-specified
properties, given in the form of LSCs, is satisfied. The simulation can either
be conducted by the user or it can be driven automatically according to the
specified LSCs exploiting the activation information and designated environ-
ment instances offered by LSCs. In the latter case the required inputs are
generated according to the LSCs.

Once a set of LSCs has been compiled it can be employed for regression
testing, i.e. if the model is changed, e.g. by adding new functionality, this set
of LSCs can be rerun in order to check, if the extensions have impaired the
original functionality. The LSCs used in this simulation-based testing are
also ideal candidates for the derivation of test vectors for integration testing.

In [KRK02] we have investigated a similar approach, which deals with
simulation-based testing of system-level hardware designs, implemented in
SystemC. Here LSCs serve as a graphical front-end for LTL formulas, which
are monitored in parallel to the simulation of a SystemC implementation of
the SUD by the checker presented in [RHTR01].

Harel and Marelly have proposed a different use case for LSCs described
in [Har00, HKMP02, HM02, MHK02]. The basic idea of this approach, called
Play-In/Play-Out, is to play in the desired interactions in the Architectural
Design Phase and use LSCs to record them. The key point is that no model
representation exists at this time, so that the play in procedure is carried
out via a mock-up graphical user interface. Once a set of LSCs (universal
and existential) has been recorded in this way they can be used as behavior
specifications, which monitor a user-guided simulation (play-out). This ap-

10.3. RELATED WORK 237

proach is intended to be used at the beginning of the development process
to generate the basic system interactions in an easy and intuitive way. The
view of this approach is an operational one, whereas the purpose of LSCs as
presented here is a denotational description of the behavior of an SUD.

[HKMP02] additionally use model checking in order to check the consis-
tency of several universal LSCs. This check is also used to find a sequence
of steps (a superstep), which leads to another stable system state, i.e. a sit-
uation where new inputs are required in order for the system to advance
further. This approach is similar to our existential verification, except that
[HKMP02] consider several LSCs and are limited to one superstep.

Another advanced use case for LSCs, described by Harel and Kugler
in [HK01, HK02], is bridging the gap between requirements, specified by
LSCs, and a behavioral model by automatically synthesizing a first-cut
model from LSCs. [HK02] outline an algorithm to automatically generate
state charts from LSCs in an object-oriented system. Similar approaches
exist for MSCs as well: Leue et al. [LMR98] synthesize ROOM state charts
from MSCs, Krüger et al. derive Statecharts from MSCs in [KGSB99], and
Krüger generates finite state machines from extended MSCs in [Krü00]. In
the telecommunications field there are several approaches dealing with syn-
thesis of an SDL model from MSCs, e.g. [RKG97] or [Man01].

Bunker and Gopalakrishnan [BG01, BG02] use LSCs for the specification
and formal verification of a hardware protocol. The properties to be verified
are derived by hand from the requirements document and a set of simple
proof obligations is derived manually from the LSC. The application used as
an example is small enough, so that a direct creation of universal LSCs is
possible and no need for an elaborate design process is considered.

Mauw et al. [MRW00] present a methodology for the application of MSCs,
which is not limited to a specific process, but is described in terms of an ab-
stract design flow. They also advocate the use of MSCs in the early phases in
order to capture the typical use cases, which is the classical field of application
for MSCs. Other use cases are the recording and monitoring of simulation
runs, reusing MSCs as test vectors and recording execution traces. No formal
treatment of MSCs is assumed and the only (informal) verification activity
considered is comparison between MSCs from different phases. The exact
nature or basis of such comparisons is not presented and neither is the con-
crete relation between the MSCs from different phases, which in [MRW00]
have different views (black-box or grey-box) depending on the phase.

238 CHAPTER 10. LSCS IN THE DEVELOPMENT PROCESS

The embedding of MSCs into a development process presented
in [MRW00] is, in summary, less tight than our proposal for LSCs given
in this chapter. We achieve a greater reuse of LSCs from previous in later
phases of the development process, thereby reducing the development effort
necessary and gaining a better integration of LSCs, especially across phase
boundaries. The enhanced expressiveness and formal foundation of LSCs
yields even more added value, in particular wrt. formal verification.

Existential verification of MSCs against an SDL model is offered by some
SDL tools Telelogic e.g. offers a check to determine if a SDL model contains
the communications shown in an MSC ([Ek98]). There are also numerous
approaches to using MSCs for the specification of test cases. We refer the
interested reader to [MRW00].

Chapter 11

Assessment of the LSC

Language

In this chapter we explore the applicability and usability of the language
of LSCs and the proposed methodology as presented in the previous chap-
ters. We take a closer look here at the advanced use case of specification
of properties for formal verification; more concretely the application field is
the formal verification of Statemate designs. The sample application used
is the train control system introduced in chapter 2. The LSCs presented in
this chapter have been developed according to the methodology described in
chapter 10. First existential LSCs have been specified, which are used for
existential verification and from which universal ones have been derived as
expounded in section 10.2.3.

The technical basis for the evaluation presented here is the Statemate
Verification Environment (STVE), which has been presented in the chapter 1
on page 15. Section 11.1 outlines the prototypical integration of the tools
supporting LSCs into the STVE (subsection 11.1.1) and deals with the par-
ticulars of specifying properties for Statemate designs in the synchronous
(subsection 11.1.2) and asynchronous (subsection 11.1.3) simulation seman-
tics. Section 11.2 presents the the existential and universal LSCs specified for
the train control system and section 11.3 presents the experimental results.
Section 11.4 concludes this chapter with an overall assessment of the LSC
language.

239

240 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

11.1 Property Specification for Statemate

11.1.1 Integration of LSCs into the STVE

The integration of LSCs into the STVE follows the same path as STDs, since
the semantical basis for both formalisms are symbolic automata. Where
STDs are intended for the specification of black-box properties of single en-
tities, LSCs aim at specifying grey-box properties, which involve the inter-
action of several entities. LSCs additionally focus on liveness properties as
this is an inherent feature of the language, although both safety and live-
ness is expressible in both formalisms. LSCs are better suited for specifying
communication properties due to their event-based nature, where STDs are
a state-based formalism. Wrt. categorization of property specification pos-
sibilities LSCs are located at the same level as STDs.

Statemate

FSM
Logic

Temporal

Automata
Symbolic

lsc2tba

LSCEdit

assextract text lsc

lsccompiler

VIS/
Prover

Figure 11.1: Integration of LSCs into the STVE

11.1. PROPERTY SPECIFICATION FOR STATEMATE 241

Figure 11.1 gives an overview of the LSC tools and their interplay with the
rest of the STVE; rectangles in this picture represent tools and ellipses for-
mats. An editor, LSCEdit, is available to draw and manipulate LSCs, which
are stored in a textual syntax derived from the textual representation of MSC-
96; see appendix C for the grammar of the textual LSC representation. The
textual LSC is the basis for all further treatment of the LSCs. If applicable,
the tool assextract performs the extraction of assumptions as described
in section 8.2.1 on page 195 and adds the resulting assumption LSC(s) to
the textual representation of the commitment LSC. The tool lsc2tba im-
plements the unwinding algorithms for assumptions, commitments and pre-
charts as defined in the preceding chapters. Both tools are integrated into
the lsccompiler, indicated by the shaded part of figure 11.1, which con-
trols the entire generation of a temporal logic formula from an LSC, thereby
comprising both LSC-specific tools and tools, which are already part of the
STVE and are responsible for the generation of temporal logic formula from
symbolic automata and the treatment of assumptions, which are already part
of the STVE. The tasks performed by lsccompiler for a commitment LSC
L are thus:

1. Extract assumptions from L using assextract, if necessary.

2. Unwind all assumptions associated with L using lsc2tba.

3. Perform STVE assumption treatment using symbolic automata gener-
ated from assumptions.

4. Unwind pre-chart pch of L using lsc2tba, if necessary.

5. Unwind L using lsc2tba.

6. Generate temporal logic formula from the symbolic automaton for L.

The lsccompiler produces the formats and files required by the STVE.
The subsequent steps necessary for the verification of LSCs (restriction of
the system runs to the ones conforming to the assumptions, observance of
the prefix given by the pre-chart and the actual model checking run) are thus
already part of the existing STVE machinery and are not presented here. A
description of the technical details of the STVE is out of the scope of this
thesis and can be found in [Wit03].
Note that both the lsccompiler and lsc2tba are parameterized to support
both the weak or the strict interpretation.

242 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

11.1.2 Property Specification for Synchronous Models

This subsection deals with the particulars of Statemate designs, which
are modeled using the synchronous simulation semantics. Recall that in
this semantics the SUD accepts inputs and produces outputs in every step
(execution cycle) and time passes between two steps. Note that the treatment
of time is not part of the Statemate semantics, but is left to the tools
operating on the Statemate design like e.g. the simulator (cf. [HN96]).
Time annotations consequently are interpreted in terms of steps by the STVE
and in LSCs as well, i.e. timers and timing intervals in LSCs refer to steps.

There are two other peculiarities, which affect property specification with
LSCs: All communication in Statemate step models is instantaneous and
there is no notion of a lossy channel, so that messages can not be lost. LSCs
specified for a Statemate model therefore only contain hot instantaneous
messages. Note that this is also true for asynchronous models, because only a
single controller (embedded controller) at a time can be modeled in State-
mate. If several embedded controllers are contained in one Statemate
model, they are treated as on single controller, i.e. the communications be-
tween individual controllers are considered to be internal, i.e. are step-based.

Notice that all messages occurring in the LSCs for the train control system
(cf. section 11.2) refer to events in order to use them for both the weak
and the strict interpretation (cf. the remarks on page 146). This includes
both normal Statemate events and derived events like changed and written
events for data items and rising or falling edges of conditions.

11.1.3 Property Specification for Asynchronous Mod-

els

The asynchronous simulation semantics of Statemate proves to be more
complicated than the step semantics. Recall that in the asynchronous (or
superstep) semantics the modeled controller accepts inputs from the envi-
ronment, which trigger a series of internal steps necessary to produce the
outputs, and new inputs are accepted when the controller once again reaches
a stable state. The transition from one stable state to the next is a super-
step. All internal steps do not consume time; time is advanced when the
system reaches a stable state, i.e. after completion of the current superstep.
Figure 11.2 on the next page illustrates the concepts of steps and supersteps:
the circles represent global system states, large circles denote stable states,

11.1. PROPERTY SPECIFICATION FOR STATEMATE 243

Step

Time

Superstep

Figure 11.2: Abstract representation of steps and supersteps

i.e. states, where no further progress is possible without new input stimuli
from the environment. The solid arrows between states indicate steps, the
dashed ones supersteps. Note that the number of steps in a superstep varies
and that consequently a superstep is a derived term, i.e. it is defined in terms
of the individual steps leading to a stable situation. Such a stable state need
not exist, however, i.e. the model may be divergent. For more information
on the asynchronous simulation semantics see [Bro99, DJHP98].

This definition of the superstep semantics has implications on the question
of which communications are observable, i.e. which model elements are avail-
able for the specification of properties. Strictly following the asynchronous
semantics would mean that only those communications are observable, which
occur at a superstep at the interface of the entire embedded controller. This
corresponds to a pure black-box view onto the top level as all internal com-
munications are hidden. When considering a single controller, such a view
is in most cases not sufficient, because the internal steps determine if and
how a stable state is reached, i.e. they are an integral part of the behavior.
Since only a single embedded controller can be modeled in Statemate, its
internal behavior can typically not be disregarded. For LSCs, moreover, a
black-box view is inappropriate, since they are intended for specifying prop-
erties involving several components, i.e. a grey-box view.

244 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

The basic granularity of observability in the superstep semantics conse-
quently still is a step. This creates the paradoxical situation that sequential-
ity of internal communications must be expressible, while assuming that all
internal communication occurs at the same point in time. Messages in LSCs
thus refer to both internal and external communication raising the question
what timing annotations in LSCs should refer to: steps or supersteps? We
have decided to let them still refer to steps, since this is the only consistent
choice. Steps constitute the finest level of granularity and also form the se-
mantical foundation (cf. [DJHP98]), with supersteps being derived from this
base.

Supersteps can be referenced in LSCs, since the model representation in
the STVE includes an output (event stable), which indicates a stable state,
i.e. a superstep boundary. Quantitatively dealing with supersteps is often
desired, since this allows to state requirements on timed behavior as time is
associated with supersteps. Recall, however, that time itself is not part of the
formal semantics of Statemate, so that we choose to allow the formulation
of timing constraints in terms of supersteps by counting them.

In the remainder of this subsection we investigate how timing constraints
referring to supersteps can be specified in LSCs. Two approaches are con-
ceivable: explicit usage of the signal indicating stabilization of the model in
LSCs and introduction of a dedicated counter into the model, which counts
supersteps and can be referred to in the LSCs.

The first alternative requires the user to explicitly indicate the points,
where a stable state in the model is reached, by including the stable event
in the LSC. By explicitly referring to this event in an LSC specification
it is possible to count supersteps. This explicit enumeration approach is
illustrated in figure 11.3 on the facing page, which shows the adaption of
LSC securing yellow err (cf. figure 11.13 on page 259) to the superstep
semantics. Figure 11.3 depicts the situation where the yellow light is out of
order, but the red light is still operational and is switched on immediately
after detecting the failure of the yellow light. The red light has to be on for
the combined duration required for yellow and red light.

The stable event is represented by mandatory conditions rather then mes-
sages, since several identically mapped messages would bar the usage of such
LSCs in the strict interpretation. Note that the required six1 supersteps be-

1The differing number compared to the LSC for the step semantics, which requires seven
steps (cf. figure 11.13 on page 259), is due to the fact that the delay between occurrence

11.1. PROPERTY SPECIFICATION FOR STATEMATE 245

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

turn_on

securing_yellow_err3

switch2red

lights_on

y_err

stable

stable

stable

stable

stable

stable

no_stab

nre

no_stab
no_stab

no_stab
no_stab

no_stab
no_stab

[1,1]no
_r

ed
_e

rr

Figure 11.3: Example for counting supersteps by explicit enumeration

and observation of the timeout event is a step delay. Therefore in LSCs specified for
the superstep version of the train control case study slight the numbers used in timing
annotations can differ compared to the LSCs specified for the step version.

246 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

tween the command to switch on the yellow light and the indication that
the lights are on are enumerated explicitly. In between two stable events
no other stable indication is allowed, which is expressed by the mandatory
local invariants no stab. The first, resp. last local invariant enforce that
switch2yellow and switch2red occur within the same superstep, resp. that
lights on is observed in the sixth superstep.

The advantages of this approach are that all relevant information is ex-
pressed explicitly in the LSC and that no additional complexity is introduced,
since only information is used, which is already available (the stable event).
Its disadvantages are that drawing such LSCs, especially those containing
many or large timing constraints, is tedious and not very user-friendly, and
that not all timing constraints can be expressed in this manner. Exact bounds
can be specified as shown in figure 11.3 and lower bounds are expressible by
placing the corresponding number of stable conditions and no stab invari-
ants between the points, which are to be separated by the lower bound.
Upper bounds on the other hand can not be expressed by this approach,
because this requires to explicitly specify all possible points of occurrence
of the constrained message (after one superstep, after two superstep, etc.).
While the enumeration of the stable events would still be possible with the
aid of a coregion ranging over the message and all stable conditions rep-
resenting the upper bound, the local invariants forbidding the occurrence of
additional stable conditions can not be formulated here, since their start
and end points can not be guaranteed to occur in the correct order within
the coregion. Moreover, all supersteps, regardless of the occurrence time
of the constrained message, are always required to be observed before any
subsequent message may occur. This is generally not desired.

The second alternative entails adding a counter to the model, which
counts stable events, i.e. supersteps. The counter counts modulo a certain
value, and the current value of this counter is an output of the model and can
thus be referred to in an LSC. Figure 11.4 illustrates how this counter can
be utilized to specify timing constraints2. The beginning of the constrained
LSC part is marked by a possible condition, where the current value of the
counter (cnt) is stored in a special variable (X in this case). This variable
is a flexible specification variable [ACS99, Wit03], i.e. a variable, which can
assume an arbitrary value of its domain in each step. Technically a flexible

2Note that for this example we explicitly show the corresponding boolean expressions
for the conditions and the local invariant referring to the superstep counter for clarity.

11.1. PROPERTY SPECIFICATION FOR STATEMATE 247

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

turn_on

securing_yellow_err

switch2red

lights_on

y_err X=cnt

(X+6 mod 6) =cnt

no
_r

ed
_e

rr

nre

X
=

last(X
)

Figure 11.4: Example for counting supersteps by querying a counter within
the model

specification variable is a free input, to which the model checker may assign
a value in each step. The possible condition in this case ensures that X stores
the current value of the superstep counter: the model checker will assign the
correct value in order to be able to advance through the LSC. The possible
local invariant (X = last(X) ensures that the flexible specification variable
retains the value it has stored until the end of the timing constraint. Other-
wise the model checker would assign a different value to X in order to violate
the following mandatory condition expressing the timing constraint. In this
example the condition is attached to message lights on expresses that the
counter has advanced six supersteps since switching on the yellow light.

The counter approach remedies the drawbacks of the explicit enumera-
tion strategy, since expressing superstep timing constraints in this manner is
more user-friendly and the expressiveness of the constraints is not restricted.
The disadvantage of this approach is the additional complexity, which is
introduced into the model by the counter.

Both approaches have additional disadvantages concerning assumptions.
For both approaches no internal assumption treatment is offered automat-
ically as in the case where no superstep timing constraints are present. In

248 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

barrier_closed

AM: Initial
AC:
LSC securing_barrier_init2

Env Crossing

empty

close_barrier

Barrier

closed

lower

safe

[1,1]

no_closed

stable

no_stab

Figure 11.5: Initial universal LSC for the closing of the barrier, specified for
the superstep semantics using the explicit enumeration of supersteps

both cases it is possible for the user to specify the commitment LSC in such
a way that the same effect results, however. Figure 11.5 demonstrates how
this is achieved with the explicit enumeration approach using the example of
LSC securing barrier init (cf. figure A.57 on page 349). Here the com-
bination of possible local invariant and mandatory condition enforces the
occurrence of closed after exactly one superstep similar to the LSC shown
in figure 11.3. The possible mode of the local invariant is responsible for
the internal assumption effect, since the LSC is exited, if stable occurs with-
out simultaneously observing closed. Note that timing interval between
barrier closed and safe is still expressed in terms of steps, because both
are to be observed in the same superstep, but are sequentially ordered at the
step level.

Figure 11.6 on the next page shows the same LSC as figure 11.5, but using
the superstep counter. In order to use the existing internal assumption treat-
ment, the condition expressing the timing constraint has to be connected to

11.1. PROPERTY SPECIFICATION FOR STATEMATE 249

AM: Initial
AC:
LSC securing_barrier_init3

empty

Env Crossing

close_barrier

lower

CounterBarrier

closed

barrier_closed

changed_cnt

X=cnt

safe

[1,1]

X
=

la
st

(X
)

(X+1 mod 3) = cnt

=
 cnt)

not(X
+

1 m
od 3

Figure 11.6: Initial universal LSC for the closing of the barrier, specified for
the superstep semantics using the superstep counter

a message originating in the model, which has to be related to the timing
constraint. The implicit event indicating a change in the value of the super-
step counter (changed cnt) ideally fits these requirements. In addition to
the conditions and local invariants required for this approach as described
above another local invariant has to be employed, which ensures that the
condition containing the timing constraint is evaluated at the first occasion
where the modulo counter reaches the desired value. Otherwise the environ-
ment would be allowed to send closed not only one superstep after observing
lower, but also after four, seven, etc. supersteps. This is achieved by local
invariant not((X+1 mod 3) = cnt). Note that this approach requires the
counter to be represented in the structural description of the model, since it
must explicitly be included in the LSC as an instance. This is currently not
automatically possible in the STVE, but can be done manually by explicitly
modeling the counter in Statemate.

250 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Assumption extraction is in general possible for the counter approach,
provided that the counter instance can be referenced in the LSC and all
local invariants and conditions are specified on the environment instance.
Extracting assumptions does not work for the explicit enumeration approach,
because the stable event is represented by a condition and not a message.
A condition can only restrict the point in time when an associated (via a
simultaneous region) message is generated, but the occurrence time of such
a message can not be enforced.

Both approaches can be used for user-specified assumptions, since here
only the interface between the considered part of the SUD and its environ-
ment is visible. This entails that the outputs for both the global stable event
and the counter variable are accessible and can thus be used as message
annotations.

Specifying timing constraints in terms of supersteps is, in summary, more
complicated and more restricted than expressing them for the synchronous
semantics. This, however, is not due to lacking expressiveness of the LSC
language, but is caused by the idiosyncrasies of the asynchronous simulation
semantics of Statemate. The measures presented in this subsection are
an attempt to sensibly specify properties with LSCs in this setting. In the
remainder we will consider both possibilities of expressing superstep timing
constraints if applicable.

11.2 Specification of the LSCs for the Train

Control System

The LSCs presented in this section have been developed according to the
specification methodology given in chapter 10. Starting in the Architectural
Design Phase the LSCs are developed in a top-down manner, i.e. beginning
with the top level activity of the Statemate model (SYSTEM) and descending
to the lower levels of hierarchy. We first specified the properties for the step
model and reused these LSCs also for the superstep model, if possible, i.e. if
no timing annotations were used. If timing annotations occurred in an LSC,
altered superstep versions were created using the two approaches discussed in
section 11.1.3 where applicable. We consequently for each level of hierarchy
first present the LSCs for the step model and then those LSCs, which were
adjusted for the superstep semantics.

11.2. LSCS FOR THE TRAIN CONTROL SYSTEM 251

The existential LSCs specified for SYSTEM are collected in appendix A.1.1.
They show the basic interactions between the activities identified at this
level (TRAIN, COMMUNICATION and CROSSING; cf. section 2.2.1) and their
environment. The LSC in figure A.1 on page 298 shows the good case, where
the crossing is secured as desired and the train passes it without needing to
stop. The remaining LSCs show different error situations: figure A.2 and A.3
depict the consequences of a yellow, resp. and red light failure, figure A.5
show a failure of the barrier, figure A.7 exemplifies the situation, where the
train realizes that it will not reach the crossing in time and thus sends the
freeing message, and figure A.8 on page 305 finally depicts a timeout at the
crossing, e.g. resulting from a defect pass sensor. The LSCs describing the
red light and barrier failure have been characterized in two slightly different
ways: One only describing the desired interactions (figures A.3 and A.5), the
other additionally prohibiting the sending of the safe message in response to
the status request (figures A.4 and A.6). The LSC dealing with exceeding the
maximum barrier closed time also comes in two variants, one with (figure A.8)
and one without a timer (figure A.9) enforcing the MBCT in the LSC.

CrossingCommTrain

start_comm

ready

activate_snd

activate_rec

no
_s

to
pp

ed

Invariant
activation_point_reached
securing_all_comm_setup

AM:
AC:
LSC

Figure 11.7: Universal LSCs for establishing the communication channel

The modularization and strengthening of these existential LSCs results
in the universal LSCs shown in figures 11.7 - 11.10. Figure 11.7 shows the
common prefix of all existential LSCs, the establishing of the communication

252 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

channel between train and crossing. Since this part of the protocol is as-
sumed to be failsafe in the model, the only strengthening measure needed is
to exclude that the train stops due to a not secured crossing before even the
activation command has been transmitted. Such a behavior would indicate
a severe problem in the speed supervision or localization components or ac-
tivation point calculation of the train, which are assumed to work correctly
here. The corresponding assumption is being taken care of by local invariant
no stopped on the Train instance.

This commitment LSC requires two external assumptions. The first in-
hibits the arbitrary reactivation of the LSC by ensuring that the activation
condition (reaching the activation point), which is indicated by a message
sent by the environment, does not occur again as the train is already ap-
proaching a crossing. The corresponding assumption LSC is shown in fig-
ure A.24 on page 318. Note that this property is not expressible by an
internal assumption, i.e. a local invariant forbidding the recurrence of the
activation condition. The effect of such a local invariant would be that the
first, correct activation of the LSC is terminated by a recurring activation
condition, but since the securing procedure has been initiated within the
model, the corresponding protocol would be executed correctly, showing the
desired communication sequence. The still active second incarnation, how-
ever, would not recognize this, because it has been activated out of turn and
did not observe the prefix of the current message exchange. Therefore an
external assumption, either extracted or user-specified, is necessary. In this
case a user-specified assumption is employed, because there is no environment
instance present in the commitment LSC.

The second external assumption LSC (no activation point ass) shown
in figure A.26 on page 319 is necessary in order to restrict the occurrence of
the activation condition to a point in time, where the system is operational,
i.e. after the initialization step. Since the first message (start comm) must
occur eventually due to the hot instance head location, it is essential that the
commitment LSC is not activated in step zero, where in real life no activation
point can be reported. The assumption LSC consequently forbids the initial
report of reaching the activation point and therefore also its activation mode
is initial. This assumption is again not expressible within the commitment
LSC, since the activation modes of the commitment LSC is invariant, whereas
a restriction of the initial state is required as an assumption. Note that the
assumption LSC effectively contains no messages, since only the initial state
is of interest, which is restricted by the activation condition.

11.2. LSCS FOR THE TRAIN CONTROL SYSTEM 253

CommTrain Crossing

safe_rec

safe_snd

status_req_rec

safe

Invariant
status_req_snd_no_sensor
securing_all_safe

AM:
AC:
LSC

Figure 11.8: Universal LSC for a positively answered status request

The remaining three LSCs consider the different possibilities after the
activation message has been transmitted, the other parts of the existential
LSCs of section A.1.1 are properties of the crossing and thus are covered by
LSCs for this component. Figure 11.8 depicts the message sequence for a
successfully secured crossing, the crossing consequently is expected to be in
a safe state when the status request arrives. Apart from adding the possible
condition to ensure that the crossing indeed is in a safe state when the status
request is received, it is necessary to ensure that the pass sensor is function-
ing correctly and does not prematurely indicate that the train has already
passed the crossing. This is achieved by extending the activation condition
forbidding the report of a train on the sensor.

Figure 11.9 depicts the situation, where the status request arrives when
the crossing has not reached the safe state, indicated by the possible condi-
tion. Until the train has passed the crossing, no safe report from the cross-
ing is permitted as expressed by the mandatory local invariant no safe msg.
Therefore the train must stop (message stopped) and the driver must autho-
rize the continuation of the journey (message release) before being allowed
to pass the crossing.

Figure 11.10 on page 255 shows the situation where the train realizes that
it will not reach the crossing in time, i.e. before the maximum barrier closed
time is reached, and sends the free message to inform the crossing. Here
two strengthening extensions are necessary. The first is the addition of the

254 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Comm Crossing

status_req_rec

ENVTrain

train_passed

stopped

release

not_safe

no
_s

af
em

sg

Invariant
status_req_snd
securing_all_stop

AM:
AC:
LSC

Figure 11.9: Universal LSC for a not answered status request

possible condition safe, which expresses the assumption that the crossing is
still secured when the free message arrives, since otherwise no reaction on
part of the crossing would ensue; cf. section 2.2.4. The activation condition
is furthermore extended to a pre-chart, because in order for the train to send
the free message the timer within the train first must generate its timeout
event (cf. figure 2.7 on page 34). This requires that the corresponding
inputs (V STILL SAFE P and V BRAKE POINT P) have to be set correctly before
the maximum barrier closed time elapses, which is represented by message
ETA violation.

The last LSC (USAF1 in table 11.1) has to be adjusted for the superstep
semantics due to the timing interval in the pre-chart. LSC USAF2 contains
an approximation of the original time constraint for the explicit enumeration
approach, since the constraint used in USAF1 specifies an upper bound,
which is not expressible with this approach. An exact bound is used in
USAF2 instead; in order to complexity for verification reasonable a bound of
15 has been chosen. USAF3 expresses the same (exact) bound, but uses the
superstep counter. USAF4 also employs the counter approach, but expresses
the original timing interval [1,40].

11.2. LSCS FOR THE TRAIN CONTROL SYSTEM 255

ETA_violation

ENV Train Comm

free_snd

Crossing

free_rec

raise_barrier

[1,40]

lower_barrierAC:
LSC securing_all_free

InvariantAM:

safe

Figure 11.10: Universal LSC for the sending of the free message

Table 11.1 on the following page sums up all LSCs specified for the top
level of the train control case study and assigns a property name to each com-
mitment LSC, which will be used in the remainder of this chapter. Names for
existential (universal) LSCs start with an ’E’ (’U’) and are followed by an ab-
breviation of the LSC name and a number to distinguish different variations
of an LSC. Both variants (with and without the local invariant forbidding
the sending of the safe message) of the existential LSCs for a red light and
barrier failure are included; the two LSCs (with and without timer) for the
timeout scenario are present as well. It also shows the external user-specified
assumption LSCs linked to each commitment LSC and the last column con-
tains the figure number for the LSC for easier reference. Note that no figure
is included for USAF2, since the LSC would be too large to be represented
in a readable way.

Moving down one level in the Activity Chart hierarchy there are two activ-
ities, which are further structured: Train and Crossing. The train activity
mostly contains data communications and computations, whereas the focus

256 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Property Commitment LSC Assumption LSCs Figure

ESSA1 securing all A.1
ESSAY1 securing all yerr A.2
ESSAR1 securing all red err A.3
ESSAR2 securing all red err2 A.4
ESSAB1 securing all barr err A.5
ESSAB2 securing all barr err2 A.6
ESSAF1 securing all free A.7
ESSAT1 securing all timeout A.8
ESSAT2 securing all timeout2 A.9

USACS1 securing all comm setup correct activation point ass A.10
no activation point ass

USAS1 securing all safe A.14
USAST1 securing all stop A.16
USAF1 securing all free A.18
USAF2 securing all free2 —
USAF3 securing all free3 A.20
USAF4 securing all free4 A.22

Table 11.1: Properties for activity SYSTEM

of model checking Statemate designs is the verification of the control part
of the model. Therefore the LSCs in figures A.27 - A.29 in appendix A.2 on
page 320 only cover these aspects of the train. Figure A.27 on page 320 shows
the good case (ETSC1), where the crossing is secured successfully, and is iden-
tical to the good case on the top level (ESSA1) as far as the train is concerned.
Two LSCs showing error cases exist: one describing the situation, where the
train has to stop in front of a not secured crossing (ETSCF1, figure A.28 on
page 321), and the other considering the case, where the train does not reach
the crossing in time and the internal timer consequently sends a timeout to
ACTIVATE CROSSING (ETFC1, figure A.29 on page 322). In the latter LSC
the timer, which is part of activity ACTIVATE CROSSING receives the indica-
tion that the train has reached the last position, where it could still stop in
front of the crossing, and is not able to pass the crossing before the maximum
barrier closed time elapses (message ETA violation in figure A.29). This re-
sults in the sending of the timeout signal to ACTIVATE CROSSING, which in
turn sends the free message to the crossing.

11.2. LSCS FOR THE TRAIN CONTROL SYSTEM 257

Modularization of the existential LSCs yields only a single universal
LSCs, since most of the communication is carried out between activity
ACTIVATE CROSSING and the communication component and thus is already
adequately covered by LSCs on the level of SYSTEM. The message exchange
described in LSC ETFC1, however, pertains to this level of decomposition
and is therefore extracted into a universal LSC, which is shown in figure 11.11.
It has already been strengthened by adding several assumptions in the form
of local invariants in addition to extending the activation condition to a pre-
chart.

timeout

free_snd

status_req_snd_no_stop−safe−bp

Act_Crossing TimerEnv

safe_rec

ETA_violation

Invariant

free_crossing

AM:
AC:
LSC

no_stop_com
m

no_st

no
_b

ra
ke

p

Figure 11.11: Universal LSC for the sending of the free message

The pre-chart expresses that a precondition for the sending of the free
message is that the crossing has reported status safe, because otherwise
a timeout would be meaningless (cf. section 2.2.2). The local invariant
no brakep expresses the assumption that the point which indicates the last
chance for stopping in front of the crossing (condition V BRAKE POINT P; cf.
figure 7.1 on page 155) is not signaled repeatedly by the environment. Local
invariant no st stands for the assumption that the train does not stop due

258 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

to a not secured crossing before receiving the safe report of the crossing and
thus expresses the assumption that the computation of the activation point
is correct. Both these local invariants must already hold when the status
request is sent, so that they are included also in the activation condition.
Additionally it has to be guaranteed that the status report from the crossing
does not arrive prematurely, i.e. simultaneously with the sending of the re-
quest, which is prohibited in the activation condition as well. Local invariant
no stop comm is needed to express the fact that the train does not pass the
crossing (indicated by terminating the connection with the crossing, event
SP COMMUNICATION) before the free message has been sent.
Table 11.2 shows the LSCs specified for the train.

Property Commitment LSC Assumption LSCs Figure

ETSC1 securing crossing A.27
ETSCF1 securing crossing fail A.28
ETFC1 free crossing A.29

UTFC1 free crossing A.30

Table 11.2: Properties for activity TRAIN

Env Crossing

AM: Invariant
AC:
LSC securing_timeout

barrier_closed

timeoutno
_f

re
e

[42,42]

no_pass

Figure 11.12: Universal LSC for exceeding the maximum barrier closed time

For the crossing activity the existential LSCs and their modularization
has already been presented to a large extent in example 10.2 on page 231
in section 10.2.3. The complete set of existential and universal LSCs for the

11.2. LSCS FOR THE TRAIN CONTROL SYSTEM 259

crossing is found in appendix A.3.1 resp. A.3.2, the used assumption LSCs
are collected in appendix A.3.3. In addition to the universal LSCs presented
in 10.2.3 two additional LSCs are presented in figures 11.12 and 11.13. The
first LSC expresses the requirement that the crossing controller should report
an exceeding of the maximum barrier closed time, if the train has not passed
or freed the crossing within that time. Note that the timing constraint in the
step semantics is two steps larger (42, instead of the MBCT value of 40) due
to the additional delay steps (one due to the delay for observing the entering
event and one due to delay for observing the timeout event, cf. section 2.2.4).

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

turn_on

securing_yellow_err

switch2red

lights_on

y_err [1,1]

no
_r

ed
_e

rr

nre[7,7]

Figure 11.13: Universal LSC for a defect of the yellow light

Figure 11.13 depicts the situation where the yellow light is broken, but the
red light is still operational and is switched on immediately after detecting
the failure of the yellow light (cf. figure 11.3 on page 245). The red light has
to be on for the combined duration required for yellow and red light. Two
strengthening assumptions are required for this property, both of which are
expressed internally: A successful switching on of the lights entails that the
red light does not fail (cf. LSC securing lights; figure A.55 on page 348)
and the yellow light should indeed be out of order as expressed by mandatory
condition yerr.

260 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Property Commitment LSC Assumption LSCs Figure

ECS1 securing A.32
ECSY1 securing yellow err A.33
ECSR1 securing red err A.34
ECSR2 securing red err2 A.36
ECSR3 securing red err3 —
ECSR4 securing red err4 A.37

NECSR1 securing red err neg A.35
ECSB1 securing barr err A.38
ECSB2 securing barr err2 A.39
ECSF1 securing free A.40
ECST1 securing timeout A.41
ECST2 securing timeout2 A.42
ECST3 securing timeout3 —
ECST4 securing timeout4 —

UCSL1 securing lights correct activate ass A.55
no activation ass

UCSBI1 securing barrier init A.57
UCSBI2 securing barrier init2 A.59
UCSBI3 securing barrier init3 prompt closed ass A.61
UCSB1 securing barrier A.63
UCSB2 securing barrier2 A.66
UCSB3 securing barrier3 prompt closed ass A.69

UCSTO1 securing timeout A.72
UCSTO2 securing timeout2 —
UCSTO3 securing timeout3 —
UCSTO4 securing timeout4 A.74
UCYE1 securing yellow err correct activate ass A.76
UCYE2 securing yellow err2 correct activate ass A.78
UCYE3 securing yellow err3 correct activate ass A.80
UCYE4 securing yellow err4 correct activate ass A.82
UCO1 opening A.43

11.2. LSCS FOR THE TRAIN CONTROL SYSTEM 261

UCO2 opening correct open ass A.49
correct closed ass

correct activate ass
functioning lights ass

UCO3 opening2 A.45
UCO4 opening3 prompt open ass A.47
UCO5 opening4 correct open2 ass A.51

correct closed ass
correct activate ass

UCO6 opening5 prompt open ass A.53
correct closed ass

correct activate ass
Table 11.3: Properties for CROSSING

The complete set of LSCs for the crossing is summed up in table 11.3.
Again two variants of the existential LSCs for a red light and barrier fail-
ure as well as for exceeding the maximum barrier closed time are included.
Additionally a negative scenario (NECSR1) is specified in figure A.35, which
shows the situation that a failure of the red light has occurred and that the
subsequent status request is nevertheless answered by the safe message. Since
the crossing can not be secured after a red light failure, this LSC expresses
an undesired communication sequence.

The existential LSCs describing the failure of the red light as specified
above can not be reused in the superstep semantics (see the following section
for explanation), therefore LSCs ECSR3 and ECSR4 have been added. Since
the timing annotations used in ECST1 in the step semantics are not directly
transferable to the superstep semantics, ECST3 and ECST4 are used to
investigate the effect of the two alternatives for specifying superstep timing
constraints. ECST3 uses the explicit enumeration approach, which is possible
here since the timing constraint specifies an exact bound, and ECST4 queries
the freshly introduced superstep timer.

Regarding universal LSCs there were also some adaptations necessary in
order to correctly express the desired properties for the superstep model. The
initial LSC describing the successful closing of the barriers (UCSBI1) is the
first to be adjusted. The LSC using the enumeration approach (UCSBI2)
has already been presented in figure 11.5 on page 248 and is specified in

262 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

such a way that the effect of an internal assumption is achieved (cf. the
explanation accompanying figure 11.5). The counter approach is not appli-
cable in this case, since no internal assumption treatment can be effected
(cf. explanation accompanying figure 11.6 on page 249). Therefore the user-
specified assumption LSC prompt closed ass (figure A.95 on page 378) is
linked to the original commitment LSC (without the timing interval) yield-
ing property UCSBI3 (figure A.61 on page 353). Since the timing interval
specifies an exact bound and requires only one superstep delay, we use the
explicit inclusion of the stable event in this assumption. The invariant LSC
securing barrier (UCSB1) is treated analogously resulting in LSCs UCSB2
for the enumeration approach and UCSB3 using the superstep counter (for
the timing intervals in the pre-chart) and assumption prompt closed ass

(for the timing interval in the commitment LSC).

The LSCs dealing with the timeout due to the elapsed maximum barrier
closed time (UCSTO1) and considering a failure of the yellow light (UCYE1)
both exist also in a version, which omits the timing intervals: UCSTO2
and UCYE2, respectively. UCSTO1 and UCYE1 moreover result in two
variations for the superstep semantics as well: UCSTO3 and UCYE3 for the
enumeration and UCSTO4 and UCYE4 for the counter approach.

The LSC specifying the return of the crossing to its idle state after a
train has passed comes in two versions: one using a pre-chart (UCO1, cf.
figure 10.4 on page 232) and one expressing the restrictions of the pre-chart
by a set of user-specified assumptions (UCO2). Each version results in two
LSCs in the asynchronous simulation semantics, one using explicit enumer-
ation, the other an assumption (prompt open ass, similar to the one used
for UCSBI3, cf. figure A.97 on page 378) for the specification of the tim-
ing constraint on the environment. UCO3 (figure A.46 on page 339) and
UCO4 (figure A.48 on page 341) thus both come equipped with a pre-chart,
UCO5 (figure A.52 on page 345) and UCO6 (figure A.54 on page 347) use
the assumptions linked to UCO2 instead; UCO3 and UCO5 use the enumer-
ation approach, whereas UCO4 and UCO6 additionally link the assumption
LSC prompt open ass. Since this assumption covers the behavior speci-
fied by assumption LSC correct closed ass, the latter is substituted by
prompt open ass in UCO6, yielding a total of four assumptions.

11.3. VERIFICATION RESULTS 263

11.3 Verification Results

11.3.1 General Considerations

For the verification of existential LSCs the chosen strategy is to produce a
witness for the LSC, rather than just reporting true or false as a result. A
witness is more useful to the designer than the statement that there exists
a run satisfying the LSC, since it can be viewed as a timing diagram or
also executed in the Statemate simulator, thus allowing to examine the
witness and compare it to the original existential LSC. The goal of verifying
existential LSCs is consequently falsification, so that for this use case both the
reachability-based approach and bounded model checking can be employed.
For universal LSCs only the standard model checking technique can be used.

If the existential verification of an LSC fails, no indication is given by
the model checker as to what the problem is, which is an inherent problem,
since the counter example is the entire model. In this case the strategy is to
manually shorten the LSC in order to find out which part of the LSC is not
satisfiable. We expect this situation to be a rare case, however.

Note that the strategy for the witness generation differs from the formal
semantics of existential satisfaction (cf. definition 9.1 on page 215). The wit-
ness is generated for one legal run, if one exists: the complete traversal of the
LSC, whereas the formal semantics also allows runs, which exit due to vio-
lated possible conditions or local invariants and which get stuck in a cold cut.
We feel that a complete traversal is much more useful and informative and
therefore only consider an LSC existentially verified, if all communications
have been observed.

For the verification of the LSCs specified for the train control system we
have in some cases used an optimization called data abstraction offered by
the STVE. In real life models control and data are not clearly separated as
the radio-based crossing control application shows. Since the data part of a
model typically heavily contributes to the overall complexity, it is desirable to
exclude it from the model, if possible. Data abstraction allows to selectively
remove data parts from the model, constructing an abstract model. Note that
not the entire variable is removed by this approach, but some information
about it is retained in the abstract model. There are several strategies, which
govern how much and which information is kept. One possibility e.g. is to
convert a data item into an input, which simplifies calculations involving this

264 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

data item while at the same time loosing accuracy. The selection of which
variables should be abstracted is made by the user.

Data abstraction is an over-approximating technique, i.e. in the abstract
model more behavior is allowed than in the original model. This entails that
a property, which is proved on the abstract model, is true in the original one
as well. A property, which is violated on the abstract model, on the other
hand may still be satisfied in the original one, since the violation might be
due to the added behavior. Therefore data abstraction can not be employed
for falsification, i.e. existential verification in our context.
For more information on abstraction techniques see [BBD+99] and [Bie03].

In the following the model checker run times for the LSCs listed in ta-
bles 11.1, 11.2 and 11.3 are presented. All results have been produced on
a SUN Blade 1000 equipped with a 750 Mhz UltraSparc processors and 2.5
GB RAM running Solaris 8. The VIS version used is 1.3. The run times
are pure processing time used by the model checker, compilation times for
the generation of the FSM and the formula are not included. The run times
are measured in seconds and a timeout of five hours is enforced, after which
the model check run is aborted. The used commitment and user-specified
assumption LSCs and the corresponding symbolic automata are collected in
appendix A. All universal LSCs have additionally been checked to ensure
that they are activated at least once.

The results are considered separately for existential and universal LSCs
in sections 11.3.2 and 11.3.3, which are each split into subsections for the
assessment of LSCs for the step and superstep version of the train control
system model.
Note that for all model check runs using the standard fix-point algorithm
the reachability computation on the FSM level has been activated, because
without it the proofs took decidedly more time.

11.3.2 Existential Verification Results

Synchronous Semantics

The verification times for the top level (SYSTEM) are shown in tables 11.4 on
the facing page for the weak interpretation and 11.5 on page 266 for the
strict interpretation. Both tables present the run times in seconds for the
three different technologies: standard model checking (column headed by
Time mc), reachability-based model checking (column Time rb) and bounded

11.3. VERIFICATION RESULTS 265

model checking (column Time bmc). Additionally the length of the witness
measured in number of steps, if generated, is listed in the last column. A
time value in a field indicates that the corresponding model check technique
produced a witness in the time given, fields marked by the word timeout
indicate that the verification time exceeded the five hour time limit. If no
witness exists, the time value is marked by †, e.g. for negative scenarios or
unsuccessfully verified positive scenarios. Note that each technique generates
the shortest error path possible, so that the trace length is identical for all
three verification strategies.

Both tables for SYSTEM show that the model is quite complex, since only
two proofs yield a witness within the allotted time. The complexity is mainly
caused by the large integer data items used for the speed and location deter-
mination in the train and the operations on these. Every step involves the
computation of new acceleration, speed and position values for the train, the
calculation of the current maximum speed and a comparison between max-
imal and actual speed value, with each computation operating on at least
two integer variables. This computational complexity in conjunction with
the model size (see table 11.21 on page 280), results in the very low number
of witnesses on the top level.

Property Figure Time mc Time rb Time bmc Trace length

ESSA1 A.1 timeout timeout timeout —
ESSAY1 A.2 timeout timeout timeout —
ESSAR1 A.3 timeout timeout 1417.9 s 23
ESSAR2 A.4 timeout timeout 973.9 s 23
ESSAB1 A.5 timeout timeout timeout —
ESSAB2 A.6 timeout timeout timeout —
ESSAF1 A.7 timeout timeout timeout —
ESSAT1 A.8 timeout timeout timeout —

Table 11.4: Verification run times for existential LSCs on SYSTEM (weak
interpretation, step semantics)

The two LSCs, for which a witness was generated, are consequently the
least complex ones in terms of number of messages: ESSAR1 and ESSAR2.
It seems that the bounded model checker is more efficient when the property
to be checked is rather restrictive. This is indicated on the one hand by the
fact that in both interpretations the witness for the LSC with the local in-

266 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Property Figure Time mc Time rb Time bmc Trace length

ESSA1 A.1 timeout timeout timeout —
ESSAY1 A.2 timeout timeout timeout —
ESSAR1 A.3 timeout timeout 855.4 s 23
ESSAR2 A.4 timeout timeout 728.2 s 23
ESSAB1 A.5 timeout timeout timeout —
ESSAB2 A.6 timeout timeout timeout —
ESSAF1 A.7 timeout timeout timeout —
ESSAT1 A.8 timeout timeout timeout —

Table 11.5: Verification run times for existential LSCs on SYSTEM (strict
interpretation, step semantics)

variant, which explicitly prohibits the sending of the safe message (ESSAR2),
is generated faster than for the LSC without this invariant. On the other
hand the run times for the strict interpretation are lower than for the weak
interpretation.

This supposition is at first glance disproven by the results on the train
(see tables 11.6 and 11.7 on the facing page), where the run times for the
strict interpretation increase for the bounded approach in all three cases. The
worse run times are at least in part due to the longer error traces in the strict
interpretation, however. The shorter witnesses for the weak interpretation
result from the fact, that the bounded model checker is able to take ’short-
cuts’ by generating input events simultaneously to the outputs which should
provoke these inputs.

Property Figure Time mc Time rb Time bmc Trace length

ETSC1 A.27 timeout timeout 147.2 s 16
ETSCF1 A.28 timeout timeout 389.4 s 18
ETFC1 A.29 timeout timeout 130.8 s 19

Table 11.6: Verification run times for existential LSCs on TRAIN (weak inter-
pretation, step semantics)

For the train again only the bounded model checking technique produced
any witness at all. In contrast to the SYSTEM level all existential LSCs spec-
ified could be successfully verified here due to both the reduced model and
the smaller LSCs. The run time for LSC ETSCF1 in both interpretations is

11.3. VERIFICATION RESULTS 267

Property Figure Time mc Time rb Time bmc Trace length

ETSC1 A.27 timeout timeout 283.0 s 18
ETSCF1 A.28 timeout timeout 1054.2 s 19
ETFC1 A.29 timeout timeout 344.5 s 21

Table 11.7: Verification run times for existential LSCs on TRAIN (strict in-
terpretation, step semantics)

significantly larger than for the other two LSCs, because ETSCF1 requires
the train to stop in front of the crossing, which entails more precise actual
and nominal speed computations.

Property Figure Time mc Time rb Time bmc Trace length

ECS1 A.32 750.9 s 15.4 s 228.9 s 31
ECSY1 A.33 7547.3 s 13.7 s 248.1 s 31
ECSR1 A.34 30.4 s 7.0 s 1.4 s 14
ECSR2 A.36 45.7 s 8.0 s 1.5 s 14

NECSR1 A.35 85.6 s 11.6 s — 34
ECSB1 A.38 1379.5 s 15.4 s 367.4 s 31
ECSB2 A.39 1092.5 s 12.0 s 252.3 s 31
ECSF1 A.40 488.4 s 13.4 s 190.3 s 29
ECST1 A.41 13516.3 s 130.5 s timeout 71
ECST2 A.42 8453.2 s 40.0 s timeout 71

Table 11.8: Verification run times for existential LSCs on CROSSING (weak
interpretation, step semantics)

Tables 11.8 and 11.9 on the following page show the results for the ex-
istential verification of the LSCs specified for the CROSSING activity. The
reachability-based strategy is much faster in all cases than the normal model
checking procedure. For the weak interpretation and the standard model
check procedure the proof for ECSY1 is significantly more complex than
for the almost identical LSC ECS1. The effect of the additional condition
yellow err seems to be very detrimental. The LSC describing a failure
of the red light (ECSR1) is considerably smaller than ECS1 and its proof
consequently has a decidedly lower model check time.

268 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Property Figure Time mc Time rb Time bmc Trace length

ECS1 A.32 776.4 s 16.4 s 174.2 s 31
ECSY1 A.33 47.8 s 22.8 s 188.2 s 31
ECSR1 A.34 21.3 s 5.5 s 1.3 s 14
ECSR2 A.36 29.2 s 7.9 s 1.3 s 14

NECSR1 A.35 7.8 s† 8.6 s† — —
ECSB1 A.38 453.6 s 17.8 s 84.5 s 31
ECSB2 A.39 111.3 s 15.7 s 91.9 s 31
ECSF1 A.40 75.1 s 17.1 s 104.0 s 29
ECST1 A.41 10837.2 s 163.9 s 13442.9 s 71
ECST2 A.42 466.0 s 43.7 s 10809.4 s 71

Table 11.9: Verification run times for existential LSCs on CROSSING (strict
interpretation, step semantics)

The effect of the addition of the local invariant forbidding the sending
of the safe message in variations ECSR2 and ECSB2 is not uniform: For
ECSR2 it causes a run time increase, whereas the verification time for ECSB2
decreases. The impact of the local invariant is seemingly dependent on the
LSC complexity: for a lower original complexity (ECSR1) the verification
time increases, while it decreases for high original complexity (ECSB1). This
effect is visible most pronouncedly for the standard model check procedure
and to a lesser degree for the other techniques.

The LSC describing the opening of the crossing due to receiving the free
message from the train (ECSF1) is slightly simpler than ECS1 and thus
requires only about two thirds of the time necessary to prove ECS1. The
proof for the LSC concerning the detection of a timeout at the crossing
(ECST1) is very complex because of the large timers both in the model
and in the LSC, so that here the largest verification time is observed. LSC
ECST2, which does not contain the timer measuring the maximum barrier
closed time, performs better. The timeout event within the model still causes
a substantial verification time, however.

In the reachability-based strategy the model check times in the weak
interpretation are mostly of the same order of magnitude. Interestingly, the
detrimental effect of the local invariant in LSC ECSY1 disappears, so that
the run times for the proofs for ECS1 and ECSY1 are almost identical. The
other trends observed for the standard model check procedure remain in

11.3. VERIFICATION RESULTS 269

effect. ECSR1 is still proven in less time than any of the other LSCs, even
though the advantage is not as great, and ECST1 remains the most complex
proof task. The omission of the timer again has a beneficial effect compared
to ECSTO1 without reaching the low run times of the other LSCs.

The bounded model check approach performs rather poorly compared to
the reachability-based technique. Only for the smallest LSCs (ECSR1 and
ECSR2) it produces a small gain, for all other proof tasks the run times are
much larger and the proofs for the LSCs involving the observing of the max-
imum barrier closed time do not even yield a result within the allotted time.
Except for ECST1 and ECST2 the run times are still significantly better than
for the standard model check procedure, however. The key point for the be-
havior of the bounded model check approach is the length of the witness:
Short witnesses are easily found by bounded model checking, whereas long
ones require an increased amount of time, since more iterations of bounded-
FSM generation and SAT-checker runs are necessary. This effect can be
observed for all verification runs for existential LSCs in the step semantics.
For the crossing the fastest times for bounded model checking are achieved
for LSCs resulting in the shortest witnesses and the worst results are seen
for LSCs producing the longest error paths, e.g. ECST1. For the train and
the complete system the witnesses found by bounded model checking are rel-
atively short, compared to the trace lengths for most LSCs on the crossing
level.

The overall effect of the strict interpretation (table 11.9) on the normal
model checking procedure is beneficent, all run times improve save the one
for ECS1, which slightly increases. For this technique the more restrictive
formula limits the search space for the backward-oriented model check algo-
rithm, so that it is kept more closely to the desired path, i.e. the witness.
This effect is visible most pronouncedly for the proof of LSC ECSY1, whose
run time is reduced by a factor of almost 160.

For the reachability-based method the change in interpretation is almost
unnoticeable in the run times, since the forward-oriented technique does not
have as much variability in finding the witness as the backward strategy,
because it starts forward from the initial state. The verification times for the
reachability-based method consequently almost uniformly increase slightly
due to the more complex formula.

270 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

The effect of the strict interpretation for the bounded model checking
approach is again beneficial, since each message is explicitly contained in
all transitions of the automaton and therefore also in the resulting formula,
which facilitates the task of the SAT-checker of finding a proposition val-
uation satisfying the formula. The verification times for almost all LSCs
decrease consequently and even the proofs for ECST1 and ECST2 yield a
result within the time limit.

The LSC specifying the negative scenario (NECSR1, see figure A.35 on
page 328) demonstrates that for this use case the strict interpretation is com-
pulsory, because an unexpected witness is found in the weak interpretation
(cf. 11.8 on page 267). The generated witness requires two trains passing the
crossing: the first one advancing the LSC to the point where the failure of
the red light occurs and then stopping in front of the crossing, the second
one arriving after the red light has been repaired and properly receiving the
safe message in reply to its status request. The negative scenario checked,
however, refers to a single securing procedure, i.e. one train, which is only
enforced by the strict interpretation. The verification of NECSR1 in the
strict interpretation is successful as table 11.9 on page 268 shows: no witness
is found, i.e. it is impossible that a crossing sends the safe message, even
though the red light has failed and the crossing is not secured. Note that
bounded model checking can not be used for existential verification of nega-
tive scenarios, because the expectation here is that no witness exists, i.e. the
basic use case is not falsification.

Asynchronous Semantics

Property Figure Time mc Time rb Time bmc Trace length

ETSC1 A.27 timeout timeout 9641.1 s 31
ETSCF1 A.28 timeout timeout 10532.9 s 37
ETFC1 A.29 timeout timeout timeout —

Table 11.10: Verification run times for existential LSCs on TRAIN (weak
interpretation, superstep semantics)

For existential verification in the superstep semantics a general increase
of the model checker run times is observed; the greater complexity is also
reflected by the model sizes (cf. tables 11.21 - 11.26. On the SYSTEM level

11.3. VERIFICATION RESULTS 271

Property Figure Time mc Time rb Time bmc Trace length

ETSC1 A.27 timeout timeout 2082.6 s 33
ETSCF1 A.28 timeout timeout timeout —
ETFC1 A.29 timeout timeout 3738.9 s 37

Table 11.11: Verification run times for existential LSCs on TRAIN (strict
interpretation, superstep semantics)

all attempts at existential verification timed out, so that no results table is
given for this level. On the TRAIN level again only the bounded model check-
ing approach produced any results within the allotted time as tables 11.10
and 11.11 show. The model check times have increased significantly — even
timing out on two occasions — due to the longer witnesses. As has already
been apparent for the step semantics the strict interpretation is generally
beneficial for bounded model checking, even though ETSCF1 shows a con-
trary effect.

Property Figure Time mc Time rb Time bmc Trace length

ECS1 A.32 timeout 39.9 s 2539.2 s 45
ECSY1 A.33 timeout 42.7 s 2550.1 s 45
ECSR1 A.34 — 60.2 s† — —
ECSR3 — timeout 13.2 s 22.2 s 21
ECSR4 A.37 timeout 16.6 s 17.7 s 21
ECSB1 A.38 timeout 43.8 s 2732.9 s 48
ECSB2 A.39 timeout 49.2 s 2874.1 s 48
ECSF1 A.40 timeout 35.1 s 1238.3 s 41
ECST2 A.42 timeout 552.8 s timeout 124
ECST3 — timeout 4174.4 s timeout 124
ECST4 — timeout timeout timeout —

Table 11.12: Verification run times for existential LSCs on CROSSING (weak
interpretation, superstep semantics)

The results for the CROSSING level mostly retain the relations between
the proofs, which have been observed in the step semantics, as tables 11.12
and 11.13 demonstrate. The standard model check procedure is outperformed
by the other two approaches in all cases, not producing any result within the
time limit. The best performance is once more shown by the reachability-

272 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Property Figure Time mc Time rb Time bmc Trace length

ECS1 A.32 timeout 54.9 s 1999.5 s 45
ECSY1 A.33 timeout 42.1 s 1835.0 s 45
ECSR3 — timeout 15.6 s 12.7 s 21
ECSR4 A.37 timeout 15.8 s 12.8 s 21

NECSR1 A.35 timeout 54.6 s† — —
ECSB1 A.38 timeout 42.0 s 1620.9 s 48
ECSB2 A.39 timeout 47.7 s 1559.6 s 48
ECSF1 A.40 timeout 35.5 s 1325.4 s 41
ECST2 A.42 timeout 427.1 s timeout 124
ECST3 — timeout 1314.1 s timeout 124
ECST4 — timeout 6439.2 s timeout 124

Table 11.13: Verification run times for existential LSCs on CROSSING (strict
interpretation, superstep semantics)

based strategy, which always produced a result, often within one minute.
The bounded model checker can only compete with this for short witnesses
(ECSR3 and ECSR4).

Note that the LSCs ECSR1 and ECSR2 could not be reused from the step
semantics without change, even though they contain no timing annotations.
As the result for ECSR1 in table 11.12 exemplifies, no witness exists for
this LSC (the same is true for ECSR2). The problem is that the message
switching on the red light can never be observed simultaneously to a red light
failure in the superstep semantics. Since the failure indication (RED ERR, cf.
figure 2.12 on page 40) is an input, it has to be asserted at the beginning of
a superstep. As soon as this error is indicated, however, the lights controller
returns to its idle state without trying to switch on the red light. In the
corresponding LSCs the condition red err therefore must not be placed into
a simultaneous region with message switch2red resulting in LSCs ECSR3
and ECSR4 (figure A.37 on page 330). The negative scenario NECSR1 is only
checked in the strict interpretation here, since the weak one is inadequate for
this use case as explained above.

As in the synchronous semantics the execution times of all existential
LSCs without timing information are within the same order of magnitude
for the reachability-based method. Only ECST2, which indirectly refers to
the timeout event in Statechart CROSSING CTRL (cf. figure 2.11 on page 38)

11.3. VERIFICATION RESULTS 273

sticks out by requiring a significantly greater amount of time to be verified.
The verification runs for the two LSCs containing superstep timing annota-
tions (ECST3 and ECST4) require significantly more time than the untimed
variant (ECST2), with the enumeration approach performing better, both
in the strict and weak interpretation Only the reachability-based strategy
produced any witness at all and only failed to do so for the counter LSC
(ECST4) in the weak interpretation. The bounded model check procedure
did not produce a result for any of the timeout LSC variations due to the
length of the witness. The witnesses for both ECST3 and ECST4 are gener-
ated much faster in the strict interpretation.

11.3.3 Universal Verification Results

Synchronous Semantics

weak strict
Property Figure Result Time (abs) Result Time (abs)

USACS1 A.10 true 131.5 s true 3607.2 s
USACS2 A.12 true 386.1 s true 79.5 s
USAS1 A.14 true 41.4 s true 44.0 s

USAST1 A.16 — timeout — timeout
USAF1 A.18 true 71.4 s true 138.2 s

Table 11.14: Verification run times for universal LSCs on SYSTEM (step se-
mantics)

Table 11.14 shows the verification times and results for the universal
LSCs of the top level (Activity Chart SYSTEM), which have been introduced
in section 11.2. Both the weak and strict interpretation have been consid-
ered. All proofs use the data abstraction capabilities of the STVE abstract-
ing from the data items, which primarily cause the complexity (ODATA and
NOMINAL SPEED). These data items are abstracted for all proof tasks, except
USAST1 (see below). Without data abstraction no results are produced
within the time limit on both the system and train level.

Using data abstraction the model size is reduced significantly (cf. ta-
ble 11.21 on page 280) and LSCs USAS1 and USAF1 are proved fairly fast.
The proof for USAF1 takes more time due to the additional complexity

274 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

caused by the timing annotation and the timer within the train, which gov-
erns the generation of the free message. The proof for the communication
setup (USACS1) takes longer because of the more complicated automaton
(cf. figure A.11 on page 307). The strict interpretation has a very detrimental
impact on this property provoking a twenty times greater verification time.
Interestingly, this is reversed when slightly altering the LSC as USACS2
(shown in figure A.12 on page 308) demonstrates: Here the local invariant
covers one more message and consequently one more state and transition
in the resulting automaton (figure A.13). The verification time for USACS2
compared to the one for USACS1 is almost tripled in the weak interpretation,
but 45 times lower in the strict.

USAST1 proves to be too complex. The problem in this case is that the
data abstraction used in the other proofs can not be applied here. For the
other proof tasks those data items have been abstracted, which deal with the
train’s speed and position. This is impossible for USAST1, because the exact
representation of this information is vital for the verification of this property.
If we want to guarantee that in case of an error the train stops before reaching
the crossing, its position and speed must be known accurately.

weak strict
Property Figure Result Time (abs) Result Time (abs)

UTFC1 A.30 true 2.6 true 2.1

Table 11.15: Verification run times for universal LSCs on TRAIN (step seman-
tics)

Table 11.15 shows the result for the universal LSC specified for the train,
which is proved very quickly. Due to the small model size (see table 11.22 on
page 280) there is only a minute difference between the times for weak and
strict interpretation. Again data abstraction (on ODATA and NOMINAL SPEED)
has been employed.

The universal LSCs specified for the crossing are all verified successfully
as table 11.16 shows. Note that at this level no data abstraction has been
necessary. The model checker run times are all within the same general
range. For the weak interpretation the run time for UCYE1 is significantly
greater than for UCSL1, which is identical, except for the possible condition
yellow err added in UCYE1. This increase is only marginally influenced
by the timing intervals as the results for UCYE2 show, where the timing

11.3. VERIFICATION RESULTS 275

weak strict
Property Figure Result Time Result Time

UCSL1 A.55 true 15.3 s true 12.4 s
UCSBI1 A.57 true 22.6 s true 9.4 s
UCSB1 A.63 true 30.6 s true 21.4 s
UCYE1 A.76 true 42.2 s true 47.0 s
UCYE2 A.78 true 36.7 s true 47.4 s
UCO1 A.43 true 25.0 s true 58.7 s
UCO2 A.49 true 59.2 s true 54.0 s

UCSTO1 A.72 true 17.3 s true 16.1 s
UCSTO2 — true 8.2 s true 7.9 s

Table 11.16: Verification run times for universal LSCs on CROSSING (step
semantics)

intervals have been omitted. The verification time for UCSTO1 is fairly
small considering the fact that both the LSC and the model contain a large
timer. Omitting the timer in the LSC (USCTO2) has a beneficial effect
as already observed in the existential verification. The proof for UCO2,
which expresses the requirements of the pre-chart of UCO1, by four user-
specified assumptions performs clearly worse than the one for UCO1 in the
weak interpretation. This is caused by the added complexity due to having
to observe several assumptions, i.e. restrictions on the runs the system may
take.

The effect of the strict interpretation is not uniform as the last column
in table 11.16 shows. There are slight performance gains for some LSCs
(UCSL1, UCSBI1, UCSB1, UCO2, UCSTO1) and losses for others (UCYE1,
UCYE2, UCO1), although the order of magnitude of the verification times
remains unchanged.

Asynchronous Semantics

As for existential LSCs the run times generally increase for universal LSCs in
the superstep semantics as well in this model. Table 11.17 shows the results
for the LSCs specified on the SYSTEM level. As in the step semantics all
proofs at this level employed data abstraction. In addition to the data items
already abstracted in the step model also all non-essential timers resulting

276 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

weak strict
Property Figure Result Time (abs) Result Time (abs)

USACS1 A.10 true 7136.6 s true 8024.4 s
USACS2 A.12 true 1840.9 s true 1507.7 s
USAS1 A.14 — timeout — timeout

USAST1 A.16 — timeout — timeout
USAF2 — true 1559.8 s true 2296.2 s
USAF3 A.20 true 14126.1 s true 11812.9 s
USAF4 A.22 — timeout — timeout

Table 11.17: Verification run times for universal LSCs on SYSTEM (superstep
semantics)

from timeout expressions in the Statecharts have been abstracted here, since
these have shown to exact a high price in terms of run time: no results were
obtained without abstracting these timers.

The LSCs USACS1, USACS2, USAS1 and USAST1 are identical to the
ones checked in the synchronous semantics, since no timing annotations are
used. The difference between USACS1 and USACS2 is again observable,
although the relation between the run times is not the same as in the step
semantics (cf. table 11.14 on page 273). Here USACS2 clearly performs bet-
ter in both interpretations. The trend of USACS2 benefitting from the strict
interpretation, while USACS1 is affected detrimentally, which has been ob-
served in the synchronous semantics, is still visible, but not as pronouncedly
as before.

The verification runs for USAS1 did not yield a successful result within
the time limit, which is rather unexpected, since the proof tasks for this
LSC had the lowest run times in the synchronous semantics. The reason, in
combination with the generally increased complexity, is that for USAS1 more
timers must be retained in the model than e.g. for USACS1 and USACS2.
USAST1 again is too complex to be verified successfully.

Comparing both approaches for expressing superstep timing constraints
for the LSC specifying the sending of the free message (USAF2 for the enu-
meration and USAF3 for the counter approach) shows that the counter ap-
proach is clearly inferior to superstep enumeration in this case. In both
interpretations the verification time is significantly larger. The enumeration
approach also seems fairly efficient compared to USACS2. Note, however,

11.3. VERIFICATION RESULTS 277

that USAF2 and USAF3 use a exact bound of 15 instead of an upper bound
of 40 as in the LSC for step semantics (USAF1); cf. section 11.2. USAF4
specifies the correct upper bound using the counter approach3, but can not
be proved successfully due to the large counter.

weak strict
Property Figure Result Time (abs) Result Time (abs)

UTFC1 A.30 true 5.3 s true 5.5 s

Table 11.18: Verification run times for universal LSCs on TRAIN (superstep
semantics)

Property UTCF1 on the TRAIN level is unaffected by the added complexity
of the asynchronous semantics (see table 11.18), since the model is still small
enough. For UTCF1 the same variables have been abstracted as in the step
semantics.

The experimental results for the universal LSCs specified at the crossing
level are shown in tables 11.19 (weak) and 11.20 (strict). Due to the detri-
mental effect of the timers, which are introduced by timeout events, these
have been abstracted when possible. Tables 11.19 and 11.20 show the re-
sults for both the original (column Time) and abstract model (column Time
(abs)). The verification times are always worse in the original model, often
dramatically so. We therefore mainly consider the results on the abstract
model below. For most proofs the trend shown by on the original model
corresponds to those on the abstract one.

The verification times are still fairly low for most proofs thanks to the
data abstraction. As already observed in the step semantics, the condition
y err, which is the only difference between UCSL1 and UCYE2, causes a
run time increase in both interpretations, more pronouncedly so in the strict.
Regarding the initial LSCs for the description of the correct closing of the
barriers (UCSBI2 for the enumeration and UCSBI3 for the counter approach)
the model checker run times are better for the enumeration approach in both
interpretations.

For the invariant version of the protocol for closing the barriers (UCSB2,
UCSB3) the enumeration technique performs significantly better in both in-
terpretations as well. The situation is different for the LSCs describing the

3Recall that upper bounds can not be expressed by enumeration.

278 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

weak
Property Figure Result Time Time (abs)

UCSL1 A.55 true 4487.8 s 14.0 s
UCSBI2 A.59 true 111.4 s 10.8 s
UCSBI3 A.61 true 1081.2 s 20.6 s
UCSB2 A.66 true 97.3 s 21.5 s
UCSB3 A.69 true timeout 89.0 s
UCYE2 A.78 true 1406.1 s 26.5 s
UCYE3 A.80 true timeout 1640.0 s
UCYE4 A.82 true timeout 179.6 s
UCO3 A.45 true 119.3 s 12.1 s
UCO4 A.47 true 2096.1 s 14.6 s
UCO5 A.51 true timeout 6178.1 s
UCO6 A.53 true timeout 73.2 s

UCSTO2 — true 59.0 s 26.6 s
UCSTO3 — true 2300.7 s 625.5 s
UCSTO4 A.74 true timeout 240.1 s

Table 11.19: Verification run times for universal LSCs on CROSSING (super-
step semantics)

successful switching on of the traffic lights, even though a failure of the yel-
low light has occurred (UCYE3 for the enumeration approach and UCYE4
foe the superstep counter). The proofs for both LSCs perform decidedly
worse than either the untimed variant (UCYE2) or UCSL1, which contains
neither time constraints nor the condition y err, but is otherwise identical.
The counter approach is significantly faster than explicit enumeration in the
weak interpretation, but performs worse, if the LSC is interpreted strictly.

Yet another behavior is observed for the LSCs specifying the generation of
the timeout signal sent to the operations center, UCSTO3 using enumeration
and UCSTO4 using the superstep counter. Here the counter approach shows
lower run times in both interpretations, with almost no difference between
strict and weak for both proofs. The proof tasks for both LSCs need clearly
more time than the untimed LSC UCSTO2, however.

The effect on the LSCs specifying the correct opening of the crossing once
the train has passed, which are using the pre-chart, UCO3 (enumeration) and
UCO4 (counter), are almost identical, only in the strict interpretation does

11.4. ASSESSMENT OF LSCS 279

strict
Property Figure Result Time Time (abs)

UCSL1 A.55 true 7144.0 s 17.8 s
UCSBI2 A.59 true 70.7 s 7.7 s
UCSBI3 A.61 true 7114.6 s 13.7 s
UCSB2 A.66 true 2302.6 s 19.7 s
UCSB3 A.69 true timeout 119.7 s
UCYE2 A.78 true 2186.9 s 58.2 s
UCYE3 A.80 true timeout 751.1 s
UCYE4 A.82 true timeout 1395.8 s
UCO3 A.45 true 144.2 s 13.7 s
UCO4 A.47 true 1329.0 s 28.5 s
UCO5 A.51 true timeout 1304.0 s
UCO6 A.53 true timeout 49.5 s

UCSTO2 — true 58.2 s 26.4 s
UCSTO3 — true timeout 608.0 s
UCSTO4 A.74 true 17261.5 s 243.1 s

Table 11.20: Verification run times for universal LSCs on CROSSING (super-
step semantics)

UCO4 take slightly longer. The situation for UCO5 and UCO6 is differ-
ent: Here the superstep enumeration within the commitment results in a
tremendous increase of the verification time compared to UCO3, whereas
the exchanged assumption causes only a mild increase.

The following tables sum up the proofs including LSC names, used ex-
ternal assumptions and model sizes for each proof. There are separate tables
for synchronous and asynchronous semantics. Note that the model sizes for
proofs of the universal LSCs for the system and train level all give the size
of the abstract model.

11.4 Assessment of LSCs

In this section we draw conclusions regarding the experimental results pre-
sented in the preceding section, the different choices (weak vs. strict, enumer-
ation vs. counter approach, etc.) and the usefulness of the LSC language in

280 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Property Commitment LSC Assumption LSCs Model size

ESSA1 securing all 216/35

ESSAY1 securing all yerr 200/35

ESSAR1 securing all red err 214/33

ESSAR2 securing all red err2 214/33

ESSAB1 securing all barr err 218/34

ESSAB2 securing all barr err2 218/34

ESSAF1 securing all free 201/35

ESSAT1 securing all timeout 217/34

ESSAT2 securing all timeout2 217/34

USACS1 securing all comm setup correct activation point ass 96/27
no activation point ass

USACS2 securing all comm setup2 correct activation point ass 96/27
no activation point ass

USAS1 securing all safe 95/27

USAST1 securing all stop 188/40

USAF1 securing all free 97/28

Table 11.21: List of properties for activity SYSTEM (step semantics)

Property Commitment LSC Assumption LSCs Model size

ETSC1 securing crossing 119/25

ETSCF1 securing crossing fail 119/25

ETFC1 free crossing 120/25

UTFC1 free crossing 26/13

Table 11.22: List of properties for activity TRAIN (step semantics)

general. Before presenting the detailed conclusions, we give a brief overview
over the major points:

• Formal verification using LSCs is feasible.

• The reachability-based strategy shall be used for the verification of
existential LSCs.

• The strict interpretation shall be used. The corresponding precondi-
tions must be observed.

11.4. ASSESSMENT OF LSCS 281

Property Commitment LSC Assumption LSCs Model size

ECS1 securing 84/15
ECSY1 securing yellow err 84/15
ECSR1 securing red err 80/13
ECSR2 securing red err2 81/13

NECSR1 securing red err neg 81/13
ECSB1 securing barr err 84/14
ECSB2 securing barr err2 85/14
ECSF1 securing free 83/14
ECST1 securing timeout 84/14
ECST2 securing timeout2 84/14

UCSL1 securing lights correct activate ass 82/12
no activation ass

UCSBI1 securing barrier init 80/13
UCSB1 securing barrier 81/13
UCYE1 securing yellow err correct activate ass 81/12
UCYE2 securing yellow err2 correct activate ass 81/12
UCO1 opening 80/13
UCO2 opening correct open ass 81/13

correct closed ass
correct activate ass

functioning lights ass
UCSTO1 securing timeout 79/12
UCSTO2 securing timeout2 79/12

Table 11.23: List of properties for CROSSING (step semantics)

• Internal and user-specified assumptions are needed. Extracted assump-
tions are not needed.

• When possible the enumeration approach shall be used for specification
of timing constraints in the asynchronous semantics.

• Data abstraction is useful for the reduction of complexity, but has to
be used with care.

• Timing constraints increase complexity.

282 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Property Commitment LSC Assumption LSCs Model size

ESSA1 securing all 286/43

ESSAY1 securing all yerr 286/43

ESSAR3 securing all red err3 283/41

ESSAR4 securing all red err4 283/41

ESSAB1 securing all barr err 287/44

ESSAB2 securing all barr err2 287/44

ESSAF1 securing all free 287/43

ESSAT2 securing all timeout2 286/39

USACS1 securing all comm setup correct activation point ass 77/42
no activation point ass

USACS2 securing all comm setup2 correct activation point ass 77/42
no activation point ass

USAS1 securing all safe 148/39

USAST1 securing all stop 252/48

USAF2 securing all free2 118/36

USAF3 securing all free3 125/40

USAF4 securing all free4 129/42

Table 11.24: List of properties for activity SYSTEM (superstep semantics)

Property Commitment LSC Assumption LSCs Model size

ETSC1 securing crossing 163/25
ETSCF1 securing crossing fail 163/25
ETFC1 free crossing 164/26

UTFC1 free crossing 46/14

Table 11.25: List of properties for activity TRAIN (superstep semantics)

Existential Verification

Of the three strategies employed in the verification of existential LSCs the
reachability-based one is the most promising method to be employed for
existential verification of LSCs. In almost all cases it out-performs the other
two approaches. Only when the model is very complex and the witness
is relatively short the bounded model checker yields better results. The
reachability-based strategy should thus be used as a default for this use case.
Since bounded model checking performs well for short to medium length
witnesses, the backup strategy is to use this technique, if the model is too

11.4. ASSESSMENT OF LSCS 283

Property Commitment LSC Assumption LSCs M. size M. size (abs)

ECS1 securing 109/18

ECSY1 securing yellow err 109/18

ECSR3 securing red err3 104/16

ECSR4 securing red err4 105/16

NECSR1 securing red err neg 105/16

ECSB1 securing barr err 108/19

ECSB2 securing barr err2 109/19

ECSF1 securing free 108/19

ECST2 securing timeout2 109/19

ECST3 securing timeout3 110/17

ECST4 securing timeout4 121/20

UCSL1 securing lights correct activate ass 105/12 76/14
no activation ass

UCSBI2 securing barrier init2 106/13 57/28

UCSBI3 securing barrier init3 prompt closed ass 106/13 57/28

UCSB2 securing barrier2 106/13 74/28

UCSB3 securing barrier3 prompt closed ass 110/15 78/30

UCYE2 securing yellow err2 correct activate ass 104/12 71/16

UCYE3 securing yellow err3 correct activate ass 106/12 75/13

UCYE4 securing yellow err4 correct activate ass 112/16 83/13

UCO3 opening2 105/13 60/28

UCO4 opening3 prompt open ass 105/13 60/28

UCO5 opening4 correct open2 ass 106/13 61/28
correct closed ass

correct activate ass

UCO6 opening5 prompt open ass 105/13 61/28
correct closed ass

correct activate ass

UCSTO2 securing timeout2 103/12 74/15

UCSTO3 securing timeout3 104/12 75/25

UCSTO4 securing timeout4 115/18 86/31

Table 11.26: List of properties for CROSSING (superstep semantics)

284 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

complex and the expected length of the witness is short.

Interpretation

Our expectation regarding the effect of the strict compared to the weak
interpretation was that the larger formula resulting from the former would
lead to noticeably increased model checker run times. The experimental
results show that this expectation is fulfilled for only a small number of
properties, e.g. USACS2 in the step semantics or UCYE4. In the majority
of cases the verification times increased only slightly or even decreased. A
possible reason for this effect could be that the inclusion of all message labels
in every transition of the symbolic automaton constitutes almost an invariant
property resulting in a formula, which is easier to check, since all contained
propositions are similar. This supposition is supported by LSC USACS2:
the extension of the local invariant to cover one more message in comparison
to USACS1 yields a more uniform automaton (cf. figures A.11 on page 307
and A.15 on page 309) and a reduced run time in the strict interpretation.

Our decision for a default interpretation goes in favor of strict interpreta-
tion. This choice is motivated by several reasons. First, there is the issue of
witnesses of differing lengths, which has become apparent on the train level.
Even though the short-cuts taken in the weak interpretation in these cases
do not constitute errors, witnesses showing the correct sequence of cause and
effect better conform to the real world and the intuition of the user. The
second argument for the strict interpretation are negative scenarios, which
require this interpretation in order not to generate undesired witnesses. A
similar problem — the satisfaction of an LSC by two trains — can also arise
for ordinary existential LSCs. Here the strict interpretation is better suited
as well, since then no witness is generated in this case, which directly in-
dicates that there is a problem. The third reason for choosing the strict
interpretation is that it better fits the intuition of the user. Additionally the
performance figures do not bar the use of the strict interpretation as stated
above.

Having made this decision in favor of the strict interpretation, let us em-
phasize again, however, that there are preconditions, which must be fulfilled
(cf. also the remarks on page 146):

11.4. ASSESSMENT OF LSCS 285

1. The message mappings must be unique.

2. There must be only one active incarnation of the same LSC at each
point in time.

Assumptions

The conclusion for assumptions is that internal assumptions are very useful
and intuitive, since they are specified directly within the commitment LSC
using the same elements, which make up the commitment. User-specified as-
sumptions are likewise indispensable (cf. e.g. USACS1 or USL1). Extracted
assumptions were not needed for the successful verification of the LSCs spec-
ified. In retrospective, we expect them to be used only rarely, since they are
intended to be used mostly for enforcing unbounded liveness requirements on
the environment. This will typically not be sufficient to guarantee liveness
properties on the commitment side, because for embedded controllers a re-
sponse from the environment often must occur within a certain time frame.
For this reason there is e.g. no unbounded liveness requirement expressed on
an environment instance in the LSCs for the radio-based crossing control
system. The barriers for instance have to be closed within a certain amount
of time in order for the crossing to operate correctly.

Statemate Semantics

With respect to the superstep semantics we can state that for our case study
the verification times are always worse than in the step semantics. This
statement can not be generalized, however, since the model at hand is in effect
not very modular, i.e. there is a large degree of interdependence between
different activities (cf. [Bie03]). Thus, most of the synchronization between
all activities, which is necessary for the stabilization of the complete part of
the model considered in the verification, is contained in the verified model,
increasing the complexity of the verification task. More modular models are
expected to show better performance figures. Regardless of the modularity,
however, it can be said that timeout events, and presumably also scheduled
actions, have a detrimental impact on the model check performance.

286 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

Enumeration vs. Superstep Counter Approach

Regarding the issue of which approach to expressing timing constraints in
the superstep semantics should be used, no clear trend can be discerned.
On the complete model USAF2 and USAF3 show that the counter approach
performs much worse than explicit enumeration, which is corroborated by
UCSB2 and UCSB3 on the crossing level. In both these examples the timing
constraints are located in the pre-chart, whereas a contrary effect is observed
for UCSTO3 and UCSTO4, where the timing constraint is part of the com-
mitment. UCYE3 and UCYE4, where the constraint is also located in the
actual LSCs, show a mixed picture, which in the weak interpretation is iden-
tical to the behavior observed for UCSTO3 and UCSTO4, but is reversed in
the strict interpretation.

From a performance point of view therefore the explicit enumeration ap-
proach is to be used for timing constraints, if it can be applied. This is not
always possible, since this approach can only express lower and exact bounds.
In these cases, however, it is a viable optimization; otherwise the generally
applicable counter approach must be used.

Abstraction

For universal LSCs the verification complexity can be reduced by applying
data abstraction as done for the proofs on the system and train level and
on crossing in the superstep semantics. It has proven to be very useful as
the experimental results show, especially on the crossing component in the
superstep semantics (cf. tables 11.19 on page 278 and 11.20), but it has to
be noted that this technique has some limitations. The selection of which
variables should be abstracted is done by the user and requires a thorough
understanding of the model. Care has to be taken not to abstract a variable,
whose precise value is essential for the verified property. This is even more
important for the verification of liveness properties, since typically concrete
and precise values of involved variables must be available in order to even-
tually produce a certain result. When abstracting variables in the superstep
semantics additional care has to be exercised, because not only those vari-
ables, whose value actually contributes to the checked property, have to be
handled with caution, but also those, which influence the stabilization of the
model. Abstracting a variable of the latter type results in a diverging model,
which then does guarantee no liveness requirement.

11.4. ASSESSMENT OF LSCS 287

Timing Annotations

The conclusion regarding timing constraints, irrespective of the semantics,
is that they result in a more complex verification task. The effect is rather
mild in the step semantics, where in the best case there is little difference
in the performance between the timed and untimed variant of the checked
LSC (e.g. UCYE1 vs. UCYE2 in the step semantics) and in the worst case
the verification time is increased by factor four (ECST1 vs. ECST2). In
the superstep semantics there is a substantial increase, however, ranging
from roughly six times to over sixty times longer run time for the timed
variants. Only those timing annotations should thus be used in LSCs, which
are absolutely necessary, in order to increase performance. The same advice
can be given regarding timers in the Statemate model, i.e. timeout events
and scheduled actions, which also have a detrimental impact on model checker
run times, especially in the superstep semantics.

Activation

The possibility to explicitly characterize the activation point of a chart is a
key benefit of LSCs, especially for formal verification. For the experimental
results the invariant activation mode has been used predominantly, although
the initial mode has proven useful in a number of occasions, e.g. to restrict
the initial system state via initial assumptions or to cover the first occurrence
of a protocol (UCSBI1 - UCSBI3). Pre-charts have also demonstrated that
they are a profitable feature for the easy and intuitive specification of a
required history of a desired protocol (cf. LSCs UCSB1 - UCSB3 and UCO1,
UCO3, UCO4). Care has to be taken with pre-charts as well as assumptions,
however, that they are compatible with the original requirements.

Mandatory vs. Possible

The distinction between mandatory and possible elements in an LSC mas-
sively enhance the expressiveness of LSCs compared to MSCs or SDs. As the
experimental results show the distinction of existential and universal charts is
an integral element for the smooth integration of LSCs into a model-based de-
velopment process. The capability of discriminating mandatory and possible
conditions and local invariants is indispensable for expressing requirements
and internal assumptions. In this context simultaneous regions have proven

288 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

to be extremely useful for tying together messages and conditions and for
providing reference points for timers and local invariants.

Hot and cold location temperatures allow to intuitively mark the in-
stances, which are responsible for progress. No assessment of message tem-
peratures and asynchronous messages can be done, since all communication
in Statemate is instantaneous and messages can not be lost. But we expect
cold messages to be useful in rare cases only, especially when considering for-
mal verification. Typically either both sending and receipt of a message is of
interest or the message is omitted altogether.

Methodology

Taking a more general view on LSCs we can state that the graphical spec-
ification of interactions between communicating entities (activities in this
case) is extremely helpful in the early phases of the design process in order
to thoroughly understand a system’s basic functionality. Even though LSCs
are not necessarily required for this purpose — MSCs and SDs can be used
as well — the increased expressiveness of LSCs adds more substance to early
scenarios by allowing to state information more explicitly. A very important
feature in this context is the activation condition, which requires the de-
signer to explicitly characterize the situation triggering the scenario which is
described. Another key advantage of LSCs over the other two sequence chart
dialects are local invariants, which allow to forbid the occurrence of messages
in a specific part of the chart, e.g. LSCs ECSR2 or ECSB2, which explicitly
contain the prohibition of sending the safe message after a failure of the red
light or the barrier. Such side conditions are only implicitly contained in SDs
or MSCs, by not including them. The enhanced expressiveness of LSCs thus
allows to make property specifications more precise, while at the same time
retaining the intuitiveness and visual appeal of standard sequence charts.

The subsequent phases of the development process capitalize both on the
additional precision and information contained in the early existential LSCs
and on the formal semantics. Existential verification reuses the early scenario
and provides valuable feedback to the designer in the form of early indications
that the model contains the basic communication behavior as specified in the
existential LSCs. Existential verification profits from the explicitly specified
side conditions, because the checking is more focused.

Even though existential verification did yield few results for the top level
of the train control system model, we still feel that this technique is valu-

11.4. ASSESSMENT OF LSCS 289

able in general, since it allows to check for the existence of deep interaction
sequences, thus exploiting one of the major advantages of model-based de-
velopment process: virtual integration. The complexity problems are to a
degree inherent due to the long message sequences, which consequently re-
quire a deep exploration of the model. Chapter 12 offers some suggestions,
how to reduce the verification complexity for both existential and universal
LSCs.

The modularization of existential LSCs into universal ones and the sub-
sequent strengthening of the latter allows a further reuse of the existential
LSCs created in earlier phases of development. This smooth transition to
universal protocol specifications is another very important benefit offered by
LSCs and the accompanying methodology.

For the formal verification of universal LSCs the capability to express
assumptions about environment behavior directly within the LSCs has proven
to be extraordinarily useful. From the user’s point of view it is convenient and
natural to specify assumptions not only in the same graphical formalism, but
within the same chart. Especially internal assumptions play a key role in the
strengthening of universal LSCs: most assumptions used in the verification
of the LSCs for the train control system have been expressed internally. An
equally positive effect can be asserted for pre-charts, which allow an easy
and intuitive specification of a prefix of the actual LSC. The experimental
results show that the use of pre-charts is superior to employing user-specified
assumptions both wrt. ease of use and efficiency (cf. LSCs UCO1 -UCO5).

Expressiveness

Compared to the patterns provided by the STVE LSCs offer more expressive-
ness like true liveness, local invariants, pre-charts and an arbitrary number of
messages, conditions, etc. Another advantage of LSCs is their visual appeal
and intuitiveness, whereas the patterns are represented in a non-graphical
way. The downside to the enhanced expressiveness, however, is the decreased
performance when model checking LSCs. Additionally more expert knowl-
edge is required to specify properties as LSCs than as patterns.

STDs in comparison to LSCs are similar in terms of expressiveness and
the required expert knowledge, but are focused on single components and are
a state-based formalism, whereas LSCs are event-based. Protocols involving
several components are expressible in STDs, but separate STDs, one per
component, are needed and a rather complicated compositional verification

290 CHAPTER 11. ASSESSMENT OF THE LSC LANGUAGE

approach must be employed. LSCs are better suited to describe communica-
tion sequences involving several components due to their event-based nature.
Long interaction sequences is moreover more naturally and more easily spec-
ified with LSCs.

A development process based on the STVE and LSCs should use all avail-
able analyses and checks at the appropriate time. While the model is being
constructed the STVE robustness checks are employed, possibly in conjunc-
tion with existential verification of LSCs once an adequate part of the be-
havior has been modeled. Patterns are then used to verify simple properties
exploiting their greater efficiency, and STDs and universal LSCs are used
for the specification and verification of more complex properties. STDs are
best suited for black-box requirements, whereas LSCs are ideal for liveness
properties involving more than one component (grey-box requirements).

It has to be noted, though, that the successful verification of universal
LSCs can be time consuming due to the potential iterations of (unsuccessful)
verification run, problem analysis and changing the LSC or the model. For
obtaining the experimental results for universal LSCs presented in the pre-
vious section up to three iterations were necessary. This drawback of LSCs
does not outweigh the advantages like intuitiveness and enhanced expres-
sive power, especially since each iteration gives the specifier more knowledge
about the behavior of the considered (sub-)system, which can be reused when
verifying other, similar LSCs.

In conclusion we can say that LSCs are very well suited for the specifica-
tion of communication protocols, especially those involving liveness require-
ments. The use case of formal verification, which has been considered in
detail here, seems a promising field of application, in particular in combina-
tion with the associated methodology, which eases the task of property spec-
ification by partly reusing LSCs, which have been created in earlier phases
of the development process. Both the universal and existential verification
show promise to become valuable additions to a model-based development
process. The experimental results presented in this thesis serve as a proof
of concept, but also indicate that the model check performance has to be
improved before LSC-based formal verification can take root in everyday
industrial development.

Chapter 12

Conclusion and Outlook

The incentive of this thesis has been the upgrade of standard sequence charts
in order to play a more prominent role in the development of electronic control
systems. In the introduction we have outlined the most important advanced
use cases, like formal verification and automatic test vector generation, which
transcend the applications of todays sequence charts: documentation of typ-
ical interactions and visualization of test or simulation traces. A detailed
look at the two standardized sequence charts, Message Sequence Charts and
UML’s Sequence Diagrams, revealed that these, in their present form, are
not well suited to meet the challenges posed by the envisioned advanced use
cases. Both MSCs and SDs lack expressivity and a sound formal base, which
motivates the definition of the language of Live Sequence Charts carried out
in this work involving the fixing of the language features and their syntax as
well as providing their formal semantics. We have performed the definition
of both syntax and semantics incrementally, starting with the core features
and step by step adding more advanced concepts.

The kernel language of LSCs comprises the basic elements, which make
up a chart like instances, messages and conditions. We have defined the
semantical basis in a constructive way by translating an LSC into a variation
of a timed Büchi automaton. The relation to the system, whose behavior
is described by the LSC, is established by relating the runs of the system
to those accepted by the automaton. We have extended this definition of
the basic features bit by bit to include the more advanced concepts of time,
pre-charts and assumptions.

With the syntax and semantics of LSCs in place we have added the third
vital building block: an application methodology, which outlines how and

291

292 CHAPTER 12. CONCLUSION AND OUTLOOK

where the created language should be employed. Here we laid special empha-
sis on the seamless reusability of LSCs and the use case of formal verification.
We concluded with the experimental results we have obtained in the formal
verification of a radio-based train control system, which has already served
as a running example throughout this work. The practical application of
LSCs to the advanced use case of formal verification has demonstrated the
usefulness and viability of the features and semantics of LSCs, even though
some complexity problems were encountered.

Outlook

The high model checking complexity observed for a number of the LSCs
in the experimental results section is somewhat inherent. The purpose of
LSCs is to specify the communication behavior between several components,
so that components can not be considered in isolation. This entails a non-
trivial base complexity depending on the number and size of the involved
components. The reduction of complexity wrt. model checking is thus an
important direction for future work.

For universal LSCs data abstraction has already been applied in several
of the proofs in section 11.3. This optimization requires a high degree of
user interaction and knowledge about the system, since the variables to be
abstracted have to be chosen by the user. Bienmüller [Bie03] presents an
approach, which does not require the user to select the variables to be ab-
stracted, but tries to determine them automatically. At first a very coarse
abstraction is used and it is checked, if the property holds. If this is not
the case the abstraction is refined and the procedure is iterated until a true
result is obtained or no further abstractions are possible. The entire pro-
cess is guided by a heuristic, which combines standard backward cone-of-
influence (COI) computation and a similar forward-oriented strategy. The
backward-COI depends on the outputs used in the checked property, whereas
the forward-COI regards the inputs. In [Bie03] this approach has successfully
been applied to properties specified as patterns in the STVE.

This automated abstraction technique seems promising to help reduce
the complexity for verification of universal LSCs and additionally increase
user-friendliness. The applicability of this approach hinges on the possibility
to automatically determine which propositions of the property are inputs
and which are outputs, which is easy for patterns. In order to transfer this

293

technique to LSCs as well, information about inputs and outputs used in
the chart must be made available to the tool performing the automated
abstraction.

Another possibility for complexity reduction is the automatic decompo-
sition of grey-box requirements specified as LSCs into local black-box prop-
erties, which can be proven on the involved components. Key idea here is
that the decomposition already guarantees one of the tasks, which have to be
performed for compositional reasoning: the proof that the sum of the local
requirements indeed implies the global grey-box requirement. Questions to
be investigated for this approach comprise:

• Is a decomposition possible for invariant LSCs? Due to overlapping
incarnations it is not clear, if the decomposed view correctly reflects
the global behavior.

• What is the best representation for the decomposed local requirements?
They could e.g. be represented as LSCs, STDs, TSAs, temporal logic
or yet another format.

• How are the decomposed properties triggered/activated? Is the ac-
tivation condition used for triggering all local requirements? Is the
synchronized activation necessary and if so, how is it achieved?

• How should pre-charts be treated?

• Are there restrictions on the features, which may be used in the global
LSC? Can e.g. synchronization for shared conditions be guaranteed?

For the verification of existential LSCs a possible optimization is the
partitioning of the entire LSC into smaller segments, each of which forms a
separate verification task. The idea hence is to first find a witness for the
initial segment, record the current global state of the FSM once it has been
found and use this state as a fresh start point — forgetting the first witness
— for the generation of the witness for the second segment and so on. In
this way long existential LSCs can be broken down into smaller fragments,
which are checked decidedly faster. The witness for the complete LSCs then
has to be assembled from the witnesses for the fragments.

Regarding a further extension of the set of LSC features it is interesting to
consider the inclusion of structuring elements, like e.g. sub-charts and loops.

294 CHAPTER 12. CONCLUSION AND OUTLOOK

These constructs have been mentioned in the original LSC paper [DH98],
albeit without a formal definition. The use of such operational constructs for
formal verification purposes, where the manner of specification of interactions
is rather declarative, is doubtful. For other purposes, e.g. testing, they can
be useful, however. An exhaustive treatment of sub-charts encompasses also
the relation between elements within and outside of the sub-chart and if
an interference between internal and external elements should be allowed,
e.g. messages crossing the sub-chart boundary. Furthermore bounded and/or
unbounded loops should be considered in this context as well as instance
refinement similar to instance decomposition in MSCs.

Another direction of further work deals with the improvement of prop-
erty specification for Statemate models using the superstep semantics. The
view offered by Statemate does not lend itself to property specification with
LSCs as the evaluation has shown. Statemate in the asynchronous seman-
tics allows to only model one embedded controller, whose internals are given
by the Activity Charts and Statecharts thereby mixing internal and external
communication. A more natural view wrt. LSCs would be to model several
embedded controllers and only allow to refer to messages sent between them,
thus disregarding any internal communication of the individual embedded
controllers. Fränzle et al. [FNMD03] propose such an interpretation and
provides an according formal semantics. On this basis applications better
suited to property specification with LSCs are conceivable like system-level
testing, i.e. testing the interplay of several embedded controllers.

Other application contexts for LSCs are possible as well, like e.g. UML,
which already contains Sequence Diagrams. While the LSC language as pre-
sented in this work considers the basic elements, which are necessary in order
to specify protocols as LSCs also within a UML context, the concrete rela-
tions between LSC and model elements still have to be defined. Whereas this
mapping is fairly simple and obvious in the case of Statemate, more effort
has to be invested for the practical application of LSCs in the UML world.
A UML model is generally not as persistent as a Statemate model, which
does not change its structure during its lifetime. One of the key features of
object-orientation is the dynamic creation and destruction of objects, which
entails that the structure of the model and the relation between objects in
the model change over time as new objects are created, old ones are destroyed
and associations between objects are redirected. There are additional ques-
tions to be resolved, like e.g. how sending and receipt of an event are to be
interpreted in the UML model in view of an event queue, or the mapping

295

of LSC instances to model objects in the presence of relative identifications,
e.g. of the form crossing->itsTrain.

We have undertaken a first attempt at providing such a relation
in [KW02], albeit without referring to a formal representation of a UML
model. In the context of ongoing efforts at the University of Oldenburg and
OFFIS, Damm and Westphal [DW03] provide a more precise and formal def-
inition of the relation of LSC to model elements basing on the semantics for
a subset of the UML presented in [DJPV03].

The highly dynamic nature of UML models makes the formal verification
a challenging field of research involving the definition of a formal semantics,
the investigation of new verification strategies in order to cope with changing
and even unbounded models, and the development of a fitting format for
specifying properties. LSCs seem a very natural choice for the last task and
it will be interesting to see how this area evolves.

296 CHAPTER 12. CONCLUSION AND OUTLOOK

Appendix A

LSCs for the Radio-based Train

Control System

This chapter collects the LSCs, which have been specified and verified for
the train control system. For universal and assumption LSCs additionally
the generated timed symbolic automata are included. Some LSCs have been
omitted when they were too large to be included (e.g. due to a large tim-
ing constraint in the superstep semantics using the explicit enumeration ap-
proach).

297

298 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

A.1 LSCs for System

A.1.1 Existential LSCs

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

safe_rec

safe_snd

status_req_rec

status_req_snd

train_passed

raise_barrier

opened

switch_off_lights

closed

lower_barrier

yellow_on

red_on

ack_rec

Invariant
activation_point_reached
securing_all

AM:
AC:
LSC

Figure A.1: Existential LSC showing the good case

A.1. LSCS FOR SYSTEM 299

Env

safe_rec

safe_snd

status_req_rec

status_req_snd

train_passed

raise_barrier

opened

switch_off_lights

closed

lower_barrier

red_on

CommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

yellow_onack_rec

y_err

Invariant
activation_point_reached

AM:
AC:
LSC securing_all_yerr

Figure A.2: Existential LSC showing a failure of the yellow light

300 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

train_passed

yellow_on

red_on

ack_rec

status_req_rec

status_req_snd

stopped

release

red_err

Invariant
activation_point_reached
securing_all_red_err

AM:
AC:
LSC

Figure A.3: Existential LSC showing a failure of the red light without explicit
prohibition of the safe message

A.1. LSCS FOR SYSTEM 301

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

ack_rec

status_req_rec

status_req_snd

stopped

release

train_passed

red_on

yellow_on

red_err

no_safem
sg

Invariant
activation_point_reached
securing_all_red_err2

AM:
AC:
LSC

Figure A.4: Existential LSC showing a failure of the red light with explicit
prohibition of the safe message

302 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

yellow_on

red_on

ack_rec

lower_barrier

status_req_rec

status_req_snd barrier_defect

train_passed

raise_barrier

opened

switch_off_lights

stopped

release

Invariant
activation_point_reached
securing_all_barr_err

AM:
AC:
LSC

Figure A.5: Existential LSC showing a failure of the barrier without explicit
prohibition of the safe message

A.1. LSCS FOR SYSTEM 303

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

ack_rec

status_req_rec

status_req_snd

stopped

release

train_passed

raise_barrier

switch_off_lights

opened

barrier_defect

lower_barrier

red_on

yellow_on

no_safem
sg

Invariant
activation_point_reached
securing_all_barr_err2

AM:
AC:
LSC

Figure A.6: Existential LSC showing a failure of the barrier with explicit
prohibition of the safe message

304 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Env

free_snd

free_rec

raise_barrier

switch_off_lights

opened

release

stopped

train_passed

CommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

yellow_on

red_on

ack_rec

lower_barrier

closed

ETA_violation

Invariant
activation_point_reached
securing_all_free

AM:
AC:
LSC

Figure A.7: Existential LSC showing the train sending the free message

A.1. LSCS FOR SYSTEM 305

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

closed

lower_barrier

yellow_on

red_on

ack_rec

timeout

raise_barrier

opened

switch_off_lights

vacated

safe_rec

safe_snd

status_req_snd

status_req_rec

Invariant
activation_point_reached
securing_all_timeout

AM:
AC:
LSC

T(MBCT)

T(MBCT)

Figure A.8: Existential LSC showing a timeout at the crossing with timer

306 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

EnvCommTrain Crossing

start_comm

ready

activate_snd

activate_rec

ack_snd

closed

lower_barrier

yellow_on

red_on

ack_rec

timeout

raise_barrier

opened

switch_off_lights

vacated

safe_rec

safe_snd

status_req_snd

status_req_rec

Invariant
activation_point_reached
securing_all_timeout2

AM:
AC:
LSC

Figure A.9: Existential LSC showing a timeout at the crossing without timer

A.1. LSCS FOR SYSTEM 307

A.1.2 Universal LSCs

CrossingCommTrain

start_comm

ready

activate_snd

activate_rec

no
_s

to
pp

ed
Invariant
activation_point_reached
securing_all_comm_setup

AM:
AC:
LSC

Figure A.10: Universal LSC for establishing the communication channel

q0 ¬start comm ∧ no stopped

q1 ¬ready ∧ no stopped

start comm ∧ no stopped

q2 ¬activate snd ∧ no stopped

ready ∧ no stopped

q3 ¬activate rec

activate snd

q4 true

activate rec

qXtrue

¬no stopped

¬no stopped

¬no stopped ∧
¬activate snd

Figure A.11: TSA for LSC body of securing all comm setup (weak inter-
pretation)

308 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

CrossingCommTrain

start_comm

ready

activate_snd

activate_rec

Invariant
activation_point_reached
securing_all_comm_setup2

AM:
AC:
LSC

no_stopped

Figure A.12: Alternate universal LSC for establishing the communication
channel

q0 ¬start comm ∧ no stopped

q1 ¬ready ∧ no stopped

start comm ∧ no stopped

q2 ¬activate snd ∧ no stopped

ready ∧ no stopped

q3 ¬activate rec ∧ no stopped

activate snd ∧ no stopped

q4 true

activate rec

qXtrue

¬no stopped

¬no stopped

¬no stopped

¬no stopped ∧
¬activate rec

Figure A.13: TSA for LSC body of securing all comm setup2 (weak inter-
pretation)

A.1. LSCS FOR SYSTEM 309

CommTrain Crossing

safe_rec

safe_snd

status_req_rec

safe

Invariant
status_req_snd_no_sensor
securing_all_safe

AM:
AC:
LSC

Figure A.14: Universal LSC for a positively answered status request

q0 ¬status req rec

q1 ¬safe snd

status req rec ∧ safe

q2 ¬safe rec

safe snd

q3 true

safe rec

qXtrue

¬safe ∧ status req rec

Figure A.15: TSA for LSC body of securing all safe (weak interpretation)

310 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Comm Crossing

status_req_rec

ENVTrain

train_passed

stopped

release

not_safe

no
_s

af
em

sg

Invariant
status_req_snd
securing_all_stop

AM:
AC:
LSC

Figure A.16: Universal LSC for a not answered status request

A.1. LSCS FOR SYSTEM 311

q0

¬status req rec ∧ ¬stopped

∧no safemsg

q1

¬status req rec∧
¬release ∧ no safemsg

stopped ∧ ¬status req rec ∧ no safemsg

q2

¬stopped∧
no safemsg

status req rec ∧ not safe

∧¬stopped ∧ no safemsg

q3

¬release∧
no safemsg

status req rec

∧not safe

∧¬release

∧no safemsg
stopped

∧no safemsg

status req rec

∧not safe∧
stopped∧
no safemsg

q4

¬status req rec

∧no safemsg

release ∧ ¬status req rec

∧no safemsg

q5 ¬train passed ∧ no safemsg

status req rec

∧not safe

∧release∧
no safemsg

release ∧ no safemsg

status req rec∧
not safe ∧ no safemsg

q6 true

train passed

qXtrue
¬not safe ∧ status req rec

¬not safe ∧ status req rec

¬not safe∧
status req rec

Figure A.17: TSA for LSC body of securing all stop (weak interpretation)

312 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

ETA_violation

ENV Train Comm

free_snd

Crossing

free_rec

raise_barrier

[1,40]

lower_barrierAC:
LSC securing_all_free

InvariantAM:

safe

Figure A.18: Universal LSC for the sending of the free message

A.1. LSCS FOR SYSTEM 313

q0 ¬ETA violation

q1 ¬free snd

ETA violation[z0 ≥ 1 ∧ z0 ≤ 40]

q2

free snd

(a) Finite automaton for pre-chart

q0 ¬free rec

q1 ¬raise barrier

free rec ∧ safe

q2 true

raise barrier

qXtrue

¬safe ∧ free rec

(b) TSA for LSC body

Figure A.19: Automata for LSC securing all free (weak interpretation)

314 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

free_snd

free_rec

raise_barrier

ENV Train Comm Crossing

ETA_violation

lower_barrier_setXAC:
LSC securing_all_free3

InvariantAM:
st

ab
le

X

X=15

safe

Figure A.20: Universal LSC for the sending of the free message (superstep
semantics, counter approach)

A.1. LSCS FOR SYSTEM 315

q0 ¬ETA violation ∧ stableX

q1 ¬free snd

ETA violation ∧X = 15

q2

free snd

(a) Finite automaton for pre-chart

q0 ¬free rec

q1 ¬raise barrier

free rec ∧ safe

q2 true

raise barrier

qXtrue

¬safe ∧ free rec

(b) TSA for LSC body

Figure A.21: Automata for LSC securing all free3 (weak interpretation)

316 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

free_snd

free_rec

raise_barrier

ENV Train Comm Crossing

ETA_violationst
ab

le
X

X<40

lower_barrier_setXAC:
LSC securing_all_free4

InvariantAM:

safe

Figure A.22: Universal LSC for the sending of the free message (superstep
semantics, counter approach)

A.1. LSCS FOR SYSTEM 317

q0 ¬ETA violation ∧ stableX

q1 ¬free snd

ETA violation ∧X < 40

q2

free snd

(a) Finite automaton for pre-chart

q0 ¬free rec

q1 ¬raise barrier

free rec ∧ safe

q2 true

raise barrier

qXtrue

¬safe ∧ free rec

(b) TSA for LSC body

Figure A.23: Automata for LSC securing all free4 (weak interpretation)

318 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

A.1.3 Assumption LSCs

ap_reached
LSC
AC:

correct_activation_point_ass

InvariantAM:

Env SYS

passed_crossingno
_a

ct
iv

at
e

Figure A.24: Assumption LSC for the restriction of reaching the activation
point

q0 ¬passed crossing ∧ no activate

q1 true

passed crossing ∧ no activate

Figure A.25: TSA for LSC body of correct activation point ass (weak
and strict interpretation)

A.1. LSCS FOR SYSTEM 319

no_activation_point
LSC
AC:

no_activation_point_ass

InitialAM:

Figure A.26: Assumption LSC forbidding the initial indication of reaching
the activation point

320 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

A.2 LSCs for Train

A.2.1 Existential LSCs

Env Act_Crossing

safe_rec

status_req_snd

ack_rec

activate_snd

ready

start_comm

stop_comm

Invariant
activation_point_reached
secure_crossing

AM:
AC:
LSC

Figure A.27: Existential LSC for the good case (successful securing of the
crossing)

A.2. LSCS FOR TRAIN 321

Env Act_Crossing

status_req_snd

ack_rec

activate_snd

ready

start_comm

SpeedCtrl

stopped

stop_comm

release

Invariant
activation_point_reached
secure_crossing_fail

AM:
AC:
LSC

Figure A.28: Existential LSC for a failed securing of the crossing

322 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Env

timeout

free_snd

release

stop_comm

ETA_violation

Act_Crossing

status_req_snd

ack_rec

activate_snd

ready

start_comm

Timer

safe_rec

Invariant
activation_point_reached
free_crossing

AM:
AC:
LSC

Figure A.29: Existential LSC for the sending of the free message

A.2. LSCS FOR TRAIN 323

A.2.2 Universal LSCs

timeout

free_snd

status_req_snd_no_stop−safe−bp

Act_Crossing TimerEnv

safe_rec

ETA_violation

Invariant

free_crossing

AM:
AC:
LSC

no_stop_com
m

no_st

no
_b

ra
ke

p

Figure A.30: Universal LSC for the sending of the free message

324 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0
¬safe rec ∧ no brakep
∧no st

q1
¬ETA violation

∧no stop comm

safe rec ∧ no brakep
∧no st

q2

ETA violation

∧no stop comm

(a) Finite automaton for pre-chart

q0 ¬timeout ∧ no stop comm

q1 ¬free snd ∧ no stop comm

timeout ∧ no stop comm

q2 true

free snd ∧ no stop comm

(b) TSA for LSC body

Figure A.31: Automata for LSC free crossing

A.3. LSCS FOR CROSSING 325

A.3 LSCs for Crossing

A.3.1 Existential LSCs

AM: Invariant
AC: Activate_Crossing
LSC securing

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

switch2red

lights_on

status_req

crossing_safe

barrier_closed

lower

closed

barrier_open

raise

opening

turn_off

switch_off

open_barrier

Sensor

train_passed

close_barrier

Figure A.32: Existential LSC for the good case (successful securing of the
crossing)

326 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing
LSC securing_yerr

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

Sensor

lights_on

status_req

crossing_safe

barrier_closed

lower

closed

barrier_open

raise

opening

turn_off

switch_off

open_barrier

train_passed

close_barrier

switch2red

y_err

Figure A.33: Existential LSC for a defect yellow light

A.3. LSCS FOR CROSSING 327

AM: Invariant
AC: Activate_Crossing
LSC securing_red_err

Env Lights

ack

Crossing

turn_on

switch2yellow

switch2red

train_passed

status_req

turn_off

Sensor

red_err

Figure A.34: Existential LSC for a defect red light without explicit prohibi-
tion of the safe message

328 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing
LSC securing_red_err_neg

Env Lights

ack

Crossing

turn_on

switch2yellow

switch2red

status_req

safe

red_err

Figure A.35: Negatively interpreted existential LSC showing the erroneous
situation of the crossing sending the safe message although a red light failure
has occurred

A.3. LSCS FOR CROSSING 329

AM: Invariant
AC: Activate_Crossing
LSC securing_red_err2

Env Lights

ack

Crossing

turn_on

switch2yellow

switch2red

status_req

turn_off

Sensor

train_passed

red_err

no_safe

Figure A.36: Existential LSC for a defect red light with explicit prohibition
of the safe message

330 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing
LSC securing_red_err

Env Lights

ack

Crossing

turn_on

switch2yellow

switch2red

status_req

turn_off

Sensor

train_passed

red_err
no_safe

Figure A.37: Existential LSC for a defect red light with explicit prohibition
of the safe message

A.3. LSCS FOR CROSSING 331

status_req

AM: Invariant
AC: Activate_Crossing
LSC securing_barrier_err

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

barrier_open

raise

opened

turn_off

switch_off

open_barrier

Sensor

train_passed

switch2red

lights_on

lower

close_barrier

barrier_defect

Figure A.38: Existential LSC for a defect barrier without explicit prohibition
of the safe message

332 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

status_req

barrier_open

raise

opened

turn_off

switch_off

open_barrier

train_passed

AM: Invariant
AC: Activate_Crossing
LSC securing_barrier_err

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

Sensor

switch2red

lights_on

lower

close_barrier

barrier_defect

no_safe

Figure A.39: Existential LSC for a defect barrier with explicit prohibition of
the safe message

A.3. LSCS FOR CROSSING 333

AM: Invariant
AC: Activate_Crossing
LSC securing_free

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

switch2red

lights_on

lower

closed

barrier_closed

free

open_barrier

barrier_open

opened

turn_off

switch_off

raise

close_barrier

Figure A.40: Existential LSC for receipt of the free message

334 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing
LSC securing_timeout

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

switch2red

lights_on

lower

closed

barrier_closed

timeout

barrier_open

raise

opened

turn_off

switch_off

open_barrier

vacated

close_barrier

[42;42]

Figure A.41: Existential LSC for exceeding of the maximum barrier closed
time with timing constraint

A.3. LSCS FOR CROSSING 335

AM: Invariant
AC: Activate_Crossing
LSC securing_timeout2

Env Lights

ack

BarrierCrossing

turn_on

switch2yellow

switch2red

lights_on

lower

closed

barrier_closed

timeout

barrier_open

raise

opened

turn_off

switch_off

open_barrier

vacated

close_barrier

Figure A.42: Existential LSC for exceedance of the maximum barrier closed
time without timing constraint

336 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

A.3.2 Universal LSCs

Barrier Lights

AM: Invariant
AC:
LSC

Env Crossing

opening
lights_on_no_red_err

open_barrier

turn_off

raise

barrier_open

barrier_closed

opening

switch_off

no_red_err

no_open[1,1]

Figure A.43: Universal LSC for the opening of the barrier

A.3. LSCS FOR CROSSING 337

q0
¬barrier closed
∧no red err

q1
¬open barrier
∧no red err

barrier closed

∧no red err

q2

open barrier

∧no red err

(a) Finite automaton
for pre-chart

q0
¬raise∧
no open ∧ no red err

q1
¬opening∧
no open ∧ no red err

raise ∧ no open
∧no red err{z0 := 0}

q2 ¬barrier open ∧ no red err

opening ∧ no open
∧no red err[z0 ≤ 1 ∧ z0 ≥ 1]

q3 ¬turn off ∧ no red err

barrier open ∧ no red err

q4 ¬switch off

turn off

q5 true

switch off
qXtrue

¬no open∨
¬no red err

opening ∨ ¬no open∨
¬no red err[z0 > 1]

opening[z0 < 1]

¬no red err

¬no red err ∧ ¬turn off

(b) TSA for LSC body

Figure A.44: Automata for LSC opening (weak interpretation)

338 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Barrier Lights

turn_off

switch_off

AM: Invariant
AC:
LSC

Env Crossing

opening2
lights_on_no_red_err

open_barrier

raise

barrier_closed

opening

barrier_open

no_stab

no_open

no_red_err

stable

Figure A.45: Universal LSC for the opening of the barrier (superstep seman-
tics, explicit enumeration)

A.3. LSCS FOR CROSSING 339

q0
¬barrier closed
∧no red err

q1
¬open barrier
∧no red err

barrier closed

∧no red err

q2

open barrier

∧no red err

(a) Finite automaton
for pre-chart

q0
¬raise∧
no open ∧ no red err

q1
¬opening ∧ no stab ∧
no open ∧ no red err

raise ∧ no open
∧no red err

q2 ¬barrier open ∧ no red err

opening ∧ no open
∧no red err ∧ stable

q3 ¬turn off ∧ no red err

barrier open ∧ no red err

q4 ¬switch off

turn off

q5 true

switch off
qXtrue

¬no open∨
¬no red err

¬no red err ∨ (¬no stab ∧ ¬opening)

¬no red err

¬no red err ∧ ¬turn off

(b) TSA for LSC body

Figure A.46: Automata for LSC opening2 (weak interpretation, superstep
semantics, explicit enumeration)

340 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Barrier Lights

AM: Invariant
AC:
LSC

Env Crossing

opening3
lights_on_no_red_err

open_barrier

turn_off

raise

barrier_open

barrier_closed

opening

switch_off

no_red_err

no_open

Figure A.47: Universal LSC for the opening of the barrier (superstep seman-
tics, user-specified assumption)

A.3. LSCS FOR CROSSING 341

q0
¬barrier closed
∧no red err

q1
¬open barrier
∧no red err

barrier closed

∧no red err

q2

open barrier

∧no red err

(a) Finite automaton
for pre-chart

q0
¬raise∧
no open ∧ no red err

q1
¬opening∧
no open ∧ no red err

raise ∧ no open
∧no red err

q2 ¬barrier open ∧ no red err

opening ∧ no open
∧no red err

q3 ¬turn off ∧ no red err

barrier open ∧ no red err

q4 ¬switch off

turn off

q5 true

switch off
qXtrue

¬no open∨
¬no red err

¬no open ∨ ¬no red err

¬no red err

¬no red err ∧ ¬turn off

(b) TSA for LSC body

Figure A.48: Automata for LSC opening3 (weak interpretation, superstep
semantics)

342 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Barrier Lights

AM: Invariant
AC:
LSC opening

open_barrier_no_open

Env Crossing

turn_off

switch_off

raise

barrier_open

opening[1,1]no
_o

pe
n

Figure A.49: Alternative universal LSC for the opening of the barrier without
pre-chart

A.3. LSCS FOR CROSSING 343

q0 ¬raise ∧ no open

q1 ¬opening ∧ no open

raise ∧ no open{z0 := 0}

q2 ¬barrier ope

opening ∧ no open[z0 ≤ 1 ∧ z0 ≥ 1]

q3 ¬turn off

barrier open

q4 ¬switch off

turn off

q5 true

switch off
qXtrue

¬no open

opening ∨ ¬no open ∨ [z0 > 1]

opening[z0 < 1]

Figure A.50: Automata for LSC opening without pre-chart (weak interpre-
tation)

344 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Barrier Lights

raise

opening

barrier_open

turn_off

switch_off

Env Crossing

AM: Invariant
AC:
LSC opening4

open_barrier_no_open

no_stab

stable

no
_o

pe
n

Figure A.51: Alternative universal LSC for the opening of the barrier without
pre-chart (superstep semantics, explicit enumeration)

A.3. LSCS FOR CROSSING 345

q0 ¬raise ∧ no open

q1 ¬opening ∧ no open ∧ no stab

raise ∧ no open

q2 ¬barrier open

opening ∧ no open ∧ stable

q3 ¬turn off

barrier open

q4 ¬switch off

turn off

q5 true

switch off
qXtrue

¬no open

(¬opening ∧ ¬no stab) ∨ ¬no open

Figure A.52: Automata for LSC opening4 without pre-chart (weak interpre-
tation, superstep semantics)

346 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Barrier LightsEnv Crossing

turn_off

switch_off

raise

barrier_open

opening

AM: Invariant
AC:
LSC opening5

open_barrier_no_open

no
_o

pe
n

Figure A.53: Alternative universal LSC for the opening of the barrier without
pre-chart (superstep semantics, user-specified assumption)

A.3. LSCS FOR CROSSING 347

q0 ¬raise ∧ no open

q1 ¬opening ∧ no open

raise ∧ no open

q2 ¬barrier ope

opening ∧ no open

q3 ¬turn off

barrier open

q4 ¬switch off

turn off

q5 true

switch off
qXtrue

¬no open

¬no open

Figure A.54: Automata for LSC opening5 without pre-chart (weak interpre-
tation, superstep semantics)

348 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

switch2red

lights_on

turn_on

securing_lights

no
_r

ed
_e

rr

nre

Figure A.55: Universal LSC for switching on the traffic lights

q0 ¬ack ∧ ¬turn on ∧ no red err

q1 ¬switch2yellow ∧ no red err

ack ∧ turn on ∧ no red err

q2 ¬switch2red ∧ no red err

switch2yellow ∧ no red err

q3 ¬lights on ∧ nre

switch2red ∧ no red err

q4 true

lights on ∧ nre
qXtrue

¬no red err

¬no red err

¬no red err

¬nre

Figure A.56: TSA for LSC body of securing lights (weak interpretation)

A.3. LSCS FOR CROSSING 349

barrier_closed

closed

AM: Initial
AC:
LSC securing_barrier_init

Env Crossing

empty

close_barrier

lower

Barrier

no_closed

safe

[1,1]

[1,1]

Figure A.57: Initial universal LSC for the closing of the barrier

350 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0 ¬close barrier

q1 ¬lower

close barrier

q2 ¬closed

lower ∧ no closed{z0 := 0}

q3 ¬barrier closed

closed[z0 ≥ 1 ∧ z0 ≤ 1]

q4 true

barrier closed{z1 := 0}

q5 true

safe[z1 ≥ 1 ∧ z1 ≤ 1]
qXtrue

¬no closed ∧ lower

closed[z0 < 1]

closed[z0 > 1]

Figure A.58: TSA for LSC body of securing barrier init (weak interpre-
tation)

A.3. LSCS FOR CROSSING 351

barrier_closed

AM: Initial
AC:
LSC securing_barrier_init2

Env Crossing

empty

close_barrier

Barrier

closed

lower

safe

[1,1]

no_closed

stable

no_stab

Figure A.59: Initial universal LSC for the closing of the barrier (superstep
semantics, explicit enumeration)

352 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0 ¬close barrier

q1 ¬lower

close barrier

q2 ¬closed ∧ no stab

lower ∧ no closed

q3 ¬barrier closed

closed ∧ stable

q4 true

barrier closed{z0 := 0}

q5 true

safe[z0 ≥ 1 ∧ z0 ≤ 1]
qXtrue

¬no closed ∧ lower

¬no stab ∧ ¬closed

Figure A.60: TSA for LSC body of securing barrier init2 (weak inter-
pretation, superstep semantics)

A.3. LSCS FOR CROSSING 353

barrier_closed

closed

AM: Initial
AC:
LSC securing_barrier_init3

Env Crossing

empty

close_barrier

lower

Barrier

no_closed

safe

[1,1]

Figure A.61: Initial universal LSC for the closing of the barrier

354 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0 ¬close barrier

q1 ¬lower

close barrier

q2 ¬closed

lower ∧ no closed

q3 ¬barrier closed

closed

q4 true

barrier closed{z0 := 0}

q5 true

safe[z0 ≥ 1 ∧ z0 ≤ 1]
qXtrue

¬no closed ∧ lower

Figure A.62: TSA for LSC body of securing barrier init (weak interpre-
tation)

A.3. LSCS FOR CROSSING 355

Env

AM: Invariant
AC: raise_barrier
LSC securing_barrier

LightsCrossing

lights_on

opening

open

close_barrier

lower

Barrier

closed

barrier_closed

[1,1]

[1,1]

no_red_err

[1,1]

safe

[1,1]

no_closed

Figure A.63: Universal LSC for the closing of the barrier

356 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0 ¬lights on ∧ ¬opening

q1¬lights on ∧ ¬open

opening ∧ ¬lights on
{z1 := 0}[z0 ≥ 1 ∧ z0 ≤ 1]

q2 ¬opening

lights on ∧ no red err
¬opening

q3 ¬open

lights on∧
no red err

∧¬open

opening{z1 := 0}
[z0 ≥ 1 ∧ z0 ≤ 1]

lights on∧
no red err∧
opening

{z1 := 0}
[z0 ≥ 1 ∧ z0 ≤ 1]

q4¬lights on

open ∧ ¬lights on
[z1 ≥ 1 ∧ z1 ≤ 1]

q5

lights on∧
no red err∧
open

[z1 ≥ 1 ∧ z1 ≤ 1]
open[z1 ≥ 1 ∧ z1 ≤ 1]

lights on ∧ no red err

Figure A.64: Finite automaton for pre-chart of LSC securing barrier

(weak interpretation)

A.3. LSCS FOR CROSSING 357

q0 ¬close barrier

q1 ¬lower

close barrier

q2 ¬closed

lower ∧ no closed{z0 := 0}

q3 ¬barrier closed

closed[z0 ≥ 1 ∧ z0 ≤ 1]

q4 true

barrier closed{z1 := 0}

q5 true

safe[z1 ≥ 1 ∧ z1 ≤ 1]
qXtrue

lower ∧ ¬no closed

closed[z0 < 1]

closed[z0 > 1]

Figure A.65: TSA for LSC body of securing barrier (weak interpretation)

358 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Env

AM: Invariant
AC: raise_barrier
LSC securing_barrier2

LightsBarrier Crossing

opening

open

lights_on

lower

closed

barrier_closed

close_barrier

stable

no_closed

no_stab
no_stab

stable

no_stab

no_red_err

stable

[1,1]

safe

Figure A.66: Universal LSC for the closing of the barrier (superstep seman-
tics, explicit enumeration)

A.3. LSCS FOR CROSSING 359

q0
¬lights on ∧ ¬opening
∧no stab

q1¬lights on ∧ ¬open ∧ no stab

opening ∧ ¬lights on
∧stable

q2
¬opening
∧no stab

lights on ∧ no red err
¬opening

q3 ¬open ∧ no stab

lights on∧
no red err

∧¬open

opening ∧ stable

lights on∧
no red err∧
opening

∧stable

q4¬lights on

open ∧ ¬lights on
∧stable

q5

lights on∧
no red err∧
open

∧stable
open ∧ stable

lights on ∧ no red err

Figure A.67: Finite automaton for pre-chart of LSC securing barrier2

(weak interpretation, superstep semantics)

360 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0 ¬close barrier

q1 ¬lower

close barrier

q2 ¬closed ∧ no stab

lower ∧ no closed

q3 ¬barrier closed

closed ∧ stable

q4 true

barrier closed{z0 := 0}

q5 true

safe[z0 ≥ 1 ∧ z0 ≤ 1]

qXtrue

lower ∧ ¬no closed

¬no stab ∧ ¬closed

Figure A.68: TSA for LSC body securing barrier2 (weak interpretation,
superstep semantics)

A.3. LSCS FOR CROSSING 361

AM: Invariant
AC: raise_barrier_setX
LSC securing_barrier3

Env LightsCrossing

lights_on

opening

close_barrier

lower

Barrier

closed

barrier_closed

open

X+1

no_red_err

safe

[1,1]

no_closed

X
_s

ta
bl

e

X+2

Figure A.69: Universal LSC for the closing of the barrier (superstep seman-
tics, using counter and user-specified assumption)

362 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0
¬lights on ∧ ¬opening
∧X stable

q1¬lights on ∧ ¬open ∧X stable

opening ∧X + 1 ∧ ¬lights on ∧X stable

q2
¬opening∧
X stable

lights on ∧ no red err
¬opening ∧X stable

q3 ¬open ∧X stable

lights on∧
no red err

∧¬open
∧X stable

opening ∧X + 1 ∧X stable

lights on∧
no red err∧
opening ∧X + 1 ∧X stable

q4¬lights on

open ∧X + 2 ∧ ¬lights on
∧X stable

q5

lights on∧
no red err∧
open ∧X + 2 ∧X stable

open ∧X + 2 ∧X stable
lights on ∧ no red err

Figure A.70: Finite automaton for pre-chart of LSC securing barrier3

(weak interpretation, superstep semantics)

A.3. LSCS FOR CROSSING 363

q0 ¬close barrier

q1 ¬lower

close barrier

q2 ¬closed

lower ∧ no closed

q3 ¬barrier closed

closed

q4 true

barrier closed{z0 := 0}

q5 true

safe[z0 ≥ 1 ∧ z0 ≤ 1]

qXtrue

lower ∧ ¬no closed

Figure A.71: TSA for LSC body securing barrier3 (weak interpretation,
superstep semantics)

364 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Env Crossing

AM: Invariant
AC:
LSC securing_timeout

barrier_closed

timeoutno
_f

re
e

[42,42]

no_pass

Figure A.72: Universal LSC for exceedance of the maximum barrier closed
time

q0 ¬timeout ∧ no free ∧ no pass

q1 true

timeout ∧ no free ∧ no pass[z0 ≥ 42 ∧ z0 ≤ 42]

qXtrue

¬no free ∨ ¬no pass

Figure A.73: TSA for LSC body of securing timeout (weak and strict
interpretation)

A.3. LSCS FOR CROSSING 365

Env Crossing

AM: Invariant
AC:
LSC securing_timeout4

barrier_closed_setX

timeoutno
_f

re
e

X
_s

ta
bl

e

X+40

no_pass

Figure A.74: Universal LSC for exceedance of the maximum barrier closed
time (superstep semantics, counter)

q0
¬timeout ∧ no free X stable

∧no pass

q1 true

timeout ∧ no free ∧ no pass ∧X + 40

qXtrue

¬no free X stable ∨ ¬no pass

Figure A.75: TSA for LSC body of securing timeout4 (weak and strict
interpretation, superstep semantics)

366 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

turn_on

securing_yellow_err

switch2red

lights_on

y_err [1,1]

no
_r

ed
_e

rr

nre[7,7]

Figure A.76: Universal LSC for a defect yellow light with timing constraints

A.3. LSCS FOR CROSSING 367

q0 ¬ack ∧ ¬turn on ∧ no red err

q1 ¬switch2yellow ∧ no red err

ack ∧ turn on ∧ no red err

q2 ¬switch2red ∧ no red err

switch2yellow ∧ y err ∧ no red err
{z0 := 0}

q3 ¬lights on ∧ nre

switch2red ∧ no red err
{z1 := 0}[z0 ≥ 1 ∧ z0 ≤ 1]

q4 true

lights on ∧ nre[z1 ≥ 7 ∧ z1 ≤ 7]
qXtrue

¬no red err

¬no red err∨
(y err ∧ switch2yellow)

¬no red err

¬nre

Figure A.77: TSA for LSC body of securing yellow err (weak interpreta-
tion)

368 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

turn_on

securing_yellow_err2

switch2red

lights_on

y_err

no
_r

ed
_e

rr

nre

Figure A.78: Universal LSC for a defect yellow light without timing con-
straints

A.3. LSCS FOR CROSSING 369

q0 ¬ack ∧ ¬turn on ∧ no red err

q1 ¬switch2yellow ∧ no red err

ack ∧ turn on ∧ no red err

q2 ¬switch2red ∧ no red err

switch2yellow ∧ y err ∧ no red err

q3 ¬lights on ∧ nre

switch2red ∧ no red err

q4 true

lights on ∧ nre
qXtrue

¬no red err

¬no red err∨
(y err ∧ switch2yellow)

¬no red err

¬nre

Figure A.79: TSA for LSC body of securing yellow err2 (weak interpre-
tation)

370 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

turn_on

securing_yellow_err3

switch2red

lights_on

y_err

stable

stable

stable

stable

stable

stable

no_stab

nre

no_stab
no_stab

no_stab
no_stab

no_stab
no_stab

[1,1]no
_r

ed
_e

rr

Figure A.80: Universal LSC for a defect yellow light (superstep semantics,
explicit enumeration)

A.3. LSCS FOR CROSSING 371

q0 ¬ack ∧ ¬turn on ∧ no red err

q1 ¬switch2yellow ∧ no red err

ack ∧ turn on ∧ no red err

q2 ¬switch2red ∧ no red err ∧ no stab

switch2yellow ∧ y err ∧ no red err

q3 no stab ∧ nre

switch2red ∧ no red err ∧ no stab

q4 no stab ∧ nre

stable ∧ no red err

q5 no stab ∧ nre

stable ∧ no red err

q6 no stab ∧ nre

stable ∧ no red err

q7 no stab ∧ nre

stable ∧ no red err

q8 no stab ∧ nre

stable ∧ no red err

q9 no stab ∧ nre

stable ∧ no red err

q10 true

lights on ∧ nre
qXtrue

¬no red err

¬no red err ∨ (y err ∧ switch2yellow)

¬no red err

¬nre

¬nre

¬nre

¬nre

¬nre

¬nre

¬nre

Figure A.81: TSA for LSC body of securing yellow err3 (weak interpre-
tation, superstep semantics)

372 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

AM: Invariant
AC: Activate_Crossing_no_hw_err
LSC

Env Lights

ack

Crossing

switch2yellow

turn_on

securing_yellow_err4

switch2red

lights_on

y_err setX

X+6

no
_r

ed
_e

rr

nre

X
_stable

Figure A.82: Universal LSC for a defect yellow light(superstep semantics,
explicit enumeration)

A.3. LSCS FOR CROSSING 373

q0 ¬ack ∧ ¬turn on ∧ no red err

q1 ¬switch2yellow ∧ no red err

ack ∧ turn on ∧ no red err

q2 ¬switch2red ∧ no red err ∧ stableX

switch2yellow ∧ y err ∧ setX ∧ no red err

q3 ¬lights on ∧ nre ∧ stableX

switch2red ∧ stableX ∧ no red err

q4 true

lights on ∧X + 6 ∧ stableX ∧ nre
qXtrue

¬no red err

¬no red err∨
((y err ∨ setX) ∧ switch2yellow)

¬no red err ∨ ¬stableX

¬nre ∨ ¬stableX

Figure A.83: TSA for LSC body of securing yellow err2 (weak interpre-
tation, superstep semantics)

374 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

A.3.3 Assumption LSCs

activate
LSC
AC:

correct_activate_ass

InvariantAM:

Env SYS

raiseno
_a

ct

Figure A.84: Assumption LSC for restricting the occurrence of activation
messages

q0 ¬raise ∧ no act

q1 true

raise ∧ no act

Figure A.85: TSA for LSC body of correct activate ass (weak and strict
interpretation)

A.3. LSCS FOR CROSSING 375

lower
LSC
AC:

correct_open_ass

InvariantAM:

Env SYS

closed

raise

.[1,1]

no
_o

pe
n

Figure A.86: Assumption LSC for the correct setting of the opened condition

q0 ¬closed

q1 ¬raise ∧ no open

closed ∧ no open[z0 ≥ 1 ∧ z0 ≤ 1]

q2 true

raise ∧ no open

Figure A.87: TSA for LSC body of correct open ass (weak interpretation,
step semantics)

stable

raise

lower
LSC
AC:

InvariantAM:

Env SYS

correct_open_ass2

no
_o

pe
n

Figure A.88: Assumption LSC for the correct setting of the opened condition

376 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

q0 ¬stable

q1 ¬raise ∧ no open

stable ∧ no open

q2 true

raise ∧ no open

Figure A.89: TSA for LSC body of correct open2 ass (weak interpretation,
superstep semantics)

no_activate
LSC
AC:

no_activation_ass

InitialAM:

Figure A.90: Assumption LSC forbidding the receipt of an activation request
in the initial state

opening
LSC
AC:

correct_closed_ass

InvariantAM:

Env SYS

raiseno
_c

lo
se

d

Figure A.91: Assumption LSC for restricting the occurrence of closed

A.3. LSCS FOR CROSSING 377

q0 ¬raise ∧ no closed

q1 true

raise ∧ no closed

Figure A.92: TSA for LSC body of correct closed ass (weak and strict
interpretation)

activate
LSC
AC:

functioning_lights_ass

InvariantAM:

Env SYS

switch_offno
_r

ed
er

r

Figure A.93: Assumption LSC for prohibiting a failure of the red light

q0 ¬switch off ∧ no rederr

q1 true

switch off ∧ no rederr

Figure A.94: TSA for LSC body of functioning lights ass (weak and
strict interpretation)

378 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Env SYS

stable

closed

lower
LSC
AC:

prompt_closed_ass

InvariantAM:

Figure A.95: Assumption LSC enforcing a timely closing of the barriers
(superstep semantics)

q0 ¬closed ∧ ¬stable

q1 true

closed ∧ stable

Figure A.96: TSA for LSC body of prompt closed ass (weak and strict
interpretation)

raise
LSC
AC:

InvariantAM:

prompt_open_ass

Env SYS

stable

opening

Figure A.97: Assumption LSC enforcing a timely opening of the barriers
(superstep semantics)

A.3. LSCS FOR CROSSING 379

q0 ¬opening ∧ ¬stable

q1 true

opening ∧ stable

Figure A.98: TSA for LSC body of prompt open ass (weak and strict inter-
pretation)

380 APPENDIX A. LSCS FOR THE TRAIN CONTROL SYSTEM

Appendix B

Information Flows and

Constants of the Statemate

Model for the Train Control

Application

This chapter provides more detailed information on the Statemate model
presented in chapter 2. Listed are the values for the constants used in the
model and the contents of the information flows grouped according to their
respective level of hierarchy.

B.1 Constants

B.2 SYSTEM

T SEND: TRAIN → COMMUNICATION

Name Type
ST COMMUNICATION Event
SP COMMUNICATION Event
ACTIVATE CROSSING SND Event
STATUS RQ SND Event
CROSSING FREE SND Event

381

382 APPENDIX B. INFORMATION FLOWS AND CONSTANTS

Data item Meaning Value
CCT crossing closing time 8
ELT establish lag time 1
MBCT maximum barrier closed time 40
MCT maximum close time 3
MGT minimum green time 4
MOT maximum open time 3
MRTC minimum red time closing 4
MYT minimum yellow time 2
TRAIN D.LENGTH train length 16
TRAIN D.MAX DEC maximum deceleration of train 8
TRAIN D.MAX ACC maximum acceleration of train 8
TRAIN D.MIN SPD minimum speed of train 0
TRAIN D.MAX SPD maximum speed of train 16

Table B.1: Constants used in the model of the train control system

T RECEIVE: COMMUNICATION → TRAIN

Name Type
COMMUNICATION ESTABLISHED Event
ACK REC Event
CROSSING SAFE REC Event

C RECEIVE: COMMUNICATION → CROSSING

Name Type
ACTIVATE CROSSING REC Event
STATUS RQ REC Event
CROSSING FREE REC Event

C SEND: CROSSING → COMMUNICATION

Name Type
ACK SND Event
CROSSING SAFE SND Event

B.2. SYSTEM 383

DIAGNOSTIC: TRAIN → DRIVER

Name Type
EMERGENCY STOP Event
PASSED XING Event

LIGHT HW REPLY: LIGHTS → CROSSING

Name Type
YELLOW ERR Condition
RED ERR Condition

LIGHT HW COMMANDS: CROSSING → LIGHTS

Name Type
SWITCH ON Event
SWITCH OVER Event
SWITCH OFF Event

BARRIER HW REPLY: BARRIER → CROSSING

Name Type
CLOSED Condition
OPENED Condition

BARRIER HW COMMANDS: CROSSING → BARRIER

Name Type
LOWER Event
RAISE Event

SENSOR HW REPLY: SENSOR → CROSSING

Name Type
SENSOR ON Condition
SENSOR ERR Condition

384 APPENDIX B. INFORMATION FLOWS AND CONSTANTS

DEFECTS: CROSSING → OPERATIONS CENTER

Name Type
YELLOW DEFECT Event
RED DEFECT Event
BARRIERS DEFECT Event
SENSOR DEFECT Event
TIMEOUT OPCENTER Event

RESPONSES: OPERATIONS CENTER → CROSSING

Name Type
CROSSING VACATED Event

B.3 CROSSING

LIGHT COMMANDS: CROSSING CONTROL → LIGHTS CONTROL

Name Type
TURN LIGHTS ON Event
TURN LIGHTS OFF Event

LIGHTS REPLY: LIGHTS CONTROL → CROSSING CONTROL

Name Type
LIGHTS ON Event

BARRIER COMMANDS: CROSSING CONTROL → BARRIER CONTROL

Name Type
CLOSE BARRIER Event
OPEN BARRIER Event

BARRIER REPLY: BARRIER CONTROL → CROSSING CONTROL

Name Type
BARRIER CLOSED Event
BARRIER OPENING Event
BARRIER ERR Event

B.3. CROSSING 385

SENSOR REPLY: SENSOR CONTROL → CROSSING CONTROL

Name Type
PASSED Event

386 APPENDIX B. INFORMATION FLOWS AND CONSTANTS

Appendix C

LSC Grammar

<lsc document> ::= <document head> <live sequence chart>*

<end> ::= [<comment>] ;

<comment> ::= comment <character string>

<text definition> ::= text <character string> <end>

<document head> ::= { mscdocument | lscdocument }

<lsc document name> <end>

<identifier> ::= <name>

<live sequence chart> ::= { [universal | existential] }

[lsc_kind]

{ lsc | msc } <lsc head> <lsc body>

{ endlsc | endmsc } <end>

<lsc_kind> ::= prechart | assumption

<lsc head> ::= <lsc name> <end>

[activation condition : condexpr <string>

endexpr activation mode <mode name>]

[assumption <assumption list>]

<assumption list> ::= <lsc name>+

<lsc body> ::= <lsc statement>*

387

388 APPENDIX C. LSC GRAMMAR

<lsc statement> ::= <text definition> [end]

| <event definition> [end]

| <old instance head statement>

<instance event list> [end]

<text definition> ::= text <character string> <end>

<event definition> ::= <instance name> : <instance event list>

| <instance name list> :

<multi instance event list>

<instance event list> ::= { <instance event> } +

<instance event> ::= { <orderable event> |

<non-orderable event> }

<end> [<delay>]

<orderable event> ::= [{ hot | cold }]

{ <message event>

| <timer statement>

| <action>

| <sim region> }

[<layout info>]

<layout info> ::= <character string>

<non-orderable event> ::= [{ hot | cold }]

{ { <coregion>

| <shared condition>

| <shared lsc reference>

| <instance head statement>

| <instance end statement> }

[<layout info>]

| empty }

<instance name list> ::= <instance name> {, <instance name> }*

| all

<multi instance event list> ::= { <multi instance event> <end> } +

<multi instance event> ::= <condition> | <lsc reference>

| <inline expr>

<old instance head statement> ::= instance [{ hot | cold }]

<instance name> [<sim region>]

389

[<layout info>] <end> [<delay>]

<instance head statement> ::= instance

<instance end statement> ::= endinstance

<message event> ::= { <message output> | <message input> } [<delay>]

<message output> ::= out [{ hot | cold }] [{ sync | async }]

<msg identification> to <input address>

<message input> ::= in [{ hot | cold }] [{ sync | async }]

<msg identification> from <output address>

<msg identification> ::= <message name> [, <message instance name>]

[(<parameter list>)]

<parameter list> ::= <parameter name> [, <parameter list>]

<output address> ::= <instance name>

<input address> ::= <instance name>

<shared condition> ::= <condition identification> <shared>

<condition identification> ::= condition { [hot | cold] }

<condition name list> :

condexpr <string> endexpr

<condition name list> ::= <condition name>{ , <condition name> }*

<shared> ::= shared { [<shared instance list>] | all }

<shared instance list> ::= <instance name> [, <shared instance list>]

<condition> ::= <condition identification>

<timer statement> ::= <set> | <reset> | <timeout>

<set> ::= set <timer name> [, <timer instance name>]

[(<duration name>)]

<reset> ::= reset <timer name> [, <timer instance name>]

390 APPENDIX C. LSC GRAMMAR

<timeout> ::= timeout <timer name> [, <timer instance name>]

<action> ::= action <action character string>

<coregion> ::= concurrent <end> <coevent>* endconcurrent

<coevent> ::= <orderable event> <end>

<sim region> ::= simultaneous <sim region event list> endsim

<sim region event list> ::= <sim reg event> <end>

{ <sim reg event> <end> }+

<sim reg event> ::= <message event>

| <shared condition>

| <timer statement>

| <action>

| <local invariant event>

<local invariant event> ::= inv start [hot | cold] <inv name>

| inv end <inv name>

<loop boundary> ::= { ‘ < ‘ <inf natural> [, <inf natural>] ‘ > ‘ }

| <delay>

<delay> ::= { ’(’ | ’[’ } <natural name> ’,’

<natural name> { ’)’ | ’]’ }

<inf natural> ::= inf | <natural name> +

<shared lsc reference> ::= reference

[<lsc reference identification> :]

<lsc ref expr> <shared>

<lsc reference> ::= reference [<lsc reference identification> :]

<lsc ref expr>

<lsc reference identification> ::= <lsc reference name>

<lsc ref expr> ::= <shared condition> then <lsc name>

[else <lsc name>]

<name> ::= <word> { <underline> <word>}*

<word> ::= { @ | <alphanumeric> | <full stop> }* <alphanumeric>

391

{ @ | <alphanumeric> | <full stop> }*

<alphanumeric> ::= <letter> | <decimal digit>

<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

| a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s | t | u | v | w | x | y | z

<decimal digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<char string> ::= <apostrophe> { <alphanumeric>

| <other char>

| <special>

| <full stop>

| <underline>

| <space>

| <apostrophe><apostrophe>

} <apostrophe>

<other char> ::= ? | & | % | + | - | ! | / | > | * | " | < | =

<special> ::= (|) | , | ; | :

<full stop> ::= .

<underline> ::= _

<apostrophe> ::= ’

<text> ::= { <alphanumeric>

| <other char>

| <special>

| <full stop>

| <underline>

| <space>

| <apostrophe> }*

<note> ::= /* <text> */

392 APPENDIX C. LSC GRAMMAR

Bibliography

[ACS99] A. Allara, S. Comai, and R. Schlör. System Verification using
User-Friendly Interfaces. In Design, Automation and Test in Eu-
rope / User Forum, pages 167–172. IEEE Computer Society Press,
1999.

[AD94] Rajeev Alur and David Dill. A Theory of Timed Automata. The-
oretical Computer Science, 126(2):183–236, 1994.

[AEKN00] N. Amla, E.A. Emerson, R.P. Kurshan, and K.S. Namjoshi.
Model Checking Synchronous Timing Diagrams. In Proceedings
Formal Methods in Computer-Aided Design (FMCAD), LNCS,
pages 283–298. Springer Verlag, 2000.

[AHP96] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for Mes-
sage Sequence Charts. In T. Margaria and B. Steffen, editors,
Proceedings 2nd International Worshop on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS96, volume
1055 of Lecture Notes in Computer Science, pages 35–48, Passau,
Germany, March 1996. Springer Verlag.

[BAL97a] H. Ben-Abdallah and S. Leue. Expressing and analyzing timing
constraints in message sequence chart specifications. Technical Re-
port 97-04, Department of Electrical and Computer Engineering,
University of Waterloo, April 1997.

[BAL97b] H. Ben-Abdallah and S. Leue. Timing constraints in Message
Sequence Chart specifications. In T. Mizuno, N. Shiratori, T. Hi-
gashino, and A. Togashi, editors, Formal Description Techniques
and Protocol Specification, Testing and Verification. Proceedings

393

394 BIBLIOGRAPHY

of FORTE X and PSTV XVII ’97, pages 91–106, Osaka, 1997.
Chapman & Hall.

[BBB+99] Tom Bienmüller, Jürgen Bohn, Henning Brinkmann, Udo Brock-
meyer, Werner Damm, Hardi Hungar, and Peter Jansen. Verifi-
cation of Automotive Control Units. In Ernst-Rüdiger Olderog
and Bernd Steffen, editors, Correct System Design, number 1710
in LNCS, pages 319–341. Springer Verlag, 1999.

[BBD+99] Tom Bienmüller, Udo Brockmeyer, Werner Damm, Gert Döhmen,
Claus Eßmann, Hans-Jürgen Holberg, Hardi Hungar, Bernhard
Josko, Rainer Schlör, Gunnar Wittich, Hartmut Wittke, Geoffrey
Clements, John Rowlands, and Eric Sefton. Formal Verification
of an Avionics Application using Abstraction and Symbolic Model
Checking. In Felix Redmill and Tom Anderson, editors, Towards
System Safety – Proceedings of the Seventh Safety-critical Systems
Symposium, Huntingdon, UK, pages 150–173. Safety-Critical Sys-
tems Club, Springer Verlag, 1999.

[BBHW00] Tom Bienmüller, Udo Brockmeyer, Hans Jürgen Holberg, and
Hartmut Wittke. Automatic Debugging for STATEMATE De-
signs, 2000. 8. Deutsches Anwenderforum für STATEMATE Mag-
num.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In W. R. Cleave-
land, editor, Tools and Algorithms for the Construction and Anal-
ysis of Systems. Part of European Conferences on Theory and
Practice of Software, ETAPS’99, Amsterdam, volume 1579 of
LNCS, pages 193–207. Springer-Verlag, 1999.

[BCM+92] J.R. Burch, E.M. Clarke, K. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic Model Checking: 1020 States and Beyond. In-
formation and Computation, 98(2):142–170, June 1992.

[BDKW01] Tom Bienmüller, Werner Damm, Jochen Klose, and Hart-
mut Wittke. Formale Analyse und Verifikation von Statemate
Entwürfen. it+ti, 43(1), 2001.

BIBLIOGRAPHY 395

[BDW00] Tom Bienmüller, Werner Damm, and Hartmut Wittke. The
STATEMATE Verification Environment – Making it real. In
E. Allen Emerson and A. Prasad Sistla, editors, 12th international
Conference on Computer Aided Verification, CAV, number 1855
in LNCS, pages 561–567. Springer Verlag, 2000.

[BG01] Annette Bunker and Ganesh Gopalakrishnan. Using live sequence
charts for hardware protocol specification and compliance verifi-
cation. In IEEE International High Level Design Validation and
Test Workshop. IEEE Computer Society Press, November 2001.

[BG02] Annette Bunker and Ganesh Gopalakrishnan. Verifying a VCI Bus
Interface Model Using an LSC-based Specification. In H. Ehrig,
B. J. Krämer, and A. Ertas, editors, Proceedings of the Sixth Bi-
ennial World Conference on Integrated Design and Process Tech-
nology, page 48. Society of Design and Process Science, June 2002.

[Bie03] Tom Bienmüller. Reducing Complexity for the Verification of
Statemate Designs. PhD thesis, Carl von Ossietzky Universität
Oldenburg, 2003.

[Bit00] Friedemann Bitsch. Classification of Safety Requirements for For-
mal Verification of Software Models of Industrial Automation Sys-
tems. In Proceedings of the 13th Conference on Software and Sys-
tems Engineering and their Applications - ICSSEA 2000, 2000.

[Bit01] Friedemann Bitsch. Safety patterns — the key to formal specifica-
tion of safety requirements. Lecture Notes in Computer Science,
2187, 2001.

[BKL01] Udo Brockmeyer, Jochen Klose, and Marc Lettrari. UML Valida-
tion Suite. In J. Tretmans and E. Brinksma, editors, Proceedings
of FATES’01 - Formal Approaches to Testing of Software, 2001.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and
Enhancement. IEEE Computer, 21(5):61–72, 1988.

[Bon01] Yves Bontemps. Automated verification of state-based specifica-
tions against scenarios. Master’s thesis, University of Namur, June
2001.

396 BIBLIOGRAPHY

[Bro99] Udo Brockmeyer. Verifikation von STATEMATE Designs. PhD
thesis, Carl-von-Ossietzky Universität Oldenburg, Oldenburg,
Dezember 1999.

[BW98] U. Brockmeyer and G. Wittich. Tamagotchis Need Not Die – Ver-
ification of STATEMATE Designs. In Bernhard Steffen, editor,
Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 1384 of Lecture Notes in Computer Science, pages
217–231, 1998.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Syn-
chronization Skeletons using Branching Time Temporal Logic. In
D. Kozen, editor, Proceedings of the Workshop on Logics of Pro-
grams, volume 131 of Lecture Notes in Computer Science, pages
52–71, Yorktown Heights, New York, May 1981. Springer-Verlag.

[CEN01] CENELEC. EN 50128, Railway Applications, Communications,
Signaling and Processing Systems - Software for Railway Control
and Protection Systems. European Committee for Electrotechnical
Standardization, 2001.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Property specification patterns for finite-state verification. In
Mark Ardis, editor, Proceedings of the 2nd Workshop on Formal
Methods in Software Practice (FMSP-98), pages 7–15, New York,
1998. ACM Press.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Patterns in property specifications for finite-state verification. In
Proceedings of the 1999 International Conference on Software En-
gineering (ICSE’99), pages 411–421, New York, 1999. Association
for Computing Machinery.

[DDK99] W. Damm, G. Döhmen, and J. Klose. Secure Decentralized Con-
trol of Railway Crossings. In S. Gnesi and D. Latella, editors,
Fourth International ERCIM Workshop on Formal Methods in In-
dustrial Critical Systems, 1999.

BIBLIOGRAPHY 397

[DH98] W. Damm and D. Harel. LSCs: Breathing Life into Message
Sequence Charts. Technical Report CS98-09, The Weizmann In-
stitute of Science, Rehovot, Israel, July 1998.

[DH99] W. Damm and D. Harel. LSCs: Breathing Life into Message Se-
quence Charts. In FMOODS’99 IFIP TC6/WG6.1 Third Inter-
national Conference on Formal Methods for Open Object-Based
Distributed Systems, 1999.

[DH01] W. Damm and D. Harel. LSCs: Breathing Life into Message
Sequence Charts. Formal Methods in System Design, 19(1):45 –
80, July 2001.

[Die96] C. Dietz. Graphical formalization of real-time requirements. In
B. Jonsson and J. Parrow, editors, Formal Techniques in Real-
Time and Fault-Tolerant Systems, number 1135 in Lecture Notes
in Computer Science, pages 366–385. Springer Verlag, 1996.

[DJHP98] Werner Damm, Bernhard Josko, Hardi Hungar, and Amir Pnueli.
A compositional real-time semantics of STATEMATE designs. In
W.-P. de Roever, H. Langmaack, and A. Pnueli, editors, Pro-
ceedings COMPOS’97, Lecture Notes in Computer Science 1536.
Springer-Verlag, 1998.

[DJPV03] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understand-
ing UML: A Formal Semantics of Concurrency and Communi-
cation in Real-Time UML. In Proceedings of the First Interna-
tional Symposium on Formal Methods for Components and Objects
(FMCO’02), 2003. to appear.

[DK01] Werner Damm and Jochen Klose. Verification of a Radio-based
Signaling System Using the Statemate Verification Environment.
Formal Methods in System Design, 19(2), 2001.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, 7(3):201–215, July
1960.

[DW03] W. Damm and B. Westphal. Live and Let Die: LSC-based Ver-
ification of UML-Models. In Proceedings of the First Interna-

398 BIBLIOGRAPHY

tional Symposium on Formal Methods for Components and Objects
(FMCO’02), 2003. to appear.

[EBF+98] A. Evans, J-M. Bruel, R. France, K. Lano, and B. Rumpe. Making
uml precise. In OOPSLA’98 Workshop on “Formalizing UML.
Why and How?” 10 Seiten, Vancouver, Canada. October 1998.
OOPSLA’98, 1998.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe.
The uml as a formal modeling notation. In Jean Bezivin and
Pierre-Alain Muller, editors, The Unified Modeling Language -
Workshop UML’98: Beyond the Notation. Springer Verlag Berlin,
LNCS, 1999.

[Ek98] Anders Ek. Automatic Debugging of Communicating Systems
Using the Tau SDL Validator. Telelogic White Paper, 1998.
http://www.telelogic.com.

[EK99] Andy Evans and Stuart Kent. Core meta-modelling semantics of
uml: the puml approach. In R. France and B. Rumpe, editors,
UML’99 - The Unified Modeling Language: Beyond the Standard,
number 1723 in Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[Eme90] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics, pages 995–1072. Elsevier Science
Publishers, 1990.

[ESt97] Bundesministerium des Inneren EStdIT. V-Model, Development
Standard for IT-Systems of the federal Republic of Germany, 1997.

[Fey96] Konrad Feyerabend. Realtime Symbolic Timing Diagrams. Tech-
nical report, Carl von Ossietzky Universität Oldenburg, 1996.

[FHD+99] Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas
Gehrke, and Ursula Goltz. Timed sequence diagrams and tool-
based analysis - a case study. In R. France and B. Rumpe, editors,
UML’99 - The Unified Modeling Language: Beyond the Standard,
number 1723 in Lecture Notes in Computer Science. Springer-
Verlag, 1999.

BIBLIOGRAPHY 399

[Fis99] K. Fisler. Timing Diagrams: Formalization and Formal Verifica-
tion. Journal of Logic, Language and Information, 8(3), 1999.

[FJ97] Konrad Feyerabend and Bernhard Josko. A visual formalism for
real time requirement specifications. In Proceedings of the 4th In-
ternational AMAST Workshop on Real-Time Systems and Con-
currentand Distributed Software, ARTS’97, Lecture Notes in Com-
puter Science 1231, pages 156–168, 1997.

[FMR00] S. Flake, W. Müller, and J. Ruf. Structured English for Model
Checking Specification. In Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen,
GI/ITG/GMM Workshop, 2000.

[FNMD03] Martin Fränzle, Jürgen Niehaus, Alexander Metzner, and Werner
Damm. A semantics for distributed execution of STATEMATE.
Submitted to International Journal on Formal Aspects of Comput-
ing (FAC), Special Issue on Semantic Foundations of Engineering
Design Languages, to appear., 2003.

[GDO98] V. Grabowski, C. Dietz, and E.R. Olderog. Semantics for timed
Message Sequence Charts via constraints diagrams. In Y. Lahav,
A. Wolisz, J. Fischer, and E. Holz, editors, Proceedings of the 1st
Workshop of the SDL Forum Society on SDL and MSC, number
104 in Informatik-Berichte, pages 251–260, Berlin, Germany, June
1998. Humboldt-Universität zu Berlin.

[GHN+98] T. Gehrke, M. Huhn, P. Niebert, A. Rensink, and H. Wehrheim. A
process algebra semantics for Message Sequence Charts including
conditions. In H. König and Langendörfer, editors, Proceedings
of the 8th GI/ITG-Workshop Formale Beschreibungstechniken für
verteilte Systeme (FBT’98), pages 185–196, Cottbus, June 1998.

[GHRW98] T. Gehrke, M. Huhn, A. Rensink, and H. Wehrheim. An al-
gebraic semantics for Message Sequence Chart documents. In
S. Budkowski, A. Cavalli, and E. Najm, editors, Formal Descrip-
tion Techniques and Protocol Specification, Testing and Verifica-
tion (FORTE/PSTV’98), pages 3–18. Kluwer Academic Publish-
ers, 1998.

400 BIBLIOGRAPHY

[GR99] Martin Große-Rhode. On a reference model for the formalization
and integration of software specification languages. Bulletin of the
EATCS No 68, The Formal Specification Column, Part 8, pages
81–89, June 1999.

[GRG93a] P. Graubmann, E. Rudolph, and J. Grabowski. The Standard-
ization of Message Sequence Charts. In Proceedings of the IEEE
Software Engineering Standards Symposium (SESS’93), pages 48–
63, Brighton, UK, September 1993. IEEE Computer Society.

[GRG93b] P. Graubmann, E. Rudolph, and J. Grabowski. Towards a Petri
Net based semantics definition for Message Sequence Charts. In
O. Færgemand and A. Sarma, editors, SDL’93 – Using Objects,
Proceedings of the Sixth SDL Forum, pages 179–190, Darmstadt,
October 1993. Elsevier Science Publishers/North Holland.

[Gro96a] The VIS Group. VIS : A System for Verification and Synthesis.
In 8th international Conference on Computer Aided Verification,
number 1102 in LNCS, 1996. VIS 1.3 is available from the VIS
home-page: http://www-cad.eecs.Berkeley.EDU/~vis.

[Gro96b] The VIS Group. VIS: A System for Verification and Synthesis. In
FMCAD, 1996.

[Har00] David Harel. From Play-In Scenarios to Code: An Achievable
Dream. In International Conference on Fundamental Approaches
to Software Engineering (FASE), volume 1783 of Lecture Notes in
Computer Science. Springer Verlag, 2000.

[Hey00] S. Heymer. A semantics for MSC based on Petri-Net components.
In S. Graf, C. Jard, and Y. Lahav, editors, SAM2000. 2nd Work-
shop on SDL and MSC, pages 262–275, Col de Porte, Grenoble,
June 2000.

[HK99] Alexander Holt and Ewan Klein. A semantically-derived subset of
English for hardware verification. In Proc. 37th Annual Meeting of
the Association for Computational Linguistics: Maryland, USA,
pages 451–456. Association for Computational Linguistics, 1999.

BIBLIOGRAPHY 401

[HK01] David Harel and Hillel Kugler. Synthesizing State-based Object
Systems from LSC Specifications. In Proceedings of the 5th Inter-
national Conference on Implementation and Application of Au-
tomata (CIAA 2000), volume 2088 of Lecture Notes in Computer
Science, pages 1 – 33. Springer Verlag, 2001.

[HK02] David Harel and Hillel Kugler. Synthesizing State-based Object
Systems from LSC Specifications. International Journal of Foun-
dations of Computer Science, 13(1):5 – 51, 2002.

[HKMP02] David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli.
Smart Play-Out of Behavioral Requirements. In Proceedings of
the 4th International Conference on Formal Methods in Computer-
Aided Design (FMCAD’02), pages 378–398, 2002.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sher-
man, A. Shtull-Trauring, and M. Trakhtenbrot. STATEMATE:
A working environment for the development of complex reactive
systems. IEEE Transactions on Software Engineering, 16:403 –
414, 1990.

[HM02] David Harel and Rami Marelly. Playing with Time: On the Spec-
ification and Execution of Time-Enriched LSCs. In Proceedings
10th IEEE/ACM Int. Symp. on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems (MASCOTS
2002), 2002.

[HN96] D. Harel and A. Naamad. The STATEMATE semantics of state-
charts. ACM Transactions on Software Engineering and Method-
ology, 5(4), 1996.

[Hol99] Alexander Holt. Formal verification with natural language specifi-
cations: guidelines, experiments and lessons so far. South African
Computer Journal, 24:253–257, 1999.

[HP96] David Harel and Michal Politi. Modeling Reactive Systems with
Statecharts: The STATEMATE Approach. Part No. D–1100–43.
i-Logix Inc., Three Riverside Drive, Andover, MA 01810, June
1996.

402 BIBLIOGRAPHY

[IT88] ITU-T. ITU-T Recommendation Z.100: Specification and De-
scription Language (SDL). ITU-T, Geneva, 1988.

[IT93] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart
(MSC). ITU-T, Geneva, 1993.

[IT95] ITU-T. ITU-T Annex B to Recommendation Z.120: Algebraic
Semantics of Message Sequence Charts. ITU-T, Geneva, 1995.

[IT96a] ITU-T. ITU-T Annex C to Recommendation Z.120: Static Se-
mantics of Message Sequence Charts. ITU-T, Geneva, 1996.

[IT96b] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart
(MSC). ITU-T, Geneva, October 1996.

[IT98] ITU-T. ITU-T Annex B to Recommendation Z.120: Formal Se-
mantics of Message Sequence Charts. ITU-T, Geneva, 1998.

[IT99] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart
(MSC). ITU-T, Geneva, 1999.

[IT00] ITU-T. ITU-T Recommendation Z.100: Specification and De-
scription Language (SDL). ITU-T, Geneva, 2000.

[JBR99] I. Jacobsen, G. Booch, and J. Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999.

[Jos93] Bernhard Josko. Modular specification and verification of reac-
tive systems. Carl von Ossietzky Universität Oldenburg, 1993.
Habiltationsschrift.

[JP01] B. Jonsson and G. Padilla. An execution semantics for MSC-2000.
In SDL’01: Meeting UML, Lecture Notes in Computer Science,
Copenhagen, June 2001. Springer Verlag.

[KGSB99] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to
statecharts. In Franz J. Rammig, editor, Distributed and Parallel
Embedded Systems, proceedings DIPES’98, pages 61–71. Kluwer
Academic Publishers, 1999.

BIBLIOGRAPHY 403

[KL01] Jochen Klose and Marc Lettrari. Scenario-based Monitoring and
Testing of Real-time UML models. In M. Gogolla and C. Kobryn,
editors, UML 2001 - The Unified Modeling Language: Modeling
Languages, Concepts, and Tools, volume 2185 of LNCS. Springer
Verlag, 2001.

[KM00] Jochen Klose and Adam Moik. Modellierung der FORMS-
Fallstudien mit Statemate. In Eckehard Schnieder, editor,
FORMS2000 - Formale Techniken für die Eisenbahnsicherung,
number 441 in Fortschritt-Berichte VDI Reihe 12. VDI Verlag,
2000.

[Kos97] P. Kosiuczenko. Time in message sequence charts: A formal ap-
proach. In C. Lengauer, M. Griebl, and S. Gorlatch, editors, Eu-
roPar’97: Parallel Processing, number 1300 in Lecture Notes in
Computer Science. Springer Verlag, 1997.

[KPE00] Olaf Kluge, Julia Padberg, and Hartmut Ehrig. Modeling Train
Control Systems: From Message Sequence Charts to Petri Nets.
In Eckehard Schnieder, editor, FORMS2000 - Formale Techniken
für die Eisenbahnsicherung, number 441 in Fortschritt-Berichte
VDI Reihe 12. VDI Verlag, 2000.

[KRK02] Jochen Klose, Juergen Ruf, and Thomas Kropf. A Visual Ap-
proach to Validating System Level Designs. In 15.th International
Symposioum on System Synthesis (ISSS), pages 186 – 191, Kyoto,
Japan, 2002. IEEE Computer Society Press.

[Krü00] Ingolf Krüger. Distributed System Design with Message Sequence
Charts. PhD thesis, Technical University of Munich, 2000.

[KT00] Jochen Klose and Andreas Thums. The State-
mate Reference Model of the Reference Case Study
’Verkehrsleittechnik’. Technical report, University
of Augsburg, 2000. http://www.Informatik.Uni-
Augsburg.DE/swt/formosa/RefVL/bericht.ps.gz.

[Kut94] George Kutty. A Graphical Environment for Temporal Reasoning.
PhD thesis, Deptartment of Electrical and Computer Engineering,
University of California, Santa Barbara, 1994.

404 BIBLIOGRAPHY

[KW01] Jochen Klose and Hartmut Wittke. An Automata Based Repre-
sentation of Live Sequence Charts. In Tiziana Margaria and Wang
Yi, editors, Proceedings of TACAS 2001, number 2031 in LNCS.
Springer Verlag, 2001.

[KW02] Jochen Klose and Bernd Westphal. Relating LSC Specifications
to UML Models. In Proceedings INT2002- International Work-
shop on Integration of Specification Techniques for Applications
in Engineering, 2002.

[Lam77] Leslie Lamport. Proving the Correctness of Multiprocess Pro-
grams. IEEE Transactions on Software Engineering, 3(2), 1977.

[LL92a] P.B. Ladkin and S. Leue. An analysis of Message Sequence Charts.
Technical Report IAM-92-013, University of Berne, Institute for
Informatics and Applied Mathematics, 1992.

[LL92b] P.B. Ladkin and S. Leue. An automaton interpretation of Message
Sequence Charts. Technical Report IAM 92-012, University of
Berne, Institute for Informatics and Applied Mathematics, 1992.

[LL95] P.B. Ladkin and S. Leue. Interpreting Message Flow Graphs.
Formal Aspects of Computing, 7(5):473–509, 1995.

[LL99a] Xuandong Li and Johan Lilius. Timing analysis of message se-
quence charts. Technical Report 255, Turku Center for Computer
Science, March 1999.

[LL99b] Xuandong Li and Johan Lilius. Timing analysis of uml sequence
diagrams. In R. France and B. Rumpe, editors, UML’99 - The
Unified Modeling Language: Beyond the Standard, number 1723
in Lecture Notes in Computer Science. Springer-Verlag, 1999.

[LMM99a] Diego Latella, Istvan Maijzik, and Mieke Massink. Towards a
formal operational semantics of uml statechart diagrams. In 3rd
International Conference on Formal Methods for Open Object-
Oriented Distributed Systems, Lecture Notes in Computer Science.
Kluwer Academic Publishers, 1999.

[LMM99b] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic
Verification of a Behavioural Subset of UML Statechart Diagrams

BIBLIOGRAPHY 405

Using the SPIN Model-checker. Formal Aspects of Computing,
11(6):637–664, 1999.

[LMR98] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM mod-
els from Message Sequence Chart specifications. Technical Report
98-06, Department of Electrical and Computer Engineering, Uni-
versity of Waterloo, April 1998.

[LP99] Johan Lilius and Ivan Porres Paltor. Formalising uml state ma-
chines for model checking. In R. France and B. Rumpe, editors,
UML’99 - The Unified Modeling Language: Beyond the Standard,
number 1723 in Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for Technology Transfer,
1(1–2):134–152, October 1997.

[Man01] Nikolai Mansurov. Automatic synthesis of SDL from MSC and
its applications in forward and reverse engineering. Computer
Languages, 27(1–3):115–136, 2001.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[MHK02] Rami Marelly, David Harel, and Hillel Kugler. Multiple In-
stances and Symbolic Variables in Executable Sequence Charts.
In Proceedings of the 17th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA’02), pages 83–100, 2002.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive
and Concurrent Systems, Specification. Springer Verlag, 1992.

[MR94] S. Mauw and M.A. Reniers. An algebraic semantics of Basic Mes-
sage Sequence Charts. The Computer Journal, 37(4):269–277,
1994.

[MRW00] S. Mauw, M.A. Reniers, and T.A.C. Willemse. Message Sequence
Charts in the software engineering process. In S.K. Chang, editor,

406 BIBLIOGRAPHY

Handbook of Software Engineering and Knowledge Engineering.
World Scientific, 2000.

[OMG01] OMG. Unified Modeling Language Specification,
Version 1.4. Object Management Group, 2001.
http://www.omg.org/docs/formal/01-09-67.pdf.

[OS97] Sam Owre and Natarajan Shankar. The formal semantics of PVS.
Technical Report SRI-CSL-97-2, Computer Science Laboratory,
SRI International, Menlo Park, CA, August 1997.

[OSC02a] OSC Group and I-Logix. Statemate MAGNUM Model Certifier
Pattern Library User Guide, 2002.

[OSC02b] OSC Group and I-Logix. Statemate MAGNUM Model Checker &
Model Certifier User Guide 2.0, 2002.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concur-
rent systems in CESAR. In Proc. 5th Int’l Symp. on Programming,
Lecture Notes in Computer Science, Vol. 137, pages 337–371. SV,
1982.

[RACH00] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann.
Analysing uml active classes and associated state machines - a
lightweight formal approach. In T. Maibaum, editor, FASE, Fun-
damental Approaches to Software Engineering, number 1783 in
Lecture Notes in Computer Science, pages 127–146. Springer-
Verlag, 2000.

[Ren99] M.A. Reniers. Message Sequence Chart: Syntax and Semantics.
PhD thesis, Eindhoven University of Technology, June 1999.

[RHTR01] J. Ruf, D. W. Hoffmann, T.Kropf, and W. Rosenstiel. Simulation-
guided property checking based on multi-valued ar-automata. In
Design Automation and Test in Europe (DATE). IEEE Conm-
puter Society Press, 2001.

[RKG97] G. Robert, F. Khendek, and P. Grogono. Deriving an SDL specifi-
cation with a given architecture from a set of MSCs. In A. Cavalli
and A. Sarma, editors, SDL’97: Time for Testing – SDL, MSC
and Trends, Proceedings of the Eighth SDL Forum, pages 197–212,

BIBLIOGRAPHY 407

Evry, France, September 1997. Elsevier Science Publishers/North
Holland.

[Roy70] Winston W. Royce. Managing the Development of Large Soft-
ware Systems: Concepts and techniques. In WESCON Technical
Papers, v. 14, pages A/1–1–A/1–9, Los Angeles, August 1970.
WESCON. Reprinted in Proceedings of the Ninth International
Conference on Software Engineering, 1987, pp. 328–338.

[Sch00] Rainer Schlör. Symbolic Timing Diagrams : A Visual Formalism
for Model Verification. PhD thesis, Universität Oldenburg, 2000.

[SD93] R. Schlör and W. Damm. Specification and verification of system-
level hardware designs using timing diagrams. In Proceedings of
the European Conference on Design Automation with the European
Event in ASIC Design, pages 518–524. IEEE Computer Society
Press, 1993.

[SS98] Mary Sheeran and Gunnar St̊almarck. A tutorial on St̊almarck’s
proof procedure for propositional logic. In Ganesh Gopalakrishnan
and Phillip J. Windley, editors, Proceedings Formal Methods in
Computer-Aided Design, FMCAD’98, Palo Alto/CA, USA, vol-
ume 1522 of Lecture Notes in Computer Science, pages 82–99,
1998.

[SvG98] J. Seemann and J. Wolff von Gudenberg. Extension of UML se-
quence diagrams for realtime systems. In Proceedings Interna-
tional UML Workshop, Mulhouse, June 1998.

[Tho90] Wolfgang Thomas. Automata on Infinite Objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Vol.
B. Elsevier, 1990.

[Wit03] Hartmut Wittke. A Framework for Specification Verification for
Complex Embedded Systems. PhD thesis, Carl von Ossietzky Uni-
versität Oldenburg, 2003. to appear.

