Softwaretechnik / Software-Engineering

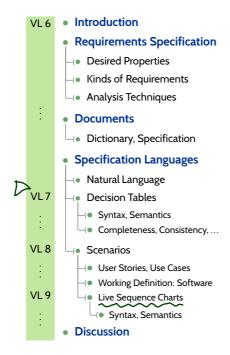
Lecture 7: Formal Methods for Requirements Engineering

2016-05-30

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Requirements Engineering: Content

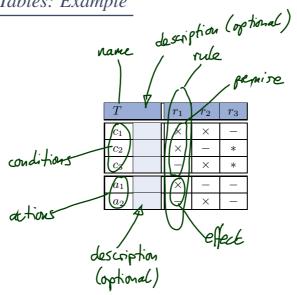


16-05-30 - main -

3/42

Decision Tables

- 2016-05-30 - Sconter



5/42

Decision Table Syntax

- Let C be a set of **conditions** and A be a set of **actions** s.t. $C \cap A = \emptyset$.
- A decision table T over C and A is a labelled $(m+k) \times n$ matrix

T: de	ecision table		r_1	• • •	r_n
c_1	description of condition c_1		$v_{1,1}$		$v_{1,n}$
:	i		:)	٠.	:
c_m	description of condition c_{m}	٨	$v_{m,f}$	• • • •	$v_{m,n}$
a_1	description of action a_1	L	$w_{1,1}$		$w_{1,n}$
:	i i	\mathbb{I}	:)		:
a_k	description of action a_k	I	$w_{k,}$		$w_{k,n}$
		Ĺ	\mathcal{I}		

- where

 - $c_1,\ldots,c_m\in C$, $v_{1,1},\ldots,v_{m,n}\in\{-,\times,*\}$ and

 - $a_1, \ldots, a_k \in A$, $w_{1,1}, \ldots, w_{k,n} \in \{-, \times\}$.
- Columns $(v_{1,i},\ldots,v_{m,i},w_{1,i},\ldots,w_{k,i})$, $1\leq i\leq n$, are called rules,
- r_1, \ldots, r_n are rule names.
- $(v_{1,i},\ldots,v_{m,i})$ is called **premise** of rule r_i , $(w_{1,i},\ldots,w_{k,i})$ is called **effect** of r_i .

Decision Table Semantics

Each rule $r \in \{r_1, \dots, r_n\}$ of table T

T: de	ecision table	r_1	• • • •	r_n
c_1	description of condition \emph{c}_1	$v_{1,1}$		$v_{1,n}$
:	:	:	٠.	:
c_m	description of condition \mathcal{c}_m	$v_{m,1}$		$v_{m,n}$
a_1	description of action a_1	$w_{1,1}$		$w_{1,n}$
:	:	:	٠.	:
a_k	description of action a_k	$w_{k,1}$		$w_{k,n}$

is assigned to a propositional logical formula $\mathcal{F}(r)$ over signature $C \stackrel{.}{\cup} A$ as follows:

• Let (v_1,\ldots,v_m) and (w_1,\ldots,w_k) be premise and effect of r.

$$\mathcal{F}(r) := \underbrace{F(v_1,c_1) \wedge \cdots \wedge F(v_m,c_m)}_{\mathcal{F}(v_1,a_1) \wedge \cdots \wedge F(w_k,a_k)} \wedge \underbrace{F(w_1,a_1) \wedge \cdots \wedge F(w_k,a_k)}_{=:\mathcal{F}_{eff}(r)}$$
 where
$$F(v,\dot{x}) = \begin{cases} x & \text{, if } v = \times \\ -x & \text{, if } v = - \end{cases}$$

7/42

Decision Table Semantics: Example

$$\mathcal{F}(r) := F(v_1, c_1) \wedge \dots \wedge F(v_m, c_m) \\ \wedge F(v_1, a_1) \wedge \dots \wedge F(v_k, a_k)$$

$$F(v, x) = \begin{cases} x & \text{if } v = \times \\ \neg x & \text{if } v = - \\ \text{true} & \text{if } v = * \end{cases}$$

T	r_1	r_2	r_3
c_1	×	×	_
c_2	×	ı	*
c_3	_	×	*
a_1	×	_	_
a_2	_	×	_

•
$$\mathcal{F}(r_1) = \mathcal{F}(\mathbf{x}, \mathbf{c}_1) \wedge \mathcal{F}(\mathbf{x}, \mathbf{c}_2) \wedge \mathcal{F}(\mathbf{r}, \mathbf{c}_3) \wedge \mathcal{F}(\mathbf{x}, \mathbf{a}_1) \wedge \mathcal{F}(\mathbf{r}, \mathbf{a}_2)$$
= $\mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3 \wedge \mathbf{a}_1 \wedge \mathbf{a}_2$
• $\mathcal{F}(r_2) = \mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3 \wedge \mathbf{a}_1 \wedge \mathbf{a}_2$
• $\mathcal{F}(r_3) = \mathbf{c}_1 \wedge \mathbf{c}_3 \wedge \mathbf{c}_4 \wedge \mathbf{c}_$

-7 - 2016-05-30 - Scoreet -

Yes, And?

We can use decision tables to model (describe or prescribe) the behaviour of software!

Example: Ventilation system of lecture hall 101-0-026.

T: roc	m ventilation	r_1	r_2	r_3
b	button pressed?	×	×	-
off	ventilation off?	×	-	*
on	ventilation on?	-	×	*
go	start ventilation	×	-	_
oton	stop ventilation		~	

- We can observe whether button is pressed and whether room ventilation is on or off, and whether (we intend to) start ventilation of stop ventilation.
- We can model our observation by a boolean valuation $\sigma:C\cup A\to \mathbb{B},$ e.g., set

 $\sigma(b) := \mathit{true}, \text{if button pressed now and } \sigma(b) := \mathit{false}, \text{if button not pressed now}.$

 $\sigma(go):=\mathit{true}$, we plan to start ventilation and $\sigma(go):=\mathit{false}$, we plan to stop ventilation.

- A valuation $\sigma: C \cup A \to \mathbb{B}$ can be used to assign a **truth value** to a propositional formula φ over $C \cup A$. As usual, we write $\sigma \models \varphi$ iff φ evaluates to *true* under σ (and $\sigma \not\models \varphi$ otherwise).
- Rule formulae $\mathcal{F}(r)$ are propositional formulae over $C \cup A$ thus, given σ , we have either $\sigma \models \mathcal{F}(r)$ or $\sigma \not\models \mathcal{F}(r)$.
- Let σ be a model of an observation of C and A. We say, σ is allowed by decision table T if and only if there exists a rule r in T such that $\sigma \models \mathcal{F}(r)$.

-7-2016-05-30 - Setasspec -

Example

T: roc	m ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×	_	*
on	ventilation on?	_	×	*
go	start ventilation	×	_	_
stop	stop ventilation	_	×	_

$$\begin{split} \mathcal{F}(r_1) &= \mathbf{d_0} \wedge \mathbf{off} \wedge \neg \mathbf{o_0} \wedge \mathbf{g_0} \wedge \neg \mathbf{o_0} \\ \mathcal{F}(r_2) &= \mathbf{d_0} \wedge \neg \mathbf{off} \wedge \mathbf{o_0} \wedge \neg \mathbf{g_0} \wedge \mathbf{o_0} \\ \mathcal{F}(r_3) &= \neg \mathbf{d_0} \wedge \mathit{true} \wedge \mathit{true} \wedge \neg a_1 \wedge \neg \mathbf{o_0} \\ \end{split}$$

(i) Assume: button pressed, ventilation off, we (only) plan to start the ventilation.

$$\sigma = \{6 \text{ H true, off H true, on H false, go H true, stop H false}\}\$$

Allowed by r_1 of T

-7-2016-05-30 - Se

11/42

Example

T: roc	m ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×	_	*
on	ventilation on?	_	×	*
go	start ventilation	×	_	-
stop	stop ventilation	_	×	-

$$\begin{split} \mathcal{F}(r_1) &= c_1 \wedge c_2 \wedge \neg c_3 \wedge a_1 \wedge \neg a_2 \\ \mathcal{F}(r_2) &= c_1 \wedge \neg c_2 \wedge c_3 \wedge \neg a_1 \wedge a_2 \\ \mathcal{F}(r_3) &= \neg c_1 \wedge \textit{true} \wedge \textit{true} \wedge \neg a_1 \wedge \neg a_2 \end{split}$$

- (i) Assume: button pressed, ventilation off, we (only) plan to start the ventilation.
 - Corresponding valuation: $\sigma_1 = \{b \mapsto \mathit{true}, \mathit{off} \mapsto \mathit{true}, \mathit{on} \mapsto \mathit{false}, \mathit{start} \mapsto \mathit{true}, \mathit{stop} \mapsto \mathit{false}\}.$
 - Is our intention (to start the ventilation now) allowed by T? Yes! (Because $\sigma_1 \models \mathcal{F}(r_1)$)
- (ii) Assume: button pressed, ventilation on, we (only) plan to stop the ventilation.
 - Corresponding valuation: $\sigma_2 = \{b \mapsto \mathit{true}, \mathit{off} \mapsto \mathit{false}, \mathit{on} \mapsto \mathit{true}, \mathit{start} \mapsto \mathit{false}, \mathit{stop} \mapsto \mathit{true} \}.$
 - Is our intention (to stop the ventilation now) allowed by T? Yes. (Because $\sigma_2 \models \mathcal{F}(r_2)$)
- (iii) Assume: button not pressed, ventilation on, we (only) plan to stop the ventilation.
 - · Corresponding valuation: == { bx fibe, on x thee, of to fibe, shop to fee }
 - Is our intention (to stop the ventilation now) allowed by T? $\lambda 0$

Decision Tables as Specification Language

- Decision Tables can be used to **objectively** describe desired software behaviour.
- Example: Dear developer, please provide a program such that
 - in each situation (button pressed, ventilation on/off),
 - whatever the software does (action start/stop)
 - is allowed by decision table T.

T: roc	m ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×	_	*
on	ventilation on?	-	×	*
go	start ventilation	×	_	_
stop	stop ventilation	_	×	_

12/42

Decision Tables as Specification Language

- Decision Tables can be used to **objectively** describe desired software behaviour.
- Another Example: Customer session at the bank:

	×	× -	
	×	-	
		*	
	×	-	×
-	_	×	-
	×	_	-
		- ×	

- clerk checks database state (yields σ for c_1,\ldots,c_3),
- database says: credit limit exceeded, but below 500 \in and payment history ok,
- ullet clerk cashes cheque but offers new conditions (according to T1).

Decision Tables as Specification Language

Requirements on Requirements Specifications

A requirements specification should be

correct

– it correctly represents the wishes/needs of the customer,

• complete 💍

- all requirements (existing in somebody's head, or a document, or ...) should be present,

relevant

- things which are not relevant to the project should not be constrained,

consistent, free of contradictions

 each requirement is compatible with all other requirements; otherwise the requirements are not realisable,

neutral, abstract

- a requirements specification does not constrain the realisation more than necessary,

traceable, comprehensible

- the sources of requirements are documented, requirements are uniquely identifiable,

- the first product ear objectively be checked for satisfying a requirement.

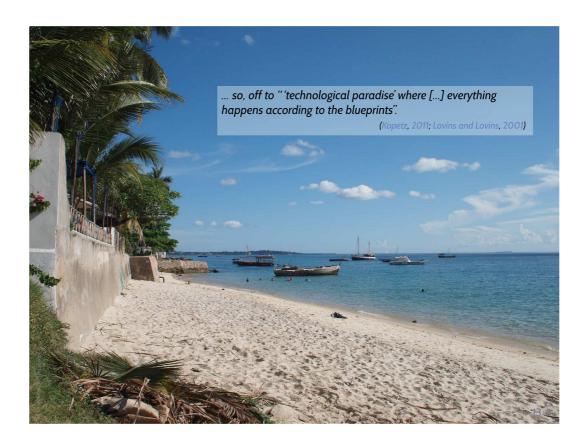
 Correctness and completeness are defined relative to something which is usually only in the customer's head.

 \rightarrow is is difficult to be sure of correctness and completeness.

"Dear customer, please tell me what is in your head!" is in almost all cases not a solution!
 It's not unusual that even the customer does not precisely know...!
 For example, the customer may not be aware of contradictions due to technical limitations.

12/3

17/4



16-05-30 - Setasspec -

Recall Once Again

Requirements on Requirements Specifications A requirements specification should be correct neutral, abstract it correctly represents the wishes/needs of a requirements specification does not constrain the realisation more than necessary, complete all requirements (existing in somebody's head, or a document, or ...) should be present, traceable, comprehensible - the sources of requirements are documented, requirements are uniquely identifiable, relevant - things which are not relevant to the project - things which are not relevant to the project - things which are not relevant to the project - consistent, free o contradictions - consistent, free o contradictions - consistent free or contradictions - contradictions testable, objective - the final product can objectively be checked for satisfying a requirement. not realisable, Correctness and completeness are defined relative to something which is usually only in the customer's head. \rightarrow is is difficult to be sure of correctness and completeness. "Dear customer, please tell me what is in your head!" is in almost all cases not a solution! It's not unusual that even the customer does not precisely know...! For example, the customer may not be aware of contradictions due to technical limitations.

-7 - 2016-05-30 - Setana -

Definition. [Completeness] A decision table T is called **complete** if and only if the disjunction of all rules' premises is a tautology, i.e. if

$$\models \bigvee_{r \in T} \mathcal{F}_{pre}(r).$$

2016-05-30 - Setana -

16/42

Completeness: Example

T: roc	m ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×	_	*
on	ventilation on?	-	×	*
go	start ventilation	×	_	_
stop	stop ventilation	-	×	ı

• Is T complete?

No. (Because there is no rule for, e.g., the case $\sigma(b) = \mathit{true}, \sigma(\mathit{on}) = \mathit{false}, \sigma(\mathit{off}) = \mathit{false}$).

Recall:

$$\begin{split} \mathcal{F}(r_1) &= c_1 \wedge c_2 \wedge \neg c_3 \wedge a_1 \wedge \neg a_2 \\ \mathcal{F}(r_2) &= c_1 \wedge \neg c_2 \wedge c_3 \wedge \neg a_1 \wedge a_2 \\ \mathcal{F}(r_3) &= \neg c_1 \wedge \textit{true} \wedge \textit{true} \wedge \neg a_1 \wedge \neg a_2 \end{split}$$

$$\mathcal{F}_{pre}(r_1) \vee \mathcal{F}_{pre}(r_2) \vee \mathcal{F}_{pre}(r_3)$$

$$= (c_1 \wedge c_2 \wedge \neg c_3) \vee (c_1 \wedge \neg c_2 \wedge c_3) \vee (\neg c_1 \wedge \textit{true} \wedge \textit{true})$$

is not a tautology.

- 7 - 2016-05-30 - Setana -

Requirements Analysis with Decision Tables

- $\bullet\,$ Assume we have formalised requirements as decision table T.
- If T is (formally) incomplete,
 - then there is probably a case not yet discussed with the customer, or some misunderstandings.
- ullet If T is (formally) complete,
 - then there still may be misunderstandings.

 If there are no misunderstandings, then we did discuss all cases.
- Note
 - Whether T is (formally) complete is decidable.
 - ullet Deciding whether T is complete reduces to plain SAT.
 - There are efficient tools which decide SAT.
 - In addition, decision tables are often much easier to understand than natural language text.

18/42

For Convenience: The 'else' Rule

• Syntax:

T: de	ecision table	r_1	• • • •	r_n	else
c_1	description of condition c_1	$v_{1,1}$		$v_{1,n}$	
:	:	:	٠.	:	
c_m	description of condition \mathcal{c}_m	$v_{m,1}$		$v_{m,n}$	
a_1	description of action a_1	$w_{1,1}$		$w_{1,n}$	$w_{1,e}$
:	:	:		:	:
a_k	description of action a_k	$w_{k,1}$		$w_{k,n}$	$w_{k,e}$

Semantics:

$$\mathcal{F}(\mathsf{else}) := \neg \left(\bigvee_{r \in T \setminus \{\mathsf{else}\}} \mathcal{F}_{\mathit{pre}}(r) \right) \wedge F(w_{1,e}, a_1) \wedge \dots \wedge F(w_{k,e}, a_k)$$

Proposition. If decision table T has an 'else'-rule, then T is complete.

Uselessness

Definition. [Uselessness] Let T be a decision table.

A rule $r \in T$ is called useless (or: redundant)

if and only if there is another (different) rule $r^\prime \in T$

- ullet whose premise is implied by the one of r and
- whose effect is the same as r's,

i.e. if

$$\exists r' \neq r \in T \bullet \models (\mathcal{F}_{pre}(r) \implies \mathcal{F}_{pre}(r')) \land (\mathcal{F}_{eff}(r) \iff \mathcal{F}_{eff}(r')).$$

r is called **subsumed** by r'.

• Again: uselessness is decidable; reduces to SAT.

.016-05-30 - Setana -

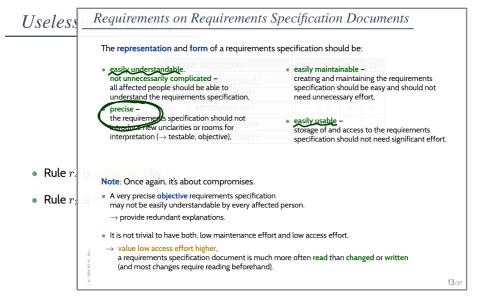
20/42

Uselessness: Example

T: roc	m ventilation	r_1	r_2	r_3	r_4
b	button pressed?	×	×	_	_
off	ventilation off?	×	_	*	_
on	ventilation on?	-	×	*	×
go	start ventilation	×	_	_	_
stop	stop ventilation	-	×	-	-

- Rule r_4 is subsumed by r_3 .
- Rule r_3 is **not** subsumed by r_4 .
- Useless rules "do not hurt" as such.
- Yet useless rules should be removed to make the table more readable, yielding an easier usable specification.

- 7 - 2016-05-30 - Setana -



- Useless rules "do not hurt" as such.
- Yet useless rules should be removed to make the table more readable, yielding an easier usable specification.

21/42

Determinism

Definition. [Determinism]

A decision table T is called **deterministic**

if and only if the premises of all rules are pairwise disjoint, i.e. if

$$\forall r_1 \neq r_2 \in T \bullet \models \neg (\mathcal{F}_{pre}(r_1) \land \mathcal{F}_{pre}(r_2)).$$

Otherwise, T is called **non-deterministic**.

And again: التحافية is decidable; reduces to SAT.
 المرباء المحافية المحافية

/ - 2016-05-30 - Setana -

Determinism: Example

T: roc	m ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×	_	*
on	ventilation on?	-	×	*
go	start ventilation	×	_	_
stop	stop ventilation	-	×	_

• Is T deterministic? Yes.

1016-05-30 - Setana -

23/42

Determinism: Another Example

T_{abstr}	: room ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
go	start ventilation	×	_	_
stop	stop ventilation	_	×	_

• Is T_{abstr} determistic? No.

By the way...

- Is non-determinism a bad thing in general?
 - Just the opposite: non-determinism is a very, very powerful modelling tool.
 - $\bullet \ \ {\rm Read\ table}\ T_{abstr}\ {\rm as} :$
 - the button may switch the ventilation on under certain conditions (which I will specify later), and
 - the button may switch the ventilation off under certain conditions (which I will specify later).

We in particular state that we do not (under any condition) want to see $\it on$ and $\it off$ executed together, and that we do not (under any condition) see $\it go$ or $\it stop$ without button pressed.

• On the other hand: non-determinism may not be intended by the customer.

- 2016-05-30 - Setana -

Domain Modelling for Decision Tables

- 2016-05-30 - main -

25/42

Domain Modelling

Example:

T: roc	m ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×	-	*
on	ventilation on?	_	×	*
go	start ventilation	×	_	_
stop	stop ventilation	_	×	-

- If on and off model opposite output values of one and the same sensor for "room ventilation on/off", then $\sigma \models on \land off$ and $\sigma \models \neg on \land \neg off$ never happen in reality for any observation σ .
- Decision table T is incomplete for exactly these cases. (T "does not know" that on and off can be opposites in the real-world).
- We should be able to "tell" T that on and off are opposites (if they are).
 Then T would be relative complete (relative to the domain knowledge that on/off are opposites).

Bottom-line:

- Conditions and actions are abstract entities without inherent connection to the real world.
- When modelling real-world aspects by conditions and actions, we may also want to represent relations between actions/conditions in the real-world (→ domain model (Bjørner, 2006)).

- 7 - 3016-05-30 - Saturation

Conflict Axioms for Domain Modelling

• A conflict axiom over conditions C is a propositional formula φ_{confl} over C.

Intuition: a conflict axiom characterises all those cases, i.e. all those combinations of condition values which 'cannot happen'—according to our understanding of the domain.

• Note: the decision table semantics remains unchanged!

Example:

- Let $\varphi_{confl} = (on \wedge off) \vee (\neg on \wedge \neg off)$.

 "on models an opposite of off, neither can both be satisfied nor both non-satisfied at a time"
- Notation:

T: roo	m ventilation	r_1	r_2	r_3		
b	button pressed?	×	×	_		
off	ventilation off?	×	-	*		
on	ventilation on?	-	×	*		
go	start ventilation	×	_	_		
stop	stop ventilation	-	×	1		
	$\neg [(on \land off) \lor (\neg on \land \neg off)]$	J)]				
Yearfl.						

27/42

Relative Completeness

Definition. [Completeness wrt. Conflict Axiom]

A decision table T is called **complete wrt. conflict axiom** φ_{confl} if and only if the disjunction of all rules' premises and the conflict axiom is a tautology, i.e. if

$$\models \varphi_{confl} \lor \bigvee_{r \in T} \mathcal{F}_{pre}(r).$$

- Intuition: a relative complete decision table explicitly cares for all cases which 'may happen'.
- Note: with $\varphi_{confl} = false$, we obtain the previous definitions as a special case. Fits intuition: $\varphi_{confl} = false$ means we don't exclude any states from consideration.

-05-30 - Setconflax -

T: roo	om ventilation	r_1	r_2	r_3	
b	button pressed?	×	×	_	
off	ventilation off?	×	-	*	
on	ventilation on?	_	×	*	
go	start ventilation	×	-	_	
stop	stop ventilation	_	×	ı	
	$\neg [(on \land off) \lor (\neg on \land \neg off)]$				

- T is complete wrt. its conflict axiom.
- Pitfall: if on and off are outputs of two different, independent sensors, then $\sigma \models on \land off$ is possible in reality (e.g. due to sensor failures). Decision table T does not tell us what to do in that case!

29/42

More Pitfalls in Domain Modelling (Wikipedia, 2015)

"Airbus A320-200 overran runway at Warsaw Okecie Intl. Airport on 14 Sep. 1993."

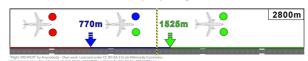
- To stop a plane after touchdown, there are spoilers and thrust-reverse systems.
- Enabling one of those while in the air, can have fatal consequences.
- Design decision: the software should block activation of spoilers or thrust-revers while in the air.
- Simplified decision table of blocking procedure:

	T		r_1	r_2	r_3	else
1	splq	spoilers requested	×	×	-	
	thrq	thrust-reverse requested	_	_	×	
1	lgsw	at least 6.3 tons weight on each landing gear strut	×	*	×	
Y	spd	wheels turning faster than 133 km/h	*	×	*	
	spl	enable spoilers	×	×	-	-
	thr	enable thrust-reverse	_	-	×	-

Idea: if conditions lgsw and spd not satisfied, then aircraft is in the air.

14 Sep. 1993:

- wind conditions not as announced from tower, tail- and crosswinds,
- anti-crosswind manoeuvre puts too little weight on landing gear
- wheels didn't turn fast due to hydroplaning.



Definition. [Vacuitiy wrt. Conflict Axiom]

A rule $r \in T$ is called vacuous wrt. conflict axiom φ_{confl} if and only if the premise of r implies the conflict axiom, i.e. if $\models \mathcal{F}_{pre}(r) \to \varphi_{confl}$.

• Intuition: a vacuous rule would only be enabled in states which 'cannot happen'.

Example:

T: roo	m ventilation	r_1	r_2	r_3	14	•
b	button pressed?	×	×	_	_×	١
off	ventilation off?	×	_	*		12-20-
on	ventilation on?	_	×	*	×	IS - Transf.
go	start ventilation	×	-	_	_	
stop	stop ventilation	_	×	_	-	
	$\neg [(on \land off) \lor (\neg on \land \neg of)]$	(f)]				

- \bullet Vacuity wrt. φ_{confl} : Like uselessness, vacuity doesn't hurt as such but
 - May hint on inconsistencies on customer's side. (Misunderstandings with conflict axiom?)
 - Makes using the table less easy! (Due to more rules.)
 - Implementing vacuous rules is a waste of effort!

31/42

Conflicting Actions

Definition. [Conflict Relation] A conflict relation on actions A is a transitive and symmetric relation $\xi \subseteq (A \times A)$.

Definition. [Consistency] Let r be a rule of decision table T over C and A.

(i) Rule r is called consistent with conflict relation \rlap/z if and only if there are no conflicting actions in its effect, i.e. if

$$\models \mathcal{F}_{eff}(r) \to \bigwedge_{(a_1, a_2) \in f} \neg (a_1 \land a_2).$$

(ii) T is called **consistent** with $\mspace{1}{2}$ iff all rules $r \in T$ are consistent with $\mspace{1}{2}$.

• Again: consistency is decidable; reduces to SAT.

33/42

Example: Conflicting Actions

T: roc	om ventilation	r_1	r_2	r_3	
b	button pressed?	×	×	_	
off	ventilation off?	×	-	*	
on	ventilation on?	_	×	*	
go	start ventilation	\mathbb{Z}	_	_	
stop	stop ventilation	(\times)	×	ı	
	$\neg [(on \land off) \lor (\neg on \land \neg off)]$				

- Let \not be the transitive, symmetric closure of $\{(stop,go)\}$. "actions stop and go are not supposed to be executed at the same time"
- Then rule r_1 is inconsistent with \oint .
- A decision table with inconsistent rules may do harm in operation!
- Detecting an inconsistency only late during a project can incur significant cost!
- Inconsistencies in particular in (multiple) decision tables, created and edited by multiple people, as well as in requirements in general – are not always as obvious as in the toy examples given here! (would be too easy...)
- ullet And is even less obvious with the collecting semantics (o in a minute).

- / - 2016-05-30 - Setconfirel -

7 - 2016-05-30 - main -

35/42

Collecting Semantics

• Let T be a decision table over C and A and σ be a model of an observation of C and A.

Then

$$\mathcal{F}_{coll}(T) := \bigwedge_{a \in A} a \leftrightarrow \bigvee\nolimits_{r \in T, r(a) = \times} \mathcal{F}_{pre}(r)$$

is called the collecting semantics of ${\cal T}.$

• We say, σ is allowed by T in the collecting semantics if and only if $\sigma \models \mathcal{F}_{coll}(T)$. That is, if exactly all actions of all enabled rules are planned/exexcuted.

Example:

						_
T: roc	m ventilation	r_1	r_2	r_3	r_4	
b	button pressed?	×	×	_	×	
off	ventilation off?	×	_	*	*	
on	ventilation on?	-	×	*	*	
go	start ventilation	\wedge	_	_	/- \	1/1
$\frac{go}{stop}$	start ventilation stop ventilation	$\begin{pmatrix} \times \\ - \end{pmatrix}$	_ ×	_	(-)	ms go black
		$\begin{pmatrix} \times \\ - \end{pmatrix}$	- × -	- -	$\begin{pmatrix} \bar{z} \\ \bar{z} \end{pmatrix}$	ms go, black

• "Whenever the button is pressed, let it blink (in addition to go/stop action."

2016-05-30 - Setcoll -

Definition. [Consistency in the Collecting Semantics]

Decision table T is called **consistent with conflict relation** $\normalfont{\checkmark}$ in the collecting semantics (under conflict axiom φ_{confl}) if and only if there are no conflicting actions in the effect of jointly enabled transitions, i.e. if

$$\models \mathcal{F}_{coll}(T) \land \varphi_{confl} \rightarrow \bigwedge_{(a_1, a_2) \in \mathcal{I}} \neg (a_1 \land a_2).$$

2016-05-30 - Setcoll -

37/42

Discussion

- 2016-05-30 - main -

"Es ist aussichtslos, den Klienten mit formalen Darstellungen zu kommen; [...]"

("It is futile to approach clients with formal representations") (Ludewig and Lichter, 2013)

- ...of course it is vast majority of customers is not trained in formal methods.
- formalisation is (first of all) for developers analysts have to translate for customers.
- formalisation is the description of the analyst's understanding, in a most precise form.
 Precise/objective: whoever reads it whenever to whomever, the meaning will not change.
- Recommendation: (Course's Manifesto?)
 - use formal methods for the most important/intricate requirements (formalising all requirements is in most cases not possible),
 - use the most appropriate formalism for a given task,
 - use formalisms that you know (really) well.

39/42

Tell Them What You've Told Them...

- Decision Tables: an example for a formal requirements specification language with
 - formal syntax,
 - formal semantics.
- Analysts can use DTs to
 - formally (objectively, precisely)

describe their understanding of requirements. Customers may need translations/explanation!

- DT properties like
 - (relative) completeness, determinism,
 - uselessness,

can be used to analyse requirements.

The discussed DT properties are decidable, there can be automatic analysis tools.

- Domain modelling formalises assumptions on the context of software; for DTs:
 - conflict axioms, conflict relation,

Note: wrong assumptions can have serious consequences.

References

41/42

References

Balzert, H. (2009). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. Spektrum, 3rd edition

Bjørner, D. (2006). Software Engineering, Vol. 3: Domains, Requirements and Software Design. Springer-Verlag.

Kopetz, H. (2011). What I learned from Brian. In Jones, C. B. et al., editors, *Dependable and Historic Computing*, volume 6875 of *LNCS*. Springer.

Lovins, A. B. and Lovins, L. H. (2001). *Brittle Power - Energy Strategy for National Security*. Rocky Mountain Institute.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Wikipedia (2015). Lufthansa flight 2904. id 646105486, Feb., 7th, 2015.

- UIP--02-30 - Waln -