
–
3

–
2

0
16

-0
4

-2
5

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 3: Metrics Cont’d & Cost Estimation

2016-04-25

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content
–

3
–

2
0

16
-0

4
-2

5
–

S
co

n
te

n
t

–

2/40

• Software Metrics

• Motivation

• Vocabulary

• Requirements on Useful Metrics

• Excursion: Scales

• Example: LOC

• Other Properties of Metrics

• Subjective and Pseudo Metrics

• Discussion

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Cost Estimation

• Expert’s Estimation

• The Delphi Method

• Algorithmic Estimation

• COCOMO

• Function Points

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Recall: Pseudo-Metrics
–

3
–

2
0

16
-0

4
-2

5
–

S
p

se
u

d
o

co
n

t
–

3/40

Some of the most interesting aspects of software development projects
are hard or impossible to measure directly, e.g.:

• how maintainable is the software?

• how much effort is needed until completion?

• how is the productivity of my software people?

• do all modules do appropriate error handling?

• is the documentation sufficient and well
usable?

Due to high relevance, people want
to measure despite the difficulty in
measuring. Two main approaches:

diff
er

en
tia

te
d

co
m

par
ab

le
re

pro
duc

ib
le

av
ail

ab
le

re
le

va
nt

ec
onom

ica
l

pla
usib

le
ro

bust

Expert review,
grading (✔) (✔) (✘) (✔) ✔! (✘) ✔ ✔

Pseudo-metrics,
derived measures ✔ ✔ ✔ ✔ ✔! ✔ ✘ ✘

Note: not every derived measure is a pseudo-metric:

• average LOC per module: derived, not pseudo → we really measure average LOC per module.

• measure maintainability in average LOC per module: derived, pseudo

→ we don’t really measure maintainability; average-LOC is only interpreted as maintainability.

Not robust if easily subvertible (see exercises).

Can Pseudo-Metrics be Useful?
–

3
–

2
0

16
-0

4
-2

5
–

S
p

se
u

d
o

co
n

t
–

4/40

• Pseudo-metrics can be useful if there is a (good) correlation (with few false positives and few
false negatives) between valuation yields and the property to be measured:

valuation yield
low high

q
u

al
it

y
high

false positive

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

×

× ×

false negative

×

× ×

• This may strongly depend on context information:

• If LOC was (or could be made non-subvertible (→ tutorials)),
then productivity could be a useful measure for, e.g., team performance.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Code Metrics for OO Programs (Chidamber and Kemerer, 1994)
–

3
–

2
0

16
-0

4
-2

5
–

S
p

se
u

d
o

co
n

t
–

5/40

metric computation

weighted methods
per class (WMC)

n∑

i=1

ci , n = number of methods, ci = complexity of method i

depth of inheritance
tree (DIT)

graph distance in inheritance tree (multiple inheritance ?)

number of children
of a class (NOC)

number of direct subclasses of the class

coupling between
object classes (CBO)

CBO(C) = |Ko ∪Ki|,
Ko = set of classes used by C , Ki = set of classes using C

response for a class
(RFC)

RFC = |M ∪
⋃

i Ri|, M set of methods of C ,
Ri set of all methods calling method i

lack of cohesion in
methods (LCOM)

max(|P | − |Q|, 0), P = methods using no common attribute,
Q = methods using at least one common attribute

• direct metrics: DIT, NOC, CBO; pseudo-metrics: WMC, RFC, LCOM

. . . there seems to be agreement that it is far more important to focus on empirical validation (or
refutation) of the proposed metrics than to propose new ones, . . . (Kan, 2003)

Subjective Metrics

–
3

–
2

0
16

-0
4

-2
5

–
m

ai
n

–

6/40

Subjective Metrics
–

3
–

2
0

16
-0

4
-2

5
–

S
su

b
je

ct
iv

e
–

7/40

example problems countermeasures

Statement “The
specification is
available.”

Terms may be
ambiguous,
conclusions are
hardly possible.

Allow only certain
statements, characterise
them precisely.

Assessment “The module is
coded in a clever
way.”

Not necessarily
comparable.

Only offer particular
outcomes; put them on an
(at least ordinal) scale.

Grading “Readability is
graded 4.0.”

Subjective;
grading not
reproducible.

Define criteria for grades;
give examples how to grade;
practice on existing artefacts

(Ludewig and Lichter, 2013)

Example: A (Subjective) Metric for Maintainability
–

3
–

2
0

16
-0

4
-2

5
–

S
su

b
je

ct
iv

e
–

8/40

• Goal: assess maintainability.

• One approach: grade the following aspects, e.g., with scale S = {0, . . . , 10}.

• Norm Conformance

n1 : size of units (modules etc.)

n2 : labelling

n3 : naming of identifiers

n4 : design (layout)

n5 : separation of literals

n6 : style of comments

• Locality

l1 : use of parameters
l2 : information hiding
l3 : local flow of control
l4 : design of interfaces

• Readability

r1 : data types
r2 : structure of control flow
r3 : comments

• Testability

t1 : test driver
t2 : test data
t3 : preparation for test evaluation
t4 : diagnostic components
t5 : dynamic consistency checks

• Typing

y1 : type differentiation
y2 : type restriction

• Define: m = n1+···+y2
20

(with weights: mg = g1·n1+···+g20·y2
G

, G =
∑

20

i=1
gi).

• Procedure:

• Train reviewers on existing examples.

• Do not over-interpret results of first applications.

• Evaluate and adjust before putting to use, adjust regularly. (Ludewig and Lichter, 2013)

westphal
Bleistift

Example: A (Subjective) Metric for Maintainability
–

3
–

2
0

16
-0

4
-2

5
–

S
su

b
je

ct
iv

e
–

8/40

• Goal: assess maintainability.

• One approach: grade the following aspects, e.g., with scale S = {0, . . . , 10}.

• Norm Conformance

n1 : size of units (modules etc.)

n2 : labelling

n3 : naming of identifiers

n4 : design (layout)

n5 : separation of literals

n6 : style of comments

• Locality

l1 : use of parameters
l2 : information hiding
l3 : local flow of control
l4 : design of interfaces

• Readability

r1 : data types
r2 : structure of control flow
r3 : comments

• Testability

t1 : test driver
t2 : test data
t3 : preparation for test evaluation
t4 : diagnostic components
t5 : dynamic consistency checks

• Typing

y1 : type differentiation
y2 : type restriction

• Define: m = n1+···+y2
20

(with weights: mg = g1·n1+···+g20·y2
G

, G =
∑

20

i=1
gi).

• Procedure:

• Train reviewers on existing examples.

• Do not over-interpret results of first applications.

• Evaluate and adjust before putting to use, adjust regularly. (Ludewig and Lichter, 2013)

Development of a pseudo-metrics:

(i) Identify aspect to be represented.

(ii) Devise a model of the aspect.

(iii) Fix a scale for the metric.

(iv) Develop a definition of the pseudo-metric,
i.e., how to compute the metric.

(v) Develop base measures for all parameters of
the definition.

(vi) Apply and improve the metric.

The Goal-Question-Metric Approach

–
3

–
2

0
16

-0
4

-2
5

–
m

ai
n

–

9/40

Information Overload!?
–

3
–

2
0

16
-0

4
-2

5
–

S
gq

m
–

10/40

Now we have mentioned nearly 60 attributes one could measure. . .

Which ones should we measure?

It depends. . .

re
le

va
nt

pla
us

ib
le

av
ail

ab
le

diff
er

en
tia

te
d

ec
onom

ica
l

co
m

par
ab

le
re

pro
duc

ib
le

ro
bus

t

One approach: Goal-Question-Metric (GQM).

westphal
Bleistift

westphal
Bleistift

Goal-Question-Metric (Basili and Weiss, 1984)
–

3
–

2
0

16
-0

4
-2

5
–

S
gq

m
–

11/40

The three steps of GQM:

(i) Define the goals relevant for a project or an organisation.

(ii) From each goal, derive questions
which need to be answered to check whether the goal is reached.

(iii) For each question, choose (or develop) metrics
which contribute to finding answers.

Being good wrt. to a certain metric is (in general) not an asset on its own.
We usually want to optimise wrt. goals, not wrt. metrics.
In particular critical: pseudo-metrics for quality.

Software and process measurements may yield personal
data (“personenbezogene Daten”).
Their collection may be regulated by laws.

And Which Metrics Should One Use?
–

3
–

2
0

16
-0

4
-2

5
–

S
gq

m
–

12/40

And Which Metrics Should One Use?
–

3
–

2
0

16
-0

4
-2

5
–

S
gq

m
–

12/40

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

• size. . .

. . . of newly created and changed code, etc.
(automatically provided by revision control software),

• effort. . .

. . . for coding, review, testing, verification, fixing, maintenance, etc.

• errors. . .

. . . at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g., track

• error rate per release, error density (errors per LOC),

• average effort for error detection and correction,

• etc.

over time. In case of unusual values: investigate further (maybe using additional metrics).

And Which Metrics Should One Use?
–

3
–

2
0

16
-0

4
-2

5
–

S
gq

m
–

12/40

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

• size. . .

. . . of newly created and changed code, etc.
(automatically provided by revision control software),

• effort. . .

. . . for coding, review, testing, verification, fixing, maintenance, etc.

• errors. . .

. . . at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g., track

• error rate per release, error density (errors per LOC),

• average effort for error detection and correction,

• etc.

over time. In case of unusual values: investigate further (maybe using additional metrics).

LOC and changed lines over time (obtained by statsvn(1).

And Which Metrics Should One Use?
–

3
–

2
0

16
-0

4
-2

5
–

S
gq

m
–

12/40

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

• size. . .

. . . of newly created and changed code, etc.
(automatically provided by revision control software),

• effort. . .

. . . for coding, review, testing, verification, fixing, maintenance, etc.

• errors. . .

. . . at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g., track

• error rate per release, error density (errors per LOC),

• average effort for error detection and correction,

• etc.

over time. In case of unusual values: investigate further (maybe using additional metrics).

Tool support for software metrics, e.g., SonarCube.

Tell Them What You’ve Told Them. . .
–

3
–

2
0

16
-0

4
-2

5
–

S
tt

w
y

tt
–

13/40

• Software metrics are defined in terms of scales.

• Use software metrics to

• specify, assess, quantify, predict, support decisions

• prescribe / describe (diagnose / prognose).

• Whether a software metric is useful depends. . .

• Not every software attribute is directly measurable:

• derived measures,

• subjective metrics, and

• pseudo metrics. . .

. . .have to be used with care — do we measure what we want to measure?

• Metric examples:

• LOC, McCabe / Cyclomatic Complexity,

• more than 50 more metrics named

• Goal-Question-Metric approach:
it’s about the goal, not the metrics.

• Communicating figures: consider percentiles.

westphal
Bleistift

Topic Area Project Management: Content
–

3
–

2
0

16
-0

4
-2

5
–

S
b

lo
ck

co
n

te
n

t
–

14/40

•VL 2 Software Metrics

• Properties of Metrics

• Scales

• Examples

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Expert’s Estimation

• Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

.

..

VL 5

“(Software) Economics in a Nutshell”

–
3

–
2

0
16

-0
4

-2
5

–
m

ai
n

–

15/40

Costs
–

3
–

2
0

16
-0

4
-2

5
–

S
e

co
–

16/40

“Next to ‘Software’, ‘Costs’ is one of the terms occurring most often in this book.”
Ludewig and Lichter (2013)

A first approximation:

cost (‘Kosten’) all disadvantages of a solution

benefit (‘Nutzen’)
(or: negative costs)

all benefits of a solution.

Note: costs / benefits can be subjective — and not necessarily quantifiable in terms of money...

Super-ordinate goal of many projects:

• Minimize overall costs, i.e. maximise difference between benefits and costs.

(Equivalent: minimize sum of positive and negative costs.)

Costs vs. Benefits: A Closer Look
–

3
–

2
0

16
-0

4
-2

5
–

S
e

co
–

17/40

The benefit of a software is determined by the advantages achievable using the software;
it is influenced by:

• the degree of coincidence between product and requirements,

• additional services, comfort, flexibility etc.

Some other examples of cost/benefit pairs: (inspired by Jones (1990))

Costs Possible Benefits

Labor during development
(e.g., develop new test
machinery)

Use of result
(e.g., faster testing)

New equipment (purchase,
maintenance,
depreciation)

Better equipment
(maintenance;
maybe revenue from selling old)

New software purchases (Other) use of new software

Conversion from old
system to new

Improvement of system

Increased data gathering Increased control

Training for employees Increased productivity

Costs: Economics in a Nutshell
–

3
–

2
0

16
-0

4
-2

5
–

S
e

co
–

18/40

Distinguish current cost (‘laufende Kosten’), e.g.

• wages,

• (business) management, marketing,

• rooms,

• computers, networks, software as part of infrastructure,

• . . .

and project-related cost (‘projektbezogene Kosten’), e.g.

• additional temporary personnel,

• contract costs,

• expenses,

• hardware and software as part of product or system,

• . . .

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Software Costs in a Narrower Sense
–

3
–

2
0

16
-0

4
-2

5
–

S
e

co
–

19/40

software costs

net production quality costs

error prevention
costs

analyse-and-fix
costs

error costs

error localisation
costs

error removal
costs

error caused costs
(in operation)

decreased benefit

maintenance
(without quality)

quality assurance

during and after development Ludewig and Lichter (2013)

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971) co

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
(C

C
-b

y
-s

a
3

.0
)

westphal
Bleistift

Discovering Fundamental Errors Late Can Be Expensive
–

3
–

2
0

16
-0

4
-2

5
–

S
e

co
–

20/40

2

5

10

20

50

100

200

relative cost of an error

Analysis Design Coding Test &
Integration

Acceptance
& Operation

phase of error
detection

larger projects

smaller projects

Relative error costs over latency according to investigations at IBM, etc.

By (Boehm, 1979); Visualisation: Ludewig and Lichter (2013).

Cost Estimation

–
3

–
2

0
16

-0
4

-2
5

–
m

ai
n

–

21/40

Why Estimate Cost?
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

22/40

Software!

need 1
need 2
need 3
. . .

Customer Developer

announcement
(Lastenheft)

→

. . .e
prop. 1
prop. 2
. . .

Customer Developer

offer
(Pflichtenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

10
0

10
0

Developer Customer

software delivery

Lastenheft (Requirements Specification) Vom Auftraggeber festgelegte Gesamtheit
der Forderungen an die Lieferungen und Leistungen eines Auftragnehmers innerhalb
eines Auftrages.
(Entire demands on deliverables and services of a developer within a contracted development, cre-

ated by the customer.) DIN 69901-5 (2009)

• Developer can help with writing the requirements specification,
in particular if customer is lacking technical background.

Pflichtenheft (Feature Specification) Vom Auftragnehmer erarbeitete Reali-
sierungsvorgaben aufgrund der Umsetzung des vom Auftraggeber vorgegebenen
Lastenhefts.
(Specification of how to realise a given requirements specification, created by the developer.)

DIN 69901-5 (2009)

• One way of getting the feature specification: a pre-project (may be subject of a designated contract).

• Tricky: one and the same content can serve both purposes; then only the title defines the purpose.

westphal
Bleistift

The “Estimation Funnel”
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

23/40

4×

2×

1×

0.5×

0.25×

effort estimated to real
effort (log. scale)

Pre-Project Analysis Design Coding & Test

t

Uncertainty with estimations (following (Boehm et al., 2000), p. 10).

Visualisation: Ludewig and Lichter (2013)

Plan
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

24/40

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Cost Estimation

• Expert’s Estimation

• The Delphi Method

• Algorithmic Estimation

• COCOMO

• Function Points

westphal
Bleistift

Expert’s Estimation

–
3

–
2

0
16

-0
4

-2
5

–
S

e
st

im
at

io
n

–

25/40

Expert’s Estimation
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

26/40

One approach: the Delphi method.

• Step 1:
write down your

estimates!

• Step 2: show your estimates
and explain!

9.5
13 11 3

27

• Step 3:
estimate again!

• Then take the median, for example.

Algorithmic Estimation

–
3

–
2

0
16

-0
4

-2
5

–
S

e
st

im
at

io
n

–

27/40

Algorithmic Estimation: Principle
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

28/40

P1 P2 P3 P4 P5

?

P6
t

size /
cost

Assume:

• Projects P1, . . . , P5 took place in the past,

• Sizes Si , costs Ci, and kinds ki (0 = blue, 1 = yellow) have been measured and recorded.

Question: What is the cost of the new project P6?

Approach:

(i) Try to find a function f such that f(Si, ki) = Ci , for 1 ≤ i ≤ 5.

(ii) Estimate size S̃6 and kind k̃6.

(iii) Estimate C6 as C̃6 = f(S̃6, k̃6).

(In the artificial example above, f(S, k) = S · 1.8 + k · 0.3 would work,

i.e. if P6 is of kind yellow (k̃6 = 1) and size estimate is S̃6 = 2.7 then f(S̃6, k̃6) = 5.16)

westphal
Bleistift

westphal
Bleistift

Algorithmic Estimation: Principle
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

28/40

P1 P2 P3 P4 P5

?

P6
t

size /
cost

Approach, more general:

• Identify (measurable) factors F1, . . . , Fn which influence overall cost, like size in LOC.

• Take a big sample of data from previous projects.

• Try to come up with a formula f such that f(F1, . . . , Fn) matches previous costs.

• Estimate values for F1, . . . , Fn for a new project.

• Take f(F̃1, . . . , F̃n) as cost estimate C̃ for new project.

• Conduct new project, measure F1, . . . , Fn and cost C .

• Adjust f if C 6= C̃ .

westphal
Bleistift

Algorithmic Estimation: Principle
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

28/40

P1 P2 P3 P4 P5

?

P6
t

size /
cost

Approach, more general:

• Identify (measurable) factors F1, . . . , Fn which influence overall cost, like size in LOC.

• Take a big sample of data from previous projects.

• Try to come up with a formula f such that f(F1, . . . , Fn) matches previous costs.

• Estimate values for F1, . . . , Fn for a new project.

• Take f(F̃1, . . . , F̃n) as cost estimate C̃ for new project.

• Conduct new project, measure F1, . . . , Fn and cost C .

• Adjust f if C 6= C̃ .

Note:

• The need for (expert’s) estimation does not go away: one needs to estimate F̃1, . . . , F̃n .

• Rationale: it is often easier to estimate technical aspect than to directly estimate cost.

westphal
Bleistift

westphal
Bleistift

Algorithmic Estimation: COCOMO
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

29/40

• Constructive Cost Model:
Formulae which fit a huge set of archived project data (from the late 70’s).

• Flavours:

• COCOMO 81 (Boehm, 1981): basic, intermediate, detailed

• COCOMO II (Boehm et al., 2000)

• All based on estimated program size S measured in
DSI or kDSI (thousands of Delivered Source Instructions).

• Factors like security requirements or experience of the project team
are mapped to values for parameters of the formulae.

• COCOMO examples:

• textbooks like Ludewig and Lichter (2013) (most probably made up)

• an exceptionally large example:
COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

COCOMO 81
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

30/40

Characteristics of the Type
a b

Software

Size Innovation
Deadlines/
Constraints

Dev.
Environment

Project Type

Small
(<50 KLOC)

Little Not tight Stable 3.2 1.05 Organic

Medium
(<300 KLOC)

Medium Medium Medium 3.0 1.12 Semi-detached

Large Greater Tight
Complex HW/
Interfaces

2.8 1.20 Embedded

Basic COCOMO:

• effort required: E = a · (S/kDSI)b [PM (person-months)]

• time to develop: T = c · Ed [months]

• headcount: H = E/T [FTE (full time employee)]

• productivity: P = S/E [DSI per PM] (← use to check for plausibility)

Intermediate COCOMO:

E = M · a · (S/kDSI)b [person-months]

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

westphal
Bleistift

COCOMO 81: Some Cost Drivers
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

31/40

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

factor
very
low low normal high

very
high

extra
high

RELY required software reliability 0.75 0.88 1 1.15 1.40

CPLX product complexity 0.70 0.85 1 1.15 1.30 1.65

TIME execution time constraint 1 1.11 1.30 1.66

ACAP analyst capability 1.46 1.19 1 0.86 0.71

PCAP programmer capability 1.42 1.17 1 0.86 0.7

LEXP programming language
experience

1.14 1.07 1 0.95

TOOL use of software tools 1.24 1.10 1 0.91 0.83

SCED required development
schedule

1.23 1.08 1 1.04 1.10

• Note: what, e.g., “extra high” TIME means, may depend on project context.
(Consider data from previous projects.)

COCOMO II (Boehm et al., 2000)

–
3

–
2

0
16

-0
4

-2
5

–
S

e
st

im
at

io
n

–

32/40

Consists of

• Application Composition Model — project work is configuring components, rather than
programming

• Early Design Model — adaption of Function Point approach (in a minute);
does not need completed architecture design

• Post-Architecture Model — improvement of COCOMO 81; needs completed archi-
tecture design, and size of components estimatable

COCOMO II: Post-Architecture
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

33/40

E = 2.94 · SX ·M

• Program size: S = (1 + REVL) · (Snew + Sequiv)

• requirements volatility REVL:
e.g., if new requirements make 10% of code unusable, then REVL = 0.1

• Snew : estimated size minus size w of re-used code,

• Sequiv = w/q, if writing new code takes q-times the effort of re-use.

• Scaling factors:
X = δ + ω, ω = 0.91, δ = 1

100
· (PREC + FLEX + RESL+ TEAM + PMAT)

factor
very
low low normal high

very
high

extra
high

PREC precedentness (experience with
similar projects)

6.20 4.96 3.72 2.48 1.24 0.00

FLEX development flexibility
(development process fixed by
customer)

5.07 4.05 3.04 2.03 1.01 0.00

RESL Architecture/risk resolution (risk
management, architecture size)

7.07 5.65 4.24 2.83 1.41 0.00

TEAM Team cohesion (communication
effort in team)

5.48 4.38 3.29 2.19 1.10 0.00

PMAT Process maturity (see CMMI) 7.80 6.24 4.69 3.12 1.56 0.00

westphal
Bleistift

westphal
Bleistift

COCOMO II: Post-Architecture Cont’d
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

34/40

M = RELY ·DATA · · · · · SCED

group factor description

Product factors RELY required software reliability

DATA size of database

CPLX complexity of system

RUSE degree of development of reusable components

DOCU amount of required documentation

Platform factors TIME execution time constraint

STOR memory consumption constraint

PVOL stability of development environment

Team factors ACAP analyst capability

PCAP programmer capability

PCON continuity of involved personnel

APEX experience with application domain

PLEX experience with development environment

LTEX experience with programming language(s) and tools

Project factors TOOL use of software tools

SITE degree of distributedness

SCED required development schedule

(also in COCOMO 81, new in COCOMO II)

Function Points

–
3

–
2

0
16

-0
4

-2
5

–
S

e
st

im
at

io
n

–

35/40

Algorithmic Estimation: Function Points
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

36/40

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF

VAF = 0.65+
1

100
·

14∑

i=1

GSC i,

0 ≤ GSC i ≤ 5.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Algorithmic Estimation: Function Points
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

36/40

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF

IBM and VW curve for the conversion from AFPs to PM according to
(Noth and Kretzschmar, 1984) and (Knöll and Busse, 1991).

VAF = 0.65+
1

100
·

14∑

i=1

GSC i,

0 ≤ GSC i ≤ 5.

westphal
Bleistift

Discussion
–

3
–

2
0

16
-0

4
-2

5
–

S
e

st
im

at
io

n
–

37/40

Ludewig and Lichter (2013) says:

• Function Point approach used in practice,
in particular for commercial software (business software?).

• COCOMO tends to overestimate in this domain;
needs to be adjusted by corresponding factors.

In the end, it’s experience, experience, experience:

“Estimate, document, estimate better.” (Ludewig and Lichter, 2013)

Suggestion: start to explicate your experience now.

• Take notes on your projects
(e.g., Softwarepraktikum, Bachelor Projekt, Master Bacherlor’s Thesis, Master Projekt, Master’s Thesis, . . .)

• timestamps, size of program created, number of errors found, number of pages written, . . .

• Try to identify factors: what hindered productivity, what boosted productivity, . . .

• Which detours and mistakes were avoidable in hindsight? How?

westphal
Bleistift

westphal
Bleistift

Tell Them What You’ve Told Them. . .
–

3
–

2
0

16
-0

4
-2

5
–

S
tt

w
y

tt
2

–

38/40

• For software costs, we can distinguish

• net production,

• quality costs,

• maintenance.

Software engineering is about being economic in all three aspects.

• Why estimate?

• Requirements specification (‘Lastenheft’)

• Feature specification (‘Pflichtenheft’)

The latter (plus budget) is usually part of software contracts.

• Approaches:

• Expert’s Estimation

• Algorithmic Estimation

• COCOMO

• Function Points

→ estimate cost indirectly, by estimating more technical aspects.

In the end, it’s experience.

westphal
Bleistift

References

–
3

–
2

0
16

-0
4

-2
5

–
m

ai
n

–

39/40

References
–

3
–

2
0

16
-0

4
-2

5
–

m
ai

n
–

40/40

Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE
Transactions of Software Engineering, 10(6):728–738.

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530–538.

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design specifications. In
EURO IFIP 79, pages 711–719. Elsevier North-Holland.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W., Chulani, S., and Abts, C.
(2000). Software Cost Estimation with COCOMO II. Prentice-Hall.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493.

DIN (2009). Projektmanagement; Projektmanagementsysteme. DIN 69901-5.

Jones, G. W. (1990). Software Engineering. John Wiley & Sons.

Kan, S. H. (2003). Metrics and models in Software Quality Engineering. Addison-Wesley, 2nd edition.

Knöll, H.-D. and Busse, J. (1991). Aufwandsschätzung von Software-Projekten in der Praxis: Methoden,
Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Angewandte Informatik. BI Wissenschaftsverlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschätzung von DV-Projekten, Darstellung und Praxisvergleich der
wichtigsten Verfahren. Springer-Verlag.

	Content
	Recall: Pseudo-Metrics
	Can Pseudo-Metrics be Useful?
	Code Metrics for OO Programs ChidamberKemerer1994
	Subjective Metrics
	Subjective Metrics
	Example: A (Subjective) Metric for Maintainability

	The Goal-Question-Metric Approach
	Information Overload!?
	Goal-Question-Metric BasiliWeiss1984
	And Which Metrics Should One Use?
	Tell Them What You've Told Them…
	Topic Area Project Management: Content

	``(Software) Economics in a Nutshell''
	Costs
	Costs vs. Benefits: A Closer Look
	Costs: Economics in a Nutshell
	Software Costs in a Narrower Sense
	Discovering Fundamental Errors Late Can Be Expensive

	Cost Estimation
	Why Estimate Cost?
	The ``Estimation Funnel''
	Plan

	Expert's Estimation
	Expert's Estimation

	Algorithmic Estimation
	Algorithmic Estimation: Principle
	Algorithmic Estimation: COCOMO
	COCOMO 81
	COCOMO 81: Some Cost Drivers
	COCOMO II Boehm2000
	COCOMO II: Post-Architecture
	COCOMO II: Post-Architecture Cont'd

	Function Points
	Algorithmic Estimation: Function Points
	Discussion
	Tell Them What You've Told Them…

	References
	References

