2015-04-20

1

2015-04-20 - main

1

Softwaretechnik / Software-Engineering

Lecture 1: Introduction

2015-04-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

software engineering — (1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of soft-
ware; that is, the application of engineering to soft-
ware. (2) The study of approaches as in (1)

IEEE 610.12 (1990)

Software

. the Academy

Engineering in

Software engineering d use
of sound engineering principles to obtain economi-

cally software that is reliable and works efficiently

on real machines. F. L. Bauer (1971)

Software Engineering: Multi-person Development

of Multi-version Programs. . L. parmas (2011)

software engineering — 1. the systematic ap-

the application of a systematic, disciplined, quantifi-
able approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.

1S0/IEC/IEEE 24765 (2010)

5-04-20

software engineering — (1) The application of a
systematic, disci

1EEE Standard Glosary of
Software Engineering Terminclogy

Software

ined, quantifiable approach to the

develop
waare; th
vaare. (2]

I here is no universally accepted definition of software engineering.

Software

of sound engineering principles to obtain economi-
cally software that is reliable and works efficiently
on real machines F. L. Baver (1971)

Insiutions that tcach

for producing.
professionals who will

systems o the
satisaction of their

benchiais.
Software Engineering: Multi-person Development
of Multi-version Programs. D. L. Pamas (2011)
softwar
plicatio Twon't
m”m.._& settle on any of these definitions; rather, I'd like to accept that they are all in [}
theappl{ some way valid and retain all the views of software they encompass.
able apy

maintenance of software; that is, the application of
engineering to software.

150/1EC/IEEE 24765 (20

ation of engineering to software.
1) IEEE 610.12 (1990)

(2) The study of approaches as

g g — the i and use of sound engineering
principles to obtain economically software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

Software Engineering: Multi-person Development of Multi-version Pro-
grams. D. L. Pamas (2011)

software engineering — 1. the systematic application of scientific and tech-
nological knowledge, methods, and experience to the design, implementation,
testing, and documentation of software. 2. the application of a systematic,
disciplined, quantifiable approach to the development, operation, and mainte-
nance of software; that is, the application of engineering to software.
1SO/IEC/IEEE 24765 (2010)

The course’s working definition of Software Engineering

software engineering — (1) The application of a systematic, disciplined,
quantifiable approach to the devel operation, and mai of soft-
ware; that is, the application of engineering to software.
(2) The study of approaches as in (1).

IEEE 610.12 (1990)

— the and use of sound engineering
principles to obtain economically software that is reliable and works efficiently
on real machines. F. L. Bauer (1971)

337

Engineering vs. Non-Engineering

workshop studio
(technical product) (artwork)
the existing and available artist's inspiration, among
technical know-how others
can usually be planned with | cannot be planned due to
sufficient precision dependency on artist’s
inspiration
Price oriented on cost, thus determined by market value,
calculable not by cost
Norms and exist, are known and are are rare and, if known, not
standards usually respected respected
Evaluation and | can be conducted using is only subjectively pos:
comparison objective, quantified criteria | results are disputed
Author remains anonymous, often considers the artwork as part
H lacks emotional ties to the of him/herself
B product
3 Warranty and | are clearly regulated, cannot are not defined and in
H iabil be excluded practice hardly enforceable

(Ludewig and Lichter, 2013)

1

The course’s working definition of Software Engineering

software engineering — (1) The application of a systematic, disciplined,

quantifiable approach to the d ion, and mai of soft-

ware; that is, the application of engineering to software.

(2) The study of approaches as in (1). \EEE 61012 (1990)
fi gineering — the establi and use of sound engineering

principles to obtain economically software that is reliable and works efficientl

on real machines. F. L. Bauer (1971)

H

The course’s working definition of Software Engineering

software engineering — (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.

(2) The study of approaches as in (1). EEE 610.12 (1990)
ineering — the i and use of sound engineering
principles to economically software that is reliable and works efficiently

on real machines. F. L. Bauer (1971)

“software that is reliable and works efficiently” (Bauer, 1971)

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

process quality ———— - suitability
f —— accuracy
ty

maturity
fault tolerance

. bi _—
software related quality reliability =——

recoverability

understandability
usability —— _ learnability
_— Y =——— operability

product quality attractiveness

T efficiency ————— time behaviour

6.1 Functionality
The capability of the software product to provide
functions which meet stated and implied needs
when the software is used under specified condi-
tions.

6.1.1 Suita
The capability of the software product to provide
an appropriate set of functions for specified tasks
and user objectives.

= co-existence
replaceability

1037

“obtain economically” (Bauer, 1971)

2015.04

cost

time,

scope/

“software that is reliable and works efficiently” (Bauer, 1971)

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

process quality ———— -~ P M;nmmmmnw
functionality =———

= interoperability

security

P

software related quality =— fault tolerance

understandal
_
_— = opena

product quality

T ___— time behaviou

efficiency =——

1037

The course’s working definition of Software Engineering

software engineering — (1) The ication of a ic, disciplined,
quantifiable approach to the d ion, and mai of soft-
ware; that is, the application of engineering to software.

(2) The study of approaches as in (1). \EEE 610.12 (1990)
Sof gineering — the and use of sound engineering
principles to obtain economically software that is reliable and works efficiently

N RS
on real machines. F. L. Bauer (1071)

g
v 113
Characteristics of Software Projects in SUCCESS
19999
e 1000099999
1049 100000499999
50-249 500,000-999,999
aL0L 250-499 = 1,000,000
. s B ot specified
employees in company (378 responses) budget in € (378 responses)

70%

planned duration in months (378 responses) Criticality (378 responses, 30 'not spec.’)

14/37

1 2015-04-20 - main ~

“software”

software — Computer programs, procedures, and possibly associated docu-
mentation and data pert: g to the operation of a computer system.
See also: application software; support software; system software.
Contrast with: hardware. |EEE 610.12 (1990)

le in the final product,

Note: not all software created in a software project is vi

W e.g. build scripts, test drivers, stubs, etc.
H
b 1237
Projectsuccess, Budget, Functionality
s
33
e}
kept
complted below
I cancelled B above
project completion (378 responses) budget (368 responses)

15

secondary functionality realised (368 responses)

main functionality realised (368 responses)
1537

1= 20150420 - main ~

Some Empirical Findings

SUCCess

am

Erfolgs- und Misserfolgsfaktoren
bei der Durchfiihrung von Hard- und
Softwareentwicklungsprojekten
in Deutschland

2006
. Avoren:
3 o
H el
i oty
8 b o
2 e
N 1337
Deadlines, Project Leader, Process Model
7200 =]
i
= 0%
e 249%
12473) EX) 50-99%
= 100-199%
[
deadline (368 responses) deadline missed by (91 responses)
3095
£
) 2a
K Lo
3 leader responded not spec.
: £ B appointed £z -
2 7ot appoited ot used
b existence of project leader (378 responses) use of process model (378 responses)
0 16/37

2015-04-20

1

Course Goals and Content

Course Goals and Content

H

First of all:
* communicate/cooperate
with “real” software engineers
o enable further study of today's
software engineering research

To this end:

« provide a broad overview over
software engineering research

« point out areas, landmarks and elaborate
example techniques/formalisms /tools

... with an emphasis on formal methods

Introduction
Development

Process, Metrics

Requirements
Engineering

Design Modelling
& Analysi

Implementation,
Testing

aprwNEe

1737

183

Course Goals and Content

o First of all:

Introdu
© communicate/cooperate

with “real” software engineers
o enable further study of today’s

Development
Process, Metrics

software engineering research
. Requirements
« To this end: Engineering
o provide a broad overview over
software engineering research
« point out areas, landmarks and elaborate Design Modelling
example techniques/formalisms,/tools & Analy:
o ... with an emphasis on formal methods
Implementation,
Testing

A Glimpse of Formal Methods

[l ke

1837

1937

Course Goals and Content

st of all: Introduction

© communicate/cooperate

with “real” software engineers
enable further study of today’s
software engineering research

Development
Process, Metrics

Requirements
* To this end: Engineering

« provide a broad overview over
software engineering research Example “Requirements Engineering”:

>

o point out areas, landmarks and ¢ « introduction to RE >
example techniques/formalisms/" o common notions, problems, goals, [
formal, abstract) >
>

>

>

>

o ... with an emphasis on formal m
« formalisation and formal analysis of

requirements (formal, concrete)
« point out further reading

01502
-

-
K

Formal Methods (in the Software Development Domain)

... back to “‘technological paradise’ where ‘no acts of God can be permitted’
and everything happens according to the blueprints”.
(Kopetz, 2011; Lovins and Lovins, 2001)

Definition. [Bjgrner and Havelund (2014)]
A method is called formal method if and only if its techniques and
tools can be explained in mathematics.

Example: If a method includes, as a tool, a specification language, then that
language has

o a formal syntax,

e a formal semantics, and

o a formal proof system. (af bot)

20737

Example: Software, formally

Formal, Rigorous, or Systematic Development Software, formally

Software is a finite description ' of a (possibly infinite) set [S] of (finite or infinite)

“The techniques of a formal method help
o construct a specification, and/or Definition. Software is a finite description S of a (possibly infinite) computation paths of the form 0 2 0y ~2 7y -+
i set [S] of (finite or infinite) computation paths of the form 0:: state/configuration; a;: action/event.
« analyse a specification, and/or
. ks
» transform (refine) one (or more) spe to a program. &) o N s . Programs. \thv
x 4 ¥ x4 ®
The techniques of a formal method, (besides the specification languages) are where = Vw v:uwwnuuwﬂmw.uun ity {p B 2)=g - (20 2 am.v
¥ . { 5 §
typically software packages that help developers use the techniques and other o gi €%, i € N, is called state (or configuration), and Wu y=x/2 mm v ww u.ﬁwd (6 » 3) ww
tools. 5 q q 4 return y; w » &) % G
o a; € A, i € Ny, is called action (or event). "5) ¢ JETHES oo 1) &b
The aim of developing software, either The (possibly partial) function [-] : S+ [S] is called interpreta- o~
tion of S. mﬁ%@HMSix\u@lﬂ\ RS, M
o (0

o formally (all arguments are formal) or

o rigorously (some arguments are made and they are formal) or

o systematically (some arguments are made on a form that can be made formal)

0

M,,mmﬁo?mmc_mﬁovqmmmo::.mt_‘mnmmmim::m_‘mvc:nwavm_‘zmmo«irm:m
o being developed.” (Bjgrner and Havelund, 2014)
T 213 b 2273

2015-04-

2337

Example: Software, formally Example: Software, formally

Example: Software, formally

Software is a finite description S of a (possibly infinite) set [S] of (finite or infinite)
computation paths of the form oo - oy —25 gy -
o;: state/configuration; a;: action/event.

Software is a finite description S of a (possibly
computation paths of the form oo -2 oy —2 0y
oy: state/configuration; a;: action/event.

o:: state/configuration; a;: action/event.

 Programs « Programs. « Programs.
e HTML. e HTML. o HTML
d. 1 <html> * Global Invariants. « Global Invariants.

2: <head> >0 * State Machines. »

3: <title>SWT 2015</title> “ A

4: </head> @Eu . »E&

5: <body/> 1 '

6: </html> ¢ ¢ -

rs3-{ 71 [7,

015-04-20 - main —

2015-04-20

015-04-20

23,

2337

1

1
~
3

Example: Software Specification ~ -
S Geldautomat S

Software Specification, formally

Example: Software, formally

[£1 = {51, [-]v), .- }-

* Programs.
The (possibly partial) function [-] : & — [.] is called interpre-

e HTML.
Global Invariants. tation of ..

State Machines.
o User's Manual.

Software is a finite description S of a (possibly infinite) set [S] of (finite or infinite) Alphabet: 1
computation paths of the form 0o <> 0y 2 gy -+ - Definition. A pecification is a finite description . of « M - dispense cash onl
i: state/configuration; a;: action/event. a (possibly infinite) set [.] of softwares, i. P v
o C - return card only, -
. W — dispense cash and return card. B

o Customer 1 “don't care”

AE.QTE_ o v

« Customer 2 “you choose, but be consistent”

(M.C) or (C.M)

2731

n,m_ M M « Customer 3 “consider human errors”
3 3 3
(©)
b 2337 n 24737 n 25/37
Formal Software Devetopment Literature
|
Requirements v .
Engineering
#l= :u.x.n,. [-10). (M. 1)} ? e e
[Development
s Process/
~_ Project e
. e o o]
0 Design Management
i
1] = (T O, 1 1), (CTe M, [T} A v ?
?
g g
& = more on lecture’s homepage.

26/37

015-04

Any questions so far?

Questions and Interaction

o Interaction:
absence often moaned but it takes two, so please ask/comment immediately.

* Questions:

ask immediately or in the break

(i) try to solve yourself
(ii) discuss with colleagues
(iii) o Exercises: contact tutor (cf. homepage)

o Rest: contact lecturer (cf. homepage)
or just drop by: Building 52, Room 00-020

* Break:

* We'll have a 10 min. break in the middle of each lecture from now on,
unless a majority objects now.

015-04-20

2015-04

Who’s Who

Lecturer: Dr. Bernd Westphal

o Tutors: Betim, Claus, Jan, Michael

Formalia + Homepage:
http://swt.informatik.uni-freiburg.de/teaching/S52015/swtvl

Course language: tja, English or German...?
© Script/Media:
les without annotations on homepage with beginning of lecture the latest
ides with annotations on homepage typically soon after the lecture
 recording on ILIAS (stream and download) with max. 1 week delay

(link on homepage)

30737)
Exam Exercises & Tutorials
* Exam Admission: © Schedule/Submission:
Achieving 50% of the regular admission points (— next slide) in total « exercises online with first lecture of a block,
is sufficient for admission to exam. early turn in 24h before tutorial (usually Wednesday, 12:15, local time),
. . N . lar t ight befc | Thi , 12:15, local .
Typically, 20 regular admission points per exercise sheet regular turn in right before tutoria (usua Y| ursday, 12:15 Onvm,:a&
© should work in groups of approx. 3, clearly give names on submission
« Exam Form: o please submit electronically via ILIAS; paper submissions are tolerated
° written exam « Rating system: “most complicated rating system ever’
o Friday, September, 11th, 2015, 9:00 c.t.))
’ » Admission points (good-will rating, upper bound)
© Building 101, Room: 026+036 (“reasonable proposal given student’s knowledge before tutorial”)
* Scores from the exercises o not contribute to the final grade. + Exam- &, lower bound)

(“reasonable proposal given student’s knowledge after tutorial”)
10% bonus for early submission

« Tutorial: Plenary.

« Together develop one good proposal,
starting from discussion of the early submissions (anonymous).

« Tutorial notes provided as print-outs in subsequent lecture.

E)

valuation of the Course

2015-04-20

1

* Mid-term Evaluation(s):

« In addition to the mandatory final evaluation,
we will have intermediate evaluation(s).

« If you decide to leave the course earlier you may want to do us a favour
and tell us the reasons — by participating in the evaluation(s)
(will be announced on homepage).

concerning form or content.

Feel free to approach us (tutors, Sergio, me) in any form. We don’t bite.

35/37

References

36737

References

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530-538,
Bjgrner, D. and Havelund, K. (2014). 40 years of formal methods. talk.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990
1SO/IEC FDIS (2000). Information technology ~ Software product quality — Part 1: Quality
model. 9126-1:2000(E)

1SO/IEC/IEEE (2010). Systems and software engineering ~ Vocabulary. 24765:2010(E).
Jones, C. B. et al., editors (2011). Dependable and Historic Computing - Essays Dedicated to
Brian Randell on the Occasion of His 75th Birthday, volume 6875 of LNCS. Springer.

Kopetz, H. (2011). What I learned from Brian. In Jones et al. (2011)

Lovins, A. B. and Lovins, L. H. (2001). Brittle Power - Energy Strategy for National Security.
Rocky Mountain Institute.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Parnas, D. L. (2011). Software engineering: Multi-p of multi-versi
programs. In Jones et al. (2011), pages 413-427

015-04-20 - main —

3737

