15 - 2015-07-09 - main —

~ 15 - 2015:07-09 - main -

Softwaretechnik / Software-Engineering

Lecture 15: Software Quality Assurance

2015-07-09

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Introduction

Contents of the Block “Quality Assurance”

(i) Introduction and Vocabulary Introduction

o correctness illustrated Development
« vocabulary: fault, error, failure Process, Metrics
« three basic approaches

(if) Formal Verification
* Hoare calculus 23,-:3.432
« Verifying C Compiler (VCC) Engineering
 over- / under-approximations.

) (Systematic) Tests
© systematic test vs. experiment
« classification of test procedures
« model-based testing
« glass-box tests: coverage measures

£ (iv) Runtime Verification
. () Review
& (vi) Concluding Discussion
H « Dependability
& Wrap-Up
i 2se
Recall: Formal ,we\ﬁ?—\&avimi
oV
Requirements.
[A] = {(M.C.[-10). (C.M. [1)} ?
Development
Process/
? Project
- Management
Design
[#2] = {(M.Ty.C.[-11). (C.Tc-M. [- 1)}
i 554

Contents & Goals

Last Lecture:
o Completed the block “Architecture & Design”

This Lecture:

« Educational Objectives: Capabilities for following tasks/questions.

« When do we call a software correct?
What is fault, error, failure? How are they related?
What is 57 and partial correctness?

What is a Hoare triple (or correctness formula)?

Is this program (parti
Prove the (partial) correctness of this WHILE-program using PD.

ly) correct?

* What can we conclude from the outcome of tools like VCC?

: e Content:
5« Introduction, Vocabulary
2« WHILE-program semantics, partial & total correctness
7 Correctness proofs with the calculus PD.
7« The Verifying C Compiler (VCC)
o 354
Recall: Formal M@ﬁ?cm?ﬁ&&i
oY /F@L\
Requirements
[#] = {(M.C.[-]0). (C-M. [-]1)} ?
Development
Process,
validation The process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies specified
i Contrast with: verificati \EEE 61012 (1990)
A A~ J

. verification
H (1) The process of evaluating a system or component to deter:
% the products of a given development phase satisfy the conditions imposed at
< the start of that phase. Contrast with: validation.
w (2) Formal proof of program correctness. 1EEE 610.12 (1990)
i 554

akdation The proces of evahiatig 3 sytem o compenant urng o 3

o0y

Recall: Formal Softwiiin Dgvelopm| =i s e Big Questions Back To Lecture No. 1

0 I Software!
e i

) The pocess of el

i e Conen i oo . L -)
) oot o g s — D A software is a finite # of a (possibly
infinite) set [.#] of softwares, i.e.

5 e o component to determine whether

Requirements
i [#1= {50 1)}
Al = {(M.C.[11). (CM.[-
[Al={(MC.[). CM.[- 1)} ? The (possibly partial) function -] : .7 ~ [.#] is called interpretation of .7.
Development
Process/
2 Project
Design Management We define:

172] = {(M.T3 C.[- 1) (CTe- M. [- 1)} ? Software S is correct wrt. software specification . if and only if (S,[-]) € [#].

* Note: no specification, no correctness. Without specification, S is neither correct

3 ! - .r - .. - I nor not correct — it's just some software then.
H] g Is the implementation “correct”? And “correct what sense? m
b 55 o 650 i st
Correctness Illustrated S casavomst & Vocabulary Concepts of Software Quality Assurance
= (M.C) or (C.M))
software quality assurance — See: quality assurance. |EEE 610.12 (1990) software quality
software doing software doing neither software doing assurance
(at most) M.C M.C nor CM (at most) C.M 7 —~
organisational analytic Constructive
— / ~— .
. , . projc ot cnscihe
A quality assurance — (1) A v_mz,zma and systematic pattern of all actions management examination i
imaginable necessary to provide adequate confidence that an item or product conforms to] N & €
softwares established technical requirements. - non-mech. semi-mech. mechan
N softwares which (2) A set of activities designed to evaluate the process by which products are nati r\ \x_ " /mxm.a:mzoz e.g. code
AN ~— consider all developed or manufactured. IEEE 610.12 (1990) examination by comp. aide o generation
i S necessary inputs - humans human exam. s_\. S,.:E_M.
\
\ / analyse €Xecute prove
\ e i ~N
@i @ , eg. static M.W\HH.M formal
. . L manual " hecki .
' | Note: in order to trust a product, it can be built well, or proven to be good | inspection review | oo _..wMMwm checking (test) verification
H A) = (at best: both) — both is QA in the sense of (1). H \ /
e T T check . quantitative
2 2 B againet | COMSIStENCY
g g all 4 2 wz_mm checks
H AEEC = o final implementa- H H Ludewig and Lichter, 2013
: FIAEEEEE0 = M—sTy : : (i
2 o the allowed ones? g ., T 954 h 10754

Fault, Error, Failure Back to the Illustration So, What Do We Do?
= (M.C) or (C.M) ;)
fault — abnormal condition that can cause an element or an item to fail o If we are lucky, the requirement specification
Note: Permanent, intermittent and transient faults (especially soft-errors) are considered software doing software doing neither software doing is a constraint on computation paths.
(at most) M.C M.C nor C.M (at most) C.M © LSC ‘buy_water’ is such a software specification .#.

Note: An intermittent fault occurs time and time again, then disappears. This type of i

fault can occur when a component is on the verge of breaking down or, for example, due « It denotes all controller softwares which “faithfully” sell water.
to a glitch in a switch. Some systematic faults (e.g. timing marginalities) could lead to (Or which refuse to accept C50 coins, or block the ‘WATER' button).
intermittent faults. 1S0 26262 (2011) all imaginable + Formally
softwares [buy water]spec = {5 | [S] satisfies ‘buy water'}.
error — discrepancy between a computed, observed or measured value or condition, 4 <oftwares which
and the true, specified, or theoretically correct value or condition. S [consider al © In pictures:
Note: An error can arise as a result of unforeseen operating conditions or due to a fault > necessary inputs - "
within the system, subsystem or, component being considered (2 x Ay (2% 4)
all computation 5] of one not
Note: A fault can manifest itself as an error within the considered element and the error \ e S paths satisfying acceptable
can ultimately cause a failure. 1S0 26262 (2011) kN ‘buy-water' —_ T software §
] o .) £ ® s1orene I
failure — termination of the ability of an element, to perform a function as required. A acceptable
Note: Incorrect specification is a source of failure. 150 26262 (2011) g software §
g T = o = final implementa- « Then we can check correctness of a given software S
. We want to avoid failures, thus we try to detect faults, e.g. by looking for errors. L 7 4 tion — is it one of by examining its computation paths [S].
- 11ss - the allowed ones? 1 135
Three Basic Directions Three Basic Directions
all computation Exap all computation x4y
paths s € paths satisfying
specification L specification
Formal Verification
prove S = .7,
conclude
ISlel~l
B . -1
& 3 —_— =
o i input LD 3 output =S
g Testing Formal Verification
T 0 14, | 155

14/54

Correctness Formulae (“Hoare Triples”) Example Deterministic Programs

Computing squares (of numbers 0,...,27).

o Pre-condition: p =0 < z < 27, post-condition: ¢ =y =

« One style of
(on whole programs or on procedures).

pre- and post- Syntax:

S = skip | u:=1t] 81; S, | if B then S else S, fi | while B do S, do

o Let S be a program with states from ¥ and let p and g be formulae o Program Sy: Lk
such that there is a satisfaction relation |= C £ x {p,q}. aecbuss formul, / S - where u is a variable, ¢ a type-compatible expression, B a Boolean expression
Howe #ople E' {p} S1 {a}, Fio {9} S1 {0}
~ Semantics: (is induced by the following transition relation)

« Program Sa: o

V37 wninitistised (i) (skip, o) — (E, o}
R TR R

o Sis called partially correct wyt. p and g, denoted by = {p} S {q}, if and only if

o ax an R X (ui=t, o) — (E, olu:=o(t)])
Vr=0y— 01— 0y qll:ﬁwﬁ_mz.g.ﬂuﬁv?.ﬂc ' {p} S2 {a} o {p} 52 {a} (S1,0) > (Sa)
({8 terminates from a state satisfying p, then the final state of that computation satisfies ¢") o Program S3: . (8138,) = (S35, 7)
c\zt@ P . (iv) (if B then Si else S fi, o) — (S1, 0), if 0 |= B,
 S'is called totally correct wrt. p and g, denoted by =y, {p} S {q}, if and only if - E,\Tq o) 5 SwA roves desminatec (v) (f B then 1 else S fi, o) — (S,), if o [B,
G . . : o ; .
¢ {p} 5 {g} (Ss partially correct), and 1 2ie 7 (vi) (while B do S do, o) — (S;while B do S do, o), if o = B,
L o “ o Program Sg: N : T
. vre[Sler’ Ep = || €No) - rogram Sy s i L/ aninitiatised Vo s (vii) (while B do S do, 7) — (E, o), if o [B,
B (S terminates from all states satisfying p; length of paths: | - | : IT — No U {L1}). s Ty =((x-1) «x+y)+z
&] \ N ¢ (2) £ denotes the empty program; define,: § = §: B = 5.
. i = {p} Si {a}, i {0} Sa {a} Note: the first component of (S, o) is a program (structural operational semantics)
0 16/5¢ 0 1754 | 1854
Computations of Deterministic Programs Example (i) (skip, @) = (E, 7) ES= Example (i) (skip, o) = (B, o) E;S=S;E=5
) (ui=t,) = (E, ofu:=o(t)])) (ui=t, 0) = (E, ofu:=o(t)]) 14
51, Sa, S1, Sa, °
- oen aeEs
Definition. (iv) (if B then Sy else Sy fi, o) = (S1, o), if o |= B, (iv) (if B then S; else 5; i,) — (S1, o), if o |= B,
(i) A transition sequence of S (starting in o) is a finite or infinite sequence (v) (if B then S else S; fi, 7) = (S2, o), if o | B, (v) (if B then 51 else Sz fi, o) = (Sz, 0), if o | B,
(i) {while B do S do, 7) — (S; while B do § do,), if 7 |= B, (vi) (while B do S do, 7) — (S;while B do 5 do,), if 7 |= B,
(S, @) = {So, @0) = (S1, 1) = ... {while B do S do, 0) —+ (E, o), if o £ B, (vii) (while B do S do, o) = (E, a), if o £ B,
(that is, (S;, i) and (Siy1, iy1) are in transition relation for all). s
. . S ~
A tat th) of S (st . o . ! .
GIIENEED (I ¢ & (i Consider program S =,a[0)] : Consider program S = a[0] := 1;a[1] := 0; while afz] # 0 do z := z + 1 do
quence of S (starting in), nfi N) L —
and a state o with o |= 2 = 0. and a state o with o F = = 0.

A computation of S is said to

o

) terminate in 7 if and only if it is finite and ends with (E, 7),

i), (e .
b) diverge if and only if it is infinite. S can diverge from o if and only (S, o) rw KE;S, ol al)=1]S
if there is a diverging computation starting in 0.

(iv) We use —" to denote the transitive, reflexive closure of —.

Lemma. For each deterministic program S and each state o,
there is exactly one computation of S which starts in o

19754

Example (i) (skip, o) — (B, o) B;S=S;E=S Example (skip, o) = (B,) E;S=S;E=S

(skip, o) = (B, o) B;S=S;E=S mu@::t?
S . (u:=t, 0) = (E, olu = a(t)])

(ui=t, o) = (B, ofu:=o(t)))

@) (S1.0) = (Sa. 7) (St) = (Sa. 7)
(5158, 0) > (52:5, 7) (5135, 0) = (5215,) 5, 7) = (52; 5, 7)
(iv) (if B then S, else Sy fi, @) = (S1,), if o = B, (iv) (if B then S; else Sy fi, o) — (S1, o), if o = B,
(v) (if B then S\ else 53 fi, o) = (S2,), if o & B, (v) (if B then S; else S fi, o) — (52, o), if o} B, (v) (if B then S; else S; fi, o) = (3, o), if o [B,

(vi) (while B do S do, o) — (S; while B do S do, o), if o |= B,
(vii) (while B do § do, o) = (E, o), if o £ B,

() {while B do S do, 7) — (S;while B do § do,), if 7 |= B, (vi) (while B do S do, 7) — (S;while B do 5 do,), if 7 |= B,

(while B do S do, o) —+ (E, o), if o {£ B,

Consider program S = a[0] := 1;a[1] := Consider program § = a[0] := 1;a[1] := 0; while afz] # 0 do z := z + 1 do Consider program = a[0] := 1; | =z+1do
and a state o with o =7 = 0. and a state o with o =z = 0. and a state o with o |=z = 0.
(8, o) S2U0, 1] = 0; while afa] # 0 do & = z + 1 do, o[a[0] = 1]) (8, 0) LD, (S, o) LD, 1)
L9, (while afz] # 0 do x =z + 1 do, o) L.,
L9 (4= 2+ 1;while afz] £0 do z =z + 1 do, o) Lwd,
: i
= —
8 ,u (vii)
; " where o' = ola where o' ={o{af0] = w 0
T 2054 T 20754 20754
Input/Output Semantics of Deterministic Programs Correctness of Deterministic Programs Example: Correctness
* By the previous example, we have shown
Definition. Definition.
- E{r=0}5{z=1}and ki {z=0} 5 {x=1}.
et Gl o dlstai 8 FIEgED: (i) A correctness formula {p} S {q} holds in the sense of partial
(i) The semantics of partial correctness is the function correctness, denoted by |= {p} S {g}, if and only if (because we only assumed o |= & = 0 for the example, which is exactly the precondition.)
M[S]: £ - 2% MIS([pD) < [a)F ww\a.»ww = We have also shown:
with M[S](o) = {7 | (S, o) =" (B, 7)}. We say S is partially correct wrt. p and q. F{z =0} 5 {z=1nalz] = 0}
h) Uik e of G e b e e (ii) A correctness formula {p} S {g} holds in the sense of total cor- « The following correctness formula does not hold for S:
8] 2 = 250 (L rectness, denoted by |=1¢ {p} S {q}, i and only if
Mit[S]: £ = 27 U {1} P Ffr =2} S {true}.
with Mot [S](0) = M[S](0) U{L | S can diverge from o}. Meot[S)(IPD) < [al? 5)
1L {5 e v S g Charenes ok (eg. ifo f=ali #0foralli>2)
v : We say S is totally correct wrt. p and q.
,“, « In the sense of partial correctness,
=2AVi>2 =1} S {fal:
Note: My,,[S](c) has exactly one element, M[S]() at most one. e iz 2eali] =1} 5 {faise}
: : also holds
T 21754 T 22/54 2354

Proof-System PD (for sequential, deterministic programs)

07-09 - Spsq

Axiom 1: Skip-Statement

Rule 3: Sequential Composition

Rule 4: Conditional Statement

» (AB) S fa). 1o AB) 51 {a).
(2} sk {7} T D then'S, e 51 6 (1]
Axiom 2: Assignment Rule 5: While-Loop
=) =t () A8 S)

{p} while B do 5 do {p A ~B}

Rule 6: Consequence

{p} 51 {r}.{r} S: {a}

1P} o1 TS, AT 92 445 p—=puip} S{aha —q
{p} S1; Sz {a} {p} S {a}

Theorem. PD is correct (“sound”) and (relative) complete for partial correct-
. Fpp {p} S {q} if and only if |= {p} S {q}.
Soveck

e () {z=0Ay>0}q:

o @ {PAT2ylgi=r—y q:=q+1{P} and

c @) PA-(r2y) g ytr=aAr<y.

N— 2754

Example Proof
{pA B} $1 {a},{pA~B} Sa {a},
(A1) {p} skip {p} ??,HEW if B then S, else 5, A“v
s
(A2) {plu=1]} u:=t {p} B sz%%,w s a@s; -B}
0} 81 (r} 4} Se {a} el o dm}S{nla—g
R T 50 % tal (&) s {al
Assume:

0; ri=x {P},

« By rule (RS), we obtain, using (2), s

—_—

- {P} while r > ydor:=r—y; q:=q+1do {PA~(r>y)}

- - - -
w@d.

2754

Substitution

In PD uses substitution of the form plu := t].

(In formula p, replace all (free) occurences of (program or logical) variable u by term t.)

Usually straightforward, but indexed and bound variables need to be treated speci;

Expressions.

« plain variable:

_ft Life=u
" |z . otherwise

o constant c: clui=1] =c.

constant op, terms s;
op(st,...,sn)u:=1]
= op(sifu:=1]

sului=1]).
« indexed variable, u plain
oru=bltr,... tm] and a # b:

(alsty- - ysal)fui=t] = afsifw:=1],...,sufu = t]])
| © indexed variable, u = aft1,... tm]:
s (alst,esalfu = 1]
& =if AL, si[u:=1t =t thent
. else afsi[u = 1], sn[u:=1]] f

conditional expression:
if B then s else sy filu == 1]
=if Blu:=t] then s;[u:={] else sy[u:=t] fi

- 152015

Formulae:
« boolean expression p = s:
plut=t] = sfu:=1]
« negation:
(~q)[u = 1] = (gl := 1))
« conjunction etc.:
(gAm)u=1
=qglu=t] Arfu=1]

* quan
(Vo q)u=1]
=Vy:glri=yllu:=1
y fresh (ot in g,t,),
same type as z.

{pA B} S {a},{p A =B} $: {a},
{p} if B then S, else S fi {q}

{pA B} S {p}
(%) (5} while B do do {p A B}

(R4)

p=pdm} S{ala—g
) OER0)

Example Proof
(A1) {p} skip {p}
(A2) {plu = 1)} wi=t {p}
Ry 2 myﬁ“ mbw {a}
Assume: =R) i €3

s {Ezony>0)gs
e (@ {PArzy}ri=r—y q:=q+1{P} and
e B)PAS(rzy) sqy+rr=aAir<y.

r i R3

« By rule (R5), %\A n, using (2),

F{P} whiler >y dori=r—y; gi=q+1do {PA(r>y)}

« By rule (R3), we obtain, using (1),

-

« By rule (R6), we obtain, using (3)F

F{z>0Ay>0} DIV {q-y+r=

3

F{>0Ay >0} DIV {PA~(r>y)}

Ar <y}

Example Proof

DIV =q:=0; r:=x; whiler >y dor:=r—y; qg:=q+1do
_ S ——Y
Sa Sz

(The first (textually represented) program that has been formally verified (Hoare, 1969)

We want to prove

E{e>0Ay>0} DIV {g-y+r=air<y}

grytrerre e

Note: writing a program S which satisfies this correctness formula =* Q)
is much easier if § may change @ and y..

The proof needs a loop invariant, we choose (creative act!):

P=q-y+r=xzAr>0
. We prove
M e o~
(T 0Ay >0} q=0: ri=2x (P} and
S:
« Q) {PAr>y)T=r =7 @ =7FT {P}in PD, and

o 3) PA=(r>y)—q-y+r=xAr<y “by han

h Lyrr=2irey
0 ®R 26/54
Proof: (2
re were o0 ESE
(A2) {plu =]} u:=t {p} B g s._:ww.ﬂm.mxi -B}
{} 5 {r},{r} Sz {a} popu{p} S{ad o —q
® s s w & (OEAC]

s P=q-y+r=aAr>0,
e @ {PArzylri=r—yqi=q+1{P}
“ €t
e
o {(@+ D) y+r=aAz>0}q:=q+1{P}by(A2),
€

2854

Proof: (2)

(A1) {9} skip (v}

(A2) {plu =]} u:=t {p}

(Re) 1ABY S1 {0} pA~B} 5 fa)

{p} if B then S, else 5; fi {q}

{pAB} S {p}

(R%) (1} while B do § do {p A B}

(Re) LS (11,0 55 ()

(Re) L2 putp) S o} g

W1 51 52 (a} Wy s{ar
e P=gqy+r=xAr>0,
e (@ {PArzytri=r—y qi=q+1{P}
-
o {lg+1)-y+r=oAB>0} g:=q+1 {P} by (A2),
/|\/ T

cA{le+) y+ -y =

€

Py

r—y{la+1) -y+1=aA®>0} by (A2)
P

2854
Once Again (A1) {9} sip {2}
(82) (o=t} ui=t (5}
e P=q-y+r=xAr>0 () LS 01101 82 (0)
{z>0Ay >0} W 51 %)
yto—zAz> {pABY $1 a} {pA~B) Sa {a).
(0yta=zne=0} (R 5 then 5, else $1 i {1}
0gi=
(275} S (1}
{g-y+z=onz>0} %9 Gy e B do 5 4o B
criEm ey PP} S (b
{e-yt+r=anz>0} {9} S {a)
{r}
« while r > y do
{PAr>y}
{lg+1) y+(r-y)=ar(r—y) 20
o ri=roy A2
{(g+1)-y+r=zrz>0} & ks
o q=qtl A2
{g-y+r=aznrz>0}
It
S edo
2 APAS(rzy)}
. {g-y+r=anr<y}
v 30754

Proof: (2)

(A1) o) ki () R e e 1

B} S
@ o=hu=ter (g)

v} $1 {r}.{r} S: {q} popuip} S{abaog
® s s @ & (O30}

e P=qy+r=zAr>0,
o @ {PATZ Yy ri=r—y qi=q+1{P}

e {@+) y+r=anz>0}q:=q+1{P}by(A2),
e {lg+) y+(r—y)=aA(r—y) 20} ri=r—y{(g+1)-y+r=azAz >0} by (A2),

sl)yt Coy =a A -y 2 0hri=r -y gi= g+ L{P) by (R3),
<

« (2) by (R6), using AN

g PArzy—(g+1)y+ -y =an(r—y 20

“15-

285
Modular Reasoning
We can add a rule for function calls (simplest case: only global variables):
®7) {} f {a}
{} 70 {a}
f we have - {p} f {q} for the implementation of function f,
then if f is called in a state satisfying p, the state after return of f will satisfy ¢
pis called ps ition of f, ¢ is called post: ition.
Example: if we have
o {true} read number {0 < ret < 10°}
o {0< A0 <y} add {(old(z) + old(y) < 10° A ret = old(x) + old(y)) V ret < 0}
o {true} display {(0 < old(z) < 10° = "old(x)") A (old(x) < 0 = "-E-")}
we may be able to prove our (— later) pocket calculator correct.
i) 315

Proof: (1)
! R P Y FCZSEES
o
@) ==y 69 PRI
{p} 51 {r}. {r} Sz {a} popuim} S{a} o —ag
() = s 5 ar & [DELT]

e P=qy+r=aAr>0,
e () {w>0Ay>0}q:i=0; ri=x {P}

e {g-y+z=anz>0}r:=z{P} by (A2),
e {0 y+z=xAz>0}q:=0{q y+z=aAz >0} by (A2),

e {0 y+a=aAx>0}q:=0; r:=z {P} by (R3),
Qytz=ghzz0
-~ _
o (1) by (R6) using —_ —
T20Ay>2050 y+a=aiz>0.

0 29/54

Assertions

We add another rule for assertions:

(A3) {p} assert(p) {p}

That is, if p holds before the assertion, then we can continue with the proof.

Otherwise we “get stuck”.

So we cannot even prove

{true} @ 1= 0; assert(s = 27) {true}.

Which is exactly what we want — if we add
o (assert(B), o) = (B, 0) if o |= B,
to the tran:

n relation.
(If the assertion does not hold, the empty program is not reached;

the assertion remains in the first component: abnormal program termination).

[3254

Why Assertions?

« Available in standard libraries of many programming languages, e.g. C:

ASSERT(3) Linux Programmer's Manual ASSERT(3)

3 NAME
assert — abort the program if assertion i false

SYNOPSIS
include <assert

void assert(scalar expression);

DESCRIPTION
[the macro assert() prints an error message to stan

3 dard error and terminates the program by calling abort(3) if expression

isfase .., compares equal o zero).

& The purpose of this macro s to help the programmer find bugs in his
program. The message "assertion faled in file foo.c, function
do.bar(), line 1287 is of no help at all to a user.

vce

o The Verifying C Compiler (VCC) basically implements Hoare-style reasoning.

* Special syntax:
o #include <vec.h>
+ _(requires p) — pre-condition, p is a C expression

o _(ensures) — post-condition, ¢ is a C expression

 (invariant erpr) — looop invariant, capr is a C expression
o _(assert p) — intermediate invariant, p is a C expression

_(urites &v) — VCC considers concurrent C programs; we need to declare for each
procedure which global variables it s allowed to write to (also checked by VCC)

o Special expressions:

* \thread_local(&v) — no other thread writes to variable v (in pre-conditions)

© \01d(v) — the value of v when procedure was called (useful for post-conditions)

o \result — return value of procedure (useful for post-conditions)

3354

35/54

Why Assertions?

o Available in standard libraries of many programming languages, e.g. C:

o Assertions at work:

i s e 1 0
sasere(x < sart(x)) P amen(p)
N assert(q);
5}
3354
VCC Syntax Example
1| #include <vcec.h>
| inta
‘
5| woid div(int x, inty)
6| -(requires x >= 0 & y >= 0)
7| (ensures q vy b r—x& r<y)
(writes &q)
_(writes &r)
(
q=0;
Y= x:
while (r >=y)
(invariant q » y + r — x & r >= 0)
{
r=roys
q=q+ 1
) }
= a: whiler >y dori=r—y; q:=q+1do
° {2>0Ay>0} DIV {g-y+r=aAr<y}
T 3654

The Verifying C Compiler

3450
VCC Web-Interface
vee ™ l
3754

VCC Architecture

(Automatic) Formal Verification Techniques

Soverunder

2015.07-09 - .

15

= ay]
all computation

paths satisf
specification ~_

Investigate All Paths

e Uppaal; possible for
finite-state software; no false
positives or negatives)

3854

VCC Features

o For the exercises, we use VCC only for sequential, single-thread programs.
 VCC checks a number of impl

« no arithmetic overflow in expressions (according to C-standard),

« amay-out-of-bounds access,
 NULL-pointer dereference,

« and many more.

* VCC also supports:
« concurrency: different threads may write to shared global variables; VCC can check whether
concurrent access to shared variables is properly managed;
« data structure invariants: we may declare invariants that have to hold for, e.g., records (e.g.
the length field L is always equal to the length of the string field str); those invariants may
temporarily be violated when updating the data structure.

« and much more.

o Verification does not always succeed:

* The backend SMT-solver may not be able to
non-linear iplication and divisit

« In many cases, we need to provide loop invariants manually.

(Automatic) Formal Verification Techniques

§ (©x)
all computation
paths satisfying

specification ||

Investigate All Paths

e Uppaal; possible for
© finite-state software; no false
positives or negatives)

07-09 - Soverunder —

15 - 2015,

39754

4154

Interpretation of Results

* VCC says: “verification succeeded
We can only conclude that the tool —
under its interpretation of the C-standard,
under its platform assumptions (32-bit), etc.
— “thinks" that it can prove = {p} DIV {q}. Can be due to an error in the tool
(hardly possible in practice) or

Yet we can ask for a printout of the proof and check it manual
with other tools like interactive theorem provers.

Note: = {false} f {q} always holds
— 50 a mistake in writing down the pre-condition can provoke a false negative.

© VCC says: “vel

e outcome.

© One case: “timeout” etc. — completely inconclu

The tool does not provide counter-examples in the form of a computation path

09— Svee -
.

It (only) gives hints on
May be a false negative if these inputs are actually never used.
Make pre-condition p stronger, and try again

015.0,

S15- 2

(Automatic) Formal Verification Techniques

. x4y
all computation

paths satisfying
specification ~__

Investigate All Paths Over-Approximation

(like Uppaal; possible for (some Software model-checkers;
finite-state software; no false goal: verify correctness; false
positives or negatives) positives, no false negatives)

0 4154

(Automatic) Formal Verification Techniques (Automatic) Formal Verification Techniques

(Automatic) Formal Verification Techniques

- 15 - 20150709 - Soverunder -

53/54

. (@ xap . Exay . @ xap
all computation all computation all computation
paths satisfying paths satisfying paths satisfying
specification —_ - specification —__ specification —_
Investigate All Paths Over-Approximation sw Investigate All Paths 0O pproxi i Under-Approximati s,w Investigate All Paths (o} pproxi i Under-Approximati
(like Uppaal; possible for (some Software model-checkers; = (like Uppaal; possible for (some Software model-checkers; (e.g. bounded model-checking; Z (like Uppaal; possible for (some Software model-checkers; (e.g. bounded model-checking;
finite-state software; no false goal: verify correctness; false ~ finite-state software; no false goal: verify correctness; false goal: find errors; false * finite-state software; no false goal: verify correctness; false goal: find errors; false
positives or negatives) positives, no false negatives) g positives or negatives) s, no false negatives) negatives, no false positives) S positives or negatives) ives, no false negatives) negatives, no false positives)
41 i 4150 7 4150
References
Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580.
|EEE (1990). /EEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.
1SO (2011). Road vehicles — Functional safety — Part 1: Vocabulary. 26262-1:2011.
References Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.
H H
T T 54754

