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The Wireless Fire Alarm System:
Ensuring Conformance to Industrial Standards

through Formal Verification

Sergio Feo-Arenis Bernd Westphal Daniel Dietsch
Marco Muñiz Siyar Andisha

Software Engineering
Albert-Ludwigs-University Freiburg

July 16th – 2015
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Context

Develop a wireless fire alarm system (safety critical).

Requires certification to international standards.

Small company with little to no experience with formal methods, but
an acute need for product safety and quality.

Project duration: ca. 2 years.
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Goals

Can formal methods handle development projects in the context af a
small company (SME)? at which cost?

How to tackle requirements from industrial standards using formal
methods?

What research ideas emerged from the project?
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Scenario

Develop a Standard-compliant Fire Alarm System

Use a wireless protocol that supports range extenders (repeaters).

Maximize energy efficiency.

Ensure compliance with the norm DIN EN-54 (Part 25).
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Scenario

EN-54 Requirements

Detect and display communication failures in at most 300+100
seconds.

Display alarms timely:

In at most 10 seconds for single alarms.
The first in 10 seconds and the last in 100 seconds for 10 simultaneous.

Fulfill even when there are other users of the frequency.
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Challenges

Testing a design is difficult:

There is a very large number of possible system configurations.

Requires a prototype implementation.

Controlling timing and radio communication environments requires
costly procedures.

The requirements assume an inherent nondeterminism.

Thus:
Verification could help.
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General Risks

Development in a small company.

Development team of 3 people: 1 computer scientist, 1 programmer, 1
electrical engineer.

Underspecified standard requirements.

High cost of certification.

A failed certification attempt threatens the very existence of the
company.
Market introduction deadlines have high priority.

Lack of structure in the software development process.

Weak documentation practices.
No familiarity with model-based development.
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Overview

We accompanied the conventional development process as consultants.

Requirements
Formalization

Monitoring
Function

Alarm
Function

InnerPNetwork

OuterPNetwork

TimedPModels

UntimedPModels

CompositionalPreasoning
Modeling

TimedPAutomataP/P
UPPAAL

PROMELAP/P
SPIN

}
}

Requirements

Design
Implementation

Verification
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What to Verify: Requirements Formalization

EN-54 provides:

High-level real-time requirements (hard to formalize).

Test Procedures.

Effort required: Months. It was necessary to negotiate ambiguities with
the certification authority.

Chose duration calculus (DC) as formalism to generalize and capture the
standard requirements based on test procedures.

The formalism was not familiar to developers or the certificate
authority.

Required developing a graphical means of communication between
the stakeholders. [Visual Narratives]
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What to Verify: Requirements Formalization

↓
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What to Verify: Requirements Formalization

Result of the DC formalization:

Captured test procedures.

Captured environment assumptions during tests (frequency jamming,
simplifying assumptions).

Generalized to cover all components in arbitrary system topologies.

In total:

6 (quantified) observables

7 (quantified) testable DC formulae
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Modeling: Monitoring Function

Topologies can be decomposed:

CU

r1 r3

s4

s5
...

sN

r2

s1

s2

s3

Outer network

Inner network

We modeled each “network” separately using networks of timed automata
(UPPAAL).
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Modeling: Monitoring Function

Decomposition gives way to additional proof obligations:

No interference between networks (by design).

No collisions (TDMA). [Guard time analysis]

Topology subsumption: Verifying a maximal subnetwork is enough.

To make models tractable, we require optimization:

Each component has an individual clock. [Quasi-equal clock
reduction]

Support plug-in models: Separate environment and design.
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Modeling: Sensor Failures

Modeled as timed automata networks with UPPAAL:

x 1

x 1
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Modeling: Sensor Failures

x 4

x 126
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Verification: Monitoring Function

Other model components:

Auxiliary automata: Master, Central clock, Monitor

Inner network: 10 Repeaters

Found 2 flaws:

Timing was off by 1 tic

Frequency intrusion

A revised design was successfully verified:

Sensors as slaves Repeaters as slaves
Query seconds MB States seconds MB States

Detection 36,070.78 3,419.00 190M 231.84 230.59 6M
No Spurious 97.44 44.29 0.6M 3.94 10.14 0.15M
No LZ-Collision 12,895.17 2,343.00 68M 368.58 250.91 9.6M
Detection Possible 10,205.13 557.00 26M 38.21 55.67 1.2M

Verification is scalable for real world problems (!). But additional effort is

required.
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Modeling: Alarm Function

Alarms are transmitted (semi-)asynchronously using CSMA-CD / Collision
resolution using tree splitting.

0 1 4 5 6 7 8
Slot

t0

8 7 6

8 7 7 7

8 8 8 8 8 7

8 8 8 8 8 8 8

2 3

ID 127

ID 85

ID 42

ID 1

(0111 1111)

(0101 0101)

(0010 1010)

(0000 0001)

Each component ID induces a unique timing pattern for retrying
transmissions.
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Modeling: Alarm Function
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Verification: Alarm Function

For single, explicit topologies: Timed automata / UPPAAL.

Full collision
Query ids seconds MB States

OneAlarm - 3.6± 1 43.1± 1 59k ± 15k
TwoAlarms seq 4.7 67.1 110,207
TenAlarms seq 44.6± 11 311.4± 102 641k ± 159k

opt 41.8± 10 306.6± 80 600k ± 140k

Checking one topology is feasible, but the procedure does not scale for full
verification (more than 10126 possible topologies). [Parameterized
Verification of Aggregation Protocols]

Models are still useful for simulation: extracted expected alarm times for
different scenarios.
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Verification: Alarm Function

For single, explicit topologies: Timed automata / UPPAAL.

Limited Collision
Query ids seconds MB States

OneAlarm - 1.4± 1 38.3± 1 36k ± 14k
TwoAlarms seq 0.5 24.1 19,528
TenAlarms seq 17.3± 6 179.1± 61 419k ± 124k

opt 17.1± 6 182.2± 64 412k ± 124k

Checking one topology is feasible, but the procedure does not scale for full
verification (more than 10126 possible topologies). [Parameterized
Verification of Aggregation Protocols]

Models are still useful for simulation: extracted expected alarm times for
different scenarios.
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Verification: Alarm Function

For increased confidence: Does the collision resolution algorithm guarantee
non-starvation?

Created an untimed model in PROMELA / SPIN.

N: number of colliding components.

I : set of IDs that may participate in the collision.

Check all possible N-collision scenarios: vary IDs and timing.

Results:

Reproduced the hidden terminal problem.

For N = 2: found a problem with IDs 0 and 128.

For N = {3..10}: still not scaling to all IDs, used sampling (31744).

|I | N sec. MB States

255 2 49 1,610 1,235,970

H 10 3,393 6,390 6,242,610
L 10 4,271 10,685 10,439,545
Rnd 10 4,465 11,534 11,268,368
average 4,138 9,994 9,763,809
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Lessons Learned

Generalized test procedures are useful for verification:

Developers are already used to producing test specifications.

Thus: are cost-effective for increasing confidence.

Models are useful:

For validation.

As documentation.

But still not very accesible for developers.

Formal verification shows potential to relieve the effort of testing.
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Conclusions

Formal methods are able to handle typical industrial scenarios (but
require expert knowledge).

The customers are confident early in the process that certification
tests will be passed.

Implementation is easier when based on a verified design.

Other requirements can be simply tested.

Still expensive: Almost as expensive as the certification test itself.

Additional value: Formal methods not only improve confidence but
helps structure development processes.

Difficult technology transfer: SMEs prefer to scale out instead of up.
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Outlook

Check whether the source code of the implementation corresponds to
the design models. Interrupt based implementations are hard to verify.

Use the models to perform model-based testing.

Investigate reuse strategies (new features, product lines).
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Towards
Successful Subcontracting for Software
in Small to Medium-Sized Enterprises

RELAW Workshop, 2012-09-25
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Outline

◮ Introduction

• What is sub-contracting for software?

• When is it succesful?

• Why is it ofen not successful?

• The Salomo Approach:

• Overview

• Checkable Requirements, Checking Tool

• Regulations in the Contract

• Related Work

• Conclusion and Further Work
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There are three main sources of disputes (and thus uncertainty):
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(i) a court ruling takes time, thus further delays the project,

(ii) a court ruling incurs costs,

(iii) it is uncertain whether the necessary compensation can be achieved,

(iv) a court only decides over the rights and duties of each party,
no suggestion how to use the decision to achieve project success,

(v) mutual trust between the former partners is hampered,
already achieved project progress may be lost.

In addition, there is a high uncertainty about the outcome:

• given unclear requirements,
an appointed expert witness may confirm either interpretation.
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There are three main sources of disputes (and thus uncertainty):

• misunderstandings in the requirements,

• misunderstandings or (under-regulations) of acceptance testing procedure,
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deliver

:-(

:-(

There are three main sources of disputes (and thus uncertainty):

• misunderstandings in the requirements,

• misunderstandings or (under-regulations) of acceptance testing procedure,

• misunderstandings of regulations of the contract.

Many SMEs conclude: subcontracting for software is too risky
due to these three main sources of uncertainty.
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Observation

• (Legal) certainty is crucial for subcontracting between SMEs:

Outcomes of possible court judgements need to be as clear as possible.

• To achieve legal certainty, we need

(a) clear and precise requirements,
they avoid the 1st source of uncertainty.

(b) clear and precise acceptance testing procedures,
they avoid the 2nd source of uncertainty.

(c) standardised legal contracts which integrate (a) and (b),
they avoid the 3rd source of uncertainty.

The contract allows a judge to decide on (a) and (b),
and thus increases legal certainty.
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Outline

• Introduction

• What is sub-contracting for software?

• When is it succesful?

• Why is it ofen not successful?

◮ The Salomo Approach:

• Overview

• Checkable Requirements, Checking Tool

• Regulations in the Contract

• Related Work

• Conclusion and Further Work
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Towards (Legal) Certainty

Customer Contractor
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modular

con-

tract

checkable

require-

ments

checking

tool

accept y/n/?

Ingredients:

• new notion:
checkable requirement,

• new notion:
checking tool.

• a new, modular software
development contract,

The modular contract

assumes: a subset of requirements is designated as checkable requirements,

includes: the checkable requirements in machine-readable form,

codifies: agreement that outcome of corresponding checking tool is — with
few and exactly specified exceptions — binding for both parties,

provides: legal certainty.
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Checkable Specification/Requirement, Checking Tool

• A checkable specification is a pair (ϕ, T )
comprising a program property ϕ and a backend T .

• A backend maps a program p and a program property ϕ

to a result T (p, ϕ) ∈ {Yes ,No,Unknown} such that the result is

• Yes only if the program has the property,

• No only if the program does not have the property.
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comprising a program property ϕ and a backend T .

• A backend maps a program p and a program property ϕ

to a result T (p, ϕ) ∈ {Yes ,No,Unknown} such that the result is

• Yes only if the program has the property,

• No only if the program does not have the property.

• A checking tool maps a set of checkable specifications

Φ = {(ϕ1, T1), . . . , (ϕn, Tn)}, n ∈ N0,

to a checking tool result

{(ϕ1, s1), . . . , (ϕn, sn)}, si ∈ {Yes,No,Unknown}.
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Checkable Specification/Requirement, Checking Tool

• A checkable specification is a pair (ϕ, T )
comprising a program property ϕ and a backend T .

• A backend maps a program p and a program property ϕ

to a result T (p, ϕ) ∈ {Yes ,No,Unknown} such that the result is

• Yes only if the program has the property,

• No only if the program does not have the property.

• A checking tool maps a set of checkable specifications

Φ = {(ϕ1, T1), . . . , (ϕn, Tn)}, n ∈ N0,

to a checking tool result

{(ϕ1, s1), . . . , (ϕn, sn)}, si ∈ {Yes,No,Unknown}.

• A requirement is called checkable requirement if and oly if
a checkable specification can (mechanically) be derived from it.
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Backend Examples

• “The Program Compiles”: wrapper applies compiler and yields

• Yes, compiler C in version V produces a non-empty executable.

• No, otherwise.
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• “The Program Compiles”: wrapper applies compiler and yields

• Yes, compiler C in version V produces a non-empty executable.

• No, otherwise.

• “Test Coverage”: wrapper applies unit-tests

• Yes, normal termination of unit tests indicates 100% branch coverage,

• No, normal termination and branch coverage below 100%,

• Unknown , otherwise.
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Backend Examples

• “The Program Compiles”: wrapper applies compiler and yields

• Yes, compiler C in version V produces a non-empty executable.

• No, otherwise.

• “Test Coverage”: wrapper applies unit-tests

• Yes, normal termination of unit tests indicates 100% branch coverage,

• No, normal termination and branch coverage below 100%,

• Unknown , otherwise.

• “Absence of Generic Errors”: wrapper applies, e.g., Frama-C

• Yes, all assertions related to safe memory access hold or not tried,

• No, at least one assertion has status surely invalid, and

• Unknown otherwise.
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• Yes, normal termination of unit tests indicates 100% branch coverage,

• No, normal termination and branch coverage below 100%,

• Unknown , otherwise.

• “Absence of Generic Errors”: wrapper applies, e.g., Frama-C

• Yes, all assertions related to safe memory access hold or not tried,

• No, at least one assertion has status surely invalid, and

• Unknown otherwise.

• “Invariant Satisfied”: wrapper applies, e.g., VCC

• Yes , verifier output indicates invariant proven; Unknown, otherwise.
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Backend Examples

• “The Program Compiles”: wrapper applies compiler and yields

• Yes, compiler C in version V produces a non-empty executable.

• No, otherwise.

• “Test Coverage”: wrapper applies unit-tests

• Yes, normal termination of unit tests indicates 100% branch coverage,

• No, normal termination and branch coverage below 100%,

• Unknown , otherwise.

• “Absence of Generic Errors”: wrapper applies, e.g., Frama-C

• Yes, all assertions related to safe memory access hold or not tried,

• No, at least one assertion has status surely invalid, and

• Unknown otherwise.

• “Invariant Satisfied”: wrapper applies, e.g., VCC

• Yes , verifier output indicates invariant proven; Unknown, otherwise.
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Regulations in the Contract

• The modular software development contract

• consists of a framework contract, referred to by individual contract,

• customisation by several contractual modules.
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Regulations in the Contract

• The modular software development contract

• consists of a framework contract, referred to by individual contract,

• customisation by several contractual modules.

• The acceptance checking procedure is regulated in two clauses:

(i) checkable requirements tested with and only with checking tool.

Exit option: if

• backend is evidently erroneous, or
• the parties agree to consider the result erroneous, or
• there is an “Unknown” among only “Yes”s and “Unknown”s,

then the clause for other requirements applies.

(ii) testing procedure for other requirements determined by customer.
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Outline

• Introduction

• What is sub-contracting for software?

• When is it succesful?

• Why is it ofen not successful?

• The Salomo Approach:

• Overview

• Checkable Requirements, Checking Tool

• Regulations in the Contract

◮ Related Work

• Conclusion and Further Work
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Related Work

• (Berenbach, Lo & Sherman, 2010)

Scope limited to the time after the contract has been awarded, limited
discussion regarding contract compliance check.

• (Governatori, Milosevic, & Sadiq, 2006) — formalise contract conditions

Use FCL to formalise requirements business rules and tools which decide
compliance as acceptance checking procedure.

• (Breaux, Antón, Spafford, 2009) — delegation

We consider top-level obligations and verification sets without delegation.

• (Fanmuy, Fraga & Lloréns, 2012) — requirements verification

Use requirements verification as acceptance checking procedure if creation
of a requirements document is subject of a contract.
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Conclusion and Further Work

• We tackle a main challenge of contracting for software: legal uncertainty.

• We outline a possible approach to resolve three reasons of uncertainty:
a modular legal contract codifies the mutual agreement
that checkable requirements are verified by checking tool exclusively.

• Both, contractor and customer have strong interest in obtaining
positive checking results since positive results mean certainty.

• Our contract is well-suited for a gradual introduction of formal
methods — any backend is supported as long as both parties agree.

• Formal methods effort promises increased confidence in software quality.

Further work:

• legally support traceability, change-requests.

• consider a concept of delegation similar to (Breaux et al., 2009),

• provide more backends.
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Thanks.

http://www.salomo-projekt.de
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Software Verification

I prove or disprove that a given program satisfies a given specification

I problem is undecidable [Turing, 1936]
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Example

`0: assume p != 0;

`1: while(n >= 0)

{
`2: assert p != 0;

if(n == 0)

{
`3: p := 0;

}
`4: n--;

}

pseudocode

`0

`1

`2

`3

`4

`5

`err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

control flow graph
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1. take trace π1

2. consider trace as program P1

3. analyze correctness or P1

4. generalize program P1

I add transitions
I merge locations

p != 0

n >= 0

p == 0
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I merge locations
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1. take trace π1

2. consider trace as program P1

3. analyze correctness or P1

4. generalize program P1

I add transitions
I merge locations

q0true

q1p 6= 0

q2false

all

all

p != 0

p == 0

all \{ p := 0 }

XXX
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n < 0

?
program P
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all

all
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p == 0

all \{ p := 0 }

XXX
program P1

Consider only traces in set
theoretic difference P\P1. P
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New View on Programs

“A program defines a language over the alphabet of statements.”

I Set of statements: alphabet of formal language
e.g., Σ = { p != 0 , n >= 0 , n == 0 , p := 0 , n != 0 ,

p == 0 , n-- , n < 0 , }

I Control flow graph: automaton over the alphabet of statements

I Error location: accepting state of this automaton

I Error trace of program: word accepted by this automaton
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3. analyze correctness or P2
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I merge locations
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Verification Algorithm

program P

“P is correct” “P is incorrect”

L(P) ⊆ L(P1) ∪ · · · ∪ L(Pn) is π feasible ?

no

pick new error trace π

no

construct infeasiblity proof for π
construct generalized program Pi

yes yes
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Recursive Programs - Challenge 1: Control Flow

procedure m(x) returns (res)

`0: if x>100

`1: res:=x-10

else

`2: xm := x+11

`3: call m

`4: xm := resm

`5: call m

`6: res := resm

`7: assert (x<=101 -> res=91)
return m

McCarthy 91 function

`0

`1

`2

`3

`4

`5

`6

`7

`err

x>100

res:=x-10

x<=100

xm:=x+11 call m

xm:=resm

call m

res:=resm

return m ↑ `3

return m ↑ `5

x≤101∧res6=91

control flow graph
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Recursive Programs - Challange 2: Local Annotations

What is an annotation for an interprocedural execution?

I state with a stack?
 locality of annotation is lost

true xp = 0 xp = 0

x = 0

xp = 0

xp =-1

xp = 0

xp = −1

x = 1

xp = 0

xp =-1

res =-1

xp = 0

resp = -1
xp = -1

xp = 0

res = 0

resp = 0
xp = 0 false

xp:=0 call p xp:=x-1 call p res:=x return res:=resp-xp return resp < xp

I only local valuations?
 call/return dependency lost,
 sequence of state assertions is not a proof

xp:=0 call p xp:=x-1 call p res:=x return res:=resp-xp return resp < xp

true xp =0 true xp =x−1 true res =x ? ? ? ?
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Recursive Programs - Challange 2: Local Annotations

What is an annotation for an interprocedural execution?

Idea: “Nested Interpolants”
Define sequence of state assertions with respect to nested trace.

xp:=0 ca
ll

p

xp:=x-1 ca
ll

p

res:=x

return res:=resp-xp

return resp < xp

true xp =0

true xp =x−1

true res =x

resp≥xp res≥x

resp ≥ xp false

Define ternary post operator for return statements

post( res =x , xp =x−1 , return p ) ⊆ resp≥xp

local state

of caller

before call

local state

of callee

before return

local state

of caller

after return
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Termination Analysis

I Challenge 1: counterexample to termination is infinite execution

Solution: consider infinite traces, use ω-words and Büchi automata

I Challenge 2: An infinite trace may not have any execution although
each finite prefix has an execution.

E.g., ( x > 0 x-- )ω
while (x > 0) {

x--;

}

Solution: ranking functions (here: f(x)=x)

Ranking Function (for a Loop)

Function from program states to well-founded domain such that value is
decreasing while executing the loop body.
Proof by contradiction for the absence of infinite executions.
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Example: Bubble Sort

program sort(int i, int a[])

`1: while (i>0)

`2: int j:=1

`3: while(j<i)

if (a[j]>a[i])

swap(a,i,j)

`4: j++

`5: i--

quadratic ranking function:

f (i, j) = i2 − j

lexicographic ranking function:

f (i, j) = (i, i− j)

`1

`2

`3

`4

`5

i>0

j:=1

j<ij++

j>=i

i--
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program P module P1 module P2

(Outer+Inner)ω

===

(Inner∗.Outer)ω

+++

(Inner+Outer)∗.Innerω

`1

`2

`3

`4

`5

i>0

j:=1

j<ij++

j>=i

i--

===

`1

`2

`3

`4

`5

i>0

j:=1

j<ij++

j>=i

i--

∪∪∪

`0

`2

`3

`4

`5

`′3

`′4

i>0

j:=1

j<ij++

j>=i
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j:=1

j<ij++

ranking function ranking function
f (i, j) = i f (i, j) = i− j
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From ω-Trace to Terminating Program – Example

input: ultimately periodic trace i>0 j:=1 ( j<i j++ )ω,

1. consider ω-trace as program with single while loop

`1 `2 `3 `4i>0 j:=1
j<i

j++

2. synthesize ranking function

f (i , j) = i − j

3. compute rank certificate

`1

oldrnk =∞

`2

oldrnk =∞

`3

i − j ≺ oldrnk

`4

i − j ≤ oldrnk

∧ i − j ≥ 0

i>0 j:=1
j<i

j++

4. add additional transitions

`1

oldrnk =∞

`3

i − j ≺ oldrnk

`4

i − j ≤ oldrnk

∧ i − j ≥ 0

Σ
Σ j<i

j++
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1. consider ω-trace as program with single while loop

`1 `2 `3 `4i>0 j:=1
j<i

j++

2. synthesize ranking function

f (i , j) = i − j

Colón, Sipma Synthesis of Linear Ranking Functions (TACAS 2001)

Podelski, Rybalchenko A complete method for the synthesis of linear ranking functions (VMCAI 2004)

Bradley, Manna, Sipma Termination Analysis of Integer Linear Loops (CONCUR 2005)

Bradley, Manna, Sipma Linear ranking with reachability (CAV 2005)

Bradley, Manna, Sipma The polyranking principle (ICALP 2005)

Ben-Amram, Genaim Ranking functions for linear-constraint loops (POPL 2013)

H., Hoenicke, Leike, Podelski Linear Ranking for Linear Lasso Programs (ATVA 2013)

Cook, Kroening, Rümmer, Wintersteiger Ranking function synthesis for bit-vector relations (FMSD 2013)

Leike, H. Ranking Templates for Linear Loops (TACAS 2014)
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Generalization of Program with Rank Certificate

I Case 1: q1 not accepting

Hoare triple { state assertion 1 } stmt { state assertion 2 }

automaton transition

q1

state assertion 1

q2

state assertion 2

stmt

I Case 2: q1 accepting

Hoare triple { state assertion 1 } oldrnk:=f(x) stmt { state assertion 2 }

automaton transition

q1

state assertion 1

q2

state assertion 2

oldrnk:=f(x) stmt
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Results of the Competition on Software Verification 2015



http://ultimate.informatik.uni-freiburg.de/automizer

http://ultimate.informatik.uni-freiburg.de/automizer


Future Work

I verification tasks ↔ automata

I optimized inclusion check for Büchi automata

I differnt ω-automata in termination analysis



Thank you for your attention!


	Schedule of the Block ``Invited Talks''
	sfa-main-annot.pdf
	Introduction

	dd-main-annot.pdf
	Outline
	Successful Subcontracting for Software in SMEs
	Successful Subcontracting for Software in SMEs

	Successful Subcontracting for Software in SMEs
	Successful Subcontracting for Software in SMEs
	Successful Subcontracting for Software in SMEs

	Subcontracting for Software in SMEs in Reality
	Subcontracting for Software in SMEs in Reality

	Bringing Software-related Disputes to Courtdots 
	Bringing Software-related Disputes to Courtdots 
	Bringing Software-related Disputes to Courtdots 
	Bringing Software-related Disputes to Courtdots 
	Bringing Software-related Disputes to Courtdots 
	Bringing Software-related Disputes to Courtdots 
	Bringing Software-related Disputes to Courtdots 

	Subcontracting for Software in SMEs in Reality
	Subcontracting for Software in SMEs in Reality
	Subcontracting for Software in SMEs in Reality
	Subcontracting for Software in SMEs in Reality

	Observation
	Outline
	Towards (Legal)
Certainty
	Checkable Specification/Requirement, Checking Tool
	Checkable Specification/Requirement, Checking Tool
	Checkable Specification/Requirement, Checking Tool

	Backend Examples
	Backend Examples
	Backend Examples
	Backend Examples
	Backend Examples

	Regulations in the Contract
	Regulations in the Contract

	Outline
	Related Work
	Conclusion and Further Work


