Softwaretechnik / Software-Engineering

Lecture 13: Behavioural Software Modelling

2016-06-27

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

presentation follows (Olderog and Dierks, 2008) Communicating Finite Automata

> VL11 • Introduction and Vocabulary Software Modelling
> (I) were and weapoints, the 410 were
> (ii) model-dismo-based software engineering
> (iii) Unfield Modeling Lunguage (UML)
> (iv) modeling structure
> (ii) structure
> (ii) simplified object diagrams
> (ii) simplified) object constraint logic (OCL)
> (iii) dismplified) object constraint logic (OCL) Principles of Design (i) modularity
> (ii) separation of concerns
> (iii) information hiding and data encapsulation
> (iv) abstract data types, object orientation

VL 15 • Design Patterns
• Testing: Introduction (v) modeling behaviour
a) communicating fine automata \$\int\ \ext{Ex. 1/2}\$
b) Uppaal query language
c) implementing GFA
d) an outlook on UML State Machines

} Ex. 3

Content

Topic Area Architecture & Design: Content

Communicating Finite Automata (CFA)
 concrete and abstract syntax.
 networks of CFA.
 operational semantics.

Transition Sequences

 Deadlock, Reachability Uppaal

→ e tool demo (simulator).→ e query language.→ e CFA model-checking.

drive to configuration.
scenarios.
invariants.
tool demo (verifier). CFA at Work

CFA vs. Software

Integer Variables and Expressions, Resets

Channel Names and Actions

* A set $(a,b\in)$ Chan of channel names or channels.

To define communicating finite automata, we need the following sets of symbols:

• Let $(v,w\in)$ V be a set of ((finite domain) integer) variables. By $(\varphi\in)$ $\Psi(V)$ we denote the set of integer expressions over V using function symbols $+,-,\dots,>,\leq,\dots,>,\leq,\dots$

* A modification on v is $\begin{pmatrix} \mathbf{c} \cdot \mathbf{r}_{p} \mathbf{c}_{q} \mathbf{c}_{p} \end{pmatrix}$ $v \in V$, $\varphi \in \Psi(V)$. $\forall \mathbf{v} \cdot \mathbf{c}_{q} \mathbf{c}_{p} \mathbf{c$

* By \vec{r} we denote a finite list $\langle r_1,\dots,r_n\rangle, n\in\mathbb{N}_0$, of modifications $r_i\in R(V)$. $\langle \cdot \rangle$ is the empty list (n=0). (r peak vector) or (r update vector)

 $\bullet\;$ For each alphabet B, we define the corresponding action set

 $B_{?!} := \{a? \mid a \in B\} \cup \{a! \mid a \in B\} \cup \{\tau\}.$

Note: Chan; = Act.

• An alphabet B is a set of channels, i.e. $B \subseteq \mathsf{Chan}$.

 $\bullet \ \ (\alpha,\beta \in) \ Act := \{a? \mid a \in \mathsf{Chan}\} \cup \{a! \mid a \in \mathsf{Chan}\} \cup \{\tau\} \ \text{is the set of actions}$ • $au \not\in$ Chan represents an internal action, not visible from outside. For each channel a ∈ Chan, two visible actions:
 a? and a! denote input and output on the channel (a?, a! ∉ Chan).

5/42

4/42

6/42

3/42

 $\, \bullet \,$ By $R(V)^*$ we denote the set of all such finite lists of modifications.

Communicating Finite Automata

Definition. A communicating finite automaton is a structure $\mathcal{A} = (L, B, V, E, \ell_{ini})$

- $(\ell \in) L$ is a finite set of <u>locations</u> (or control states).
- V: a set of data variables, $E\subseteq L\times B_{p,q}\circ p(Y)\times p(Y)^*\times L$: a finite set of directed edges such that $(L,\alpha,\varphi,\vec{n},\vec{n},\vec{n})\in E \wedge \mathrm{chan}(\alpha)\in U \implies \varphi=tue.$

Edges $(\ell,\alpha,\varphi,\vec{r},\ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of modifications.

Example

(hulf_idle, OK!, tre, < chake_ and blad == floo, ->, idle)

Operational Semantics of Networks of FCA

Helpers: Extended Valuations and Effect of Resets

ullet $\nu:V
ightarrow \mathscr{D}(V)$ is a valuation of the variables,

• A valuation ν of the variables canonically assigns an integer value $\nu(\varphi)$ to each integer expression $\varphi\in\Phi(V)$.

• An internal transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau_i} \langle \vec{\ell}, \nu' \rangle$ occurs if there is $i \in \{1, \dots, n\}$ and $\bullet \ \ \text{there is a τ-edge} \ (\vec{\ell_i},\tau,\varphi,\vec{r_i},\ell_i) \in E_i \ \text{such that} \qquad \vec{\pmb{\mathcal{L}}} \circ \left(\pmb{\ell_i},...,\pmb{\ell_i}...,\pmb{\ell_i}.\right)$ • $\vec{\ell}^j = \vec{\ell}[\ell_i := \ell_i^j]$. $\langle \hat{z}, y \rangle = \langle (m, k), x = \theta \rangle \xrightarrow{\sum_{i=1}^{n} ((m, k), y = k)} = \langle \hat{c}, y \rangle$ $\langle \hat{\mathcal{C}}, v \rangle = \langle (\omega, k)_{/X}, t \rangle \xrightarrow{\Sigma} \langle (\eta, k)_{/X} = \partial \lambda \rangle$

 $\begin{cases} \nu[v:=\varphi] \, a) := \begin{cases} \nu(\varphi), \text{if } a=v,\\ \nu(a), \text{otherwise} \end{cases}$ • We set $\nu[\langle v_1,\ldots,v_n\rangle] := \nu[v_1]\ldots[v_n] = (((\nu[v_1])[v_1])\ldots)[v_n]$. That is, modifications are executed sequentially from left to right

10/42

• Effect of modification $r \in R(V)$ on ν , denoted by $\nu[r]$:

 $\bullet \models \subseteq (V \to \mathscr{D}(V)) \times \Phi(V) \text{ is the canonical satisfaction relation}$ between valuations and integer expressions from $\Phi(V)$. eg. $\mathcal{P} \models \varkappa > 0$

Operational Semantics of Networks of FCA

```
• An internal transition \langle \vec{\ell}, \nu \rangle \xrightarrow{\pi} \langle \vec{\ell'}, \nu' \rangle occurs if there is i \in \{1, \dots, n\} and
```

- * there is a redge $(\ell_n, r, \varphi, \vec{r}, \ell') \in E_i$ such that $v = \nu \models \varphi$. "source values than so kefts good " $v \models q \mid \ell_i \mid = \ell_i \mid$, "actionaries . I charges location" $v \neq \nu \models v \mid \ell_i \mid$. "by is $\nu \mid underfined$ by \vec{r} "
- . A synchronisation transition $(\vec{\ell}, \nu) \stackrel{L}{\hookrightarrow} (\vec{\ell}, \nu')$ occurs if there are $i, j \in \{1, \dots, n\}$ with $i \neq j$ and
- $\begin{array}{l} \bullet \ \ \text{there are edges} \ (\ell_i,\underline{b}_i,\varphi_i,\vec{r_i},\ell_i') \in E_i \ \text{and} \ (\ell_j,\underline{b}_i',\varphi_j,\vec{r_j},\ell_j') \in E_j \ \text{such that} \\ \bullet \ \ \nu \models \varphi_i \wedge \varphi_j, \end{array}$

This style of communication is known under the names "rendezvous", "synchronous", "blocking" communication (and possibly many others). • $\ell = \ell[\ell_1 := \ell_1](\ell_2 := \ell_2)$. • $\nu' = (\nu[\ell_1])(\ell_1)$. Solution updates first

Operational Semantics of Networks of FCA

$$\begin{split} \mathcal{T}(\mathcal{C}(A_1,\dots,A_n)) &= (Conf_1,\Omega_{\mathrm{CM}} \cup \{r_1\}, \binom{\triangle_1}{2}\} \cup \in \mathrm{Chan} \cup \{r_1\}, C_{mi}) \\ \text{where} & \text{leader} & \text{leader} & \text{leader} & \text{leader} & \text{leader} \\ & V &= \bigcup_{i=1}^m V_{i,mi} & \text{leader} & \mathcal{F}^*(\mathcal{C}_{r_i,r_i},\mathcal{C}_r) & \text{reference} \\ & \circ & Conf &= \{\langle \vec{\ell}, \mathcal{S}_f \mid \ell_i \in L_i, \nu : V \to \mathcal{G}(V) \}. \end{split}$$
The operational semantics of the network of FCA $\mathcal{C}(A_1,\dots,A_n)$ is the jabeled transition system Definition. Let $A_i=(L_i,B_i,V_i,E_i,\ell_{im(i)}), 1\leq i\leq n$, be communicating finite automata. • $C_{ini} = \langle \vec{\ell}_{ini}, \nu_{ini} \rangle$ with $\nu_{ini}(v) = 0$ for all $v \in V$. The transition relation consists of transitions of the following two types.

Transition Sequences

Example of A

ChoicePanel: (simplified)

SLOCKIEWIEW OLDENBURG (EUS) (S)

- * A transition sequence of $\mathcal{C}(\mathcal{A}_1,\dots,\mathcal{A}_n)$ is any infinite sequence of the form $\underbrace{\langle (\tilde{\mathcal{E}}_0,\nu_0) \xrightarrow{\Delta_1} \langle (\tilde{\mathcal{E}}_1,\nu_1) \xrightarrow{\Delta_2} \langle (\tilde{\mathcal{E}}_0,\nu_2) \xrightarrow{\Delta_2} \dots}$ with
- $* \ \, \text{for all } i \in \mathbb{N}, \text{there is} \xrightarrow{\lambda_{i+1}} \inf \mathcal{T}(\mathcal{C}(A_1, \ldots, A_n)) \text{ with } \langle \vec{\ell}_i, \nu_\ell \rangle \xrightarrow{\lambda_{i+1}} \langle \vec{\ell}_{i+1}, \nu_{i+1} \rangle.$ • $(\vec{\ell}_0, \nu_0) = C_{ini}$.

 $\left\langle \left(\frac{dL_{1}}{dL_{1}} \right), \frac{dL_{1}}{dL_{2}} \right\rangle \left\langle \left(\frac{dL_{1}}{dL_{1}} \right), \frac{dL_{2}}{dL_{2}} \right\rangle \left\langle \left(\frac{dL_{1}}{dL_{2}} \right), \frac{dL_{1$ water probled filling.

updat/

vectory

vectory

vectory User: CSON WATER

the interior ((a-x1,e), 2+1/2 ...

but interior (20 and by 10 and 10 comm. portions for 50 and one of the control of the contr

12/42

Tool Demo

Uppaal

(Larsen et al., 1997; Behrmann et al., 2004)

15/42

16/42

The Uppaal Query Language

Consider $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \dots, \mathcal{A}_n)$ over data variables V .

 $atom::=A_i,\ell\mid\varphi\mid \text{deadlock}$ where $\ell\in L_i$ is a location and φ an expression over V . • configuration formulae:

 existential path formulae: $term ::= atom \mid \mathtt{not} \ term \mid term_1 \ \mathtt{and} \ term_2$

 $e ext{-}formula ::= \exists \lozenge \ term \ | \ \exists \Box \ term$

(exists finally)
(exists globally)

a-formula ::= $\forall \Diamond term$ $\mid \forall \Box term$ $\mid term_1 \rightarrow term_2$ (always finally)
(always globally)
(leads to)

formulae (or queries):

 $F ::= e ext{-}formula \mid a ext{-}formula$

Deadlock, Reachability

• A configuration (ℓ, ν) of $\mathcal{C}(A_1, \dots, A_n)$ is called deadlock if and only if there are no transitions from (ℓ, ν) , i.e. if

 $(\exists \lambda \in \Lambda \ \exists (\ell',\nu') \in \mathit{Conf} \bullet (\ell,\nu) \ \exists (\ell',\nu') \}.$ The network $\mathcal{C}(A_1,\dots,A_n)$ is said to have a deadlock if and only if there is a configuration (μ,ν) which is a deadlock. For the deadlock of the said of the sa

• A configuration $\langle \vec{\ell}, \nu \rangle$ is called reachable (in $\mathcal{C}(A_1, \dots, A_n)$) if and only if there is a transition sequence of the form

$$\begin{split} &\langle \vec{c}_a, \nu_a \rangle \stackrel{\Delta_b}{\to} \langle \vec{c}_i, \nu_t \rangle \stackrel{\Delta_b}{\to} \langle \vec{c}_a, \nu_t \rangle \stackrel{\Delta_b}{\to} \langle \vec{c}_a, \nu_a \rangle = \langle \vec{c}_i, \nu_t \rangle, \\ &\text{A location } \ell \in L_i \text{ is called reachable if and only if any configuration } \langle \vec{c}_i, \nu \rangle \text{ with } \underline{f}_i \equiv \underline{\ell} \text{ is reachable, i.e. there exist ℓ and ν such that $\ell_i = \ell$ and $\langle \vec{c}_i, \nu \rangle$ is reachable.} \end{split}$$

Satisfaction of Uppaal Queries by Configurations

 $\langle \overline{\ell}, \nu \rangle = \langle (\ell_1, \dots, \ell_n), \nu \rangle$ of a network $C(A_1, \dots, A_n)$ and formulae F of the Uppaal logic is defined inductively as follows: The satisfaction relation between configurations

iff le,v) is a decodlock

ショチ

• $\langle \vec{\ell}, \nu \rangle \models term_1 \text{ and } term_2$ $\bullet \ \langle \vec{\ell}, \nu \rangle \models \mathtt{not} \ \mathit{term}$ iff $\langle \hat{e}, p \rangle \models \star com_q$ and $\langle \hat{e}, p \rangle \models \star com_q$ iff (ē,p) # tem • $\langle \vec{\ell}, \nu \rangle \models \varphi$ • $\langle \vec{\ell}, \nu \rangle \models A_i.\ell$ $\bullet \ \langle \vec{\ell}, \nu \rangle \models \mathtt{deadlock}$

18/42

Example: Computation Paths vs. Computation Tree

Example: Computation Paths vs. Computation Tree

 $\langle \langle \text{water_selected}, 1 \rangle, \frac{1}{n+1} \rangle$ $\langle \langle \text{request_sent}, 1 \rangle, \frac{1}{n+1} \rangle$ $\langle \langle \text{request_sent}, 1 \rangle, \frac{1}{n+1} \rangle$ $\langle \langle \text{hat_idle}, 1 \rangle, \frac{1}{n+1} \rangle$

 $\begin{array}{c} \langle (\mathsf{sof} \llcorner \mathsf{selected}, \mathsf{I}), \dots \rangle \\ \downarrow \\ \downarrow \\ \uparrow \\ \langle (\mathsf{reques} \llcorner \mathsf{sent}, \mathsf{I}), \dots \rangle \\ \downarrow \\ \downarrow \\ \uparrow \\ \langle (\mathsf{talf_ide}, \mathsf{I}), \dots \rangle \\ \downarrow \\ \downarrow \\ \langle (\mathsf{talf_ide}, \mathsf{I}), \dots \rangle \\ \end{array}$

19/42

Satisfaction of Uppaal Queries by Configurations

Example: Computation Paths vs. Computation Graph

Exists finally: $\{ \vec{a}_0, \nu_0 \} \models \exists 0 \ term \\ \exists i \in \mathbb{N}_0 \bullet \xi \restriction \vdash term \\ \exists i \in \mathbb{N}_0 \bullet \xi \restriction \vdash term$

"some configuration satisfying term is reachable"

21/42

 $\begin{array}{c} \tau \\ \hline \\ \langle (\text{request_sent}, \mathfrak{t}), \begin{array}{c} \frac{s + 1}{s + 1} \\ \\ \downarrow \\ \langle (\text{half_idle}, \mathfrak{t}), \begin{array}{c} s + 1 \\ \\ s + 1 \\ \\ s + 0 \end{array} \rangle \end{array}$

20/42

Satisfaction of Uppaal Queries by Configurations

Exists globally: $* \langle \vec{e}_0, \nu_0 \rangle \models \exists \Box \ \textit{term} \qquad \text{iff} \quad \exists \ \textit{path} \ \in \text{No} \bullet \ \xi' \models \textit{term} \\ \forall i \in \text{No} \bullet \ \xi' \models \textit{term}$

"on some computation path, all configurations satisfy $\it term$ "

Example: $\langle \vec{\ell}_0, \nu_0 \rangle \models \exists \Box \varphi$

Satisfaction of Uppaal Queries by Configurations

Always globally:

• $\langle \vec{\ell}_0, \nu_0 \rangle \models \forall \Box term$ iff $\langle \vec{e}_0, \nu_0 \rangle \not\models \exists \lozenge \neg term$

"not (some configuration satisfying $\neg term$ is reachable)" or. "all reachable configurations satisfy term"

Always finally:

• $\langle \vec{\ell}_0, \nu_0 \rangle \models \forall \Diamond term$ iff $\langle \vec{\ell}_0, \nu_0 \rangle \not\models \exists \Box \neg term$

"not (on some computation path, all configurations satisfy $\neg lerm$)" or: "on all computation paths, there is a configuration satisfying lerm"

23/42

Satisfaction of Uppaal Queries by Configurations

CFA Model-Checking

Definition. Let $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \dots, \mathcal{A}_n)$ be a network and F a query.

(ii) The model-checking problem for \mathcal{N} and F is to decide whether $(\mathcal{Y},F)\in \models$. (i) We say N satisfies F, denoted by $\Re = F$, if and only if $C_{ini} \models F$.

• $\langle \vec{\ell}_0, \nu_0 \rangle \models term_1 \longrightarrow term_2$ iff \forall path ξ of \mathcal{N} starting in $\langle \vec{b}_0, \nu_0 \rangle \ \forall i \in \mathbb{N}_0 \bullet \xi^i \models term_1 \implies \xi^i \models \forall \Diamond \ term_2$

"on all paths, from each configuration satisfying term;, a configuration satifying term; is reachable" (response pattern)

Example: $\langle \vec{\ell}_0, \nu_0 \rangle \models \varphi_1 \longrightarrow \varphi_2$

24/42

Proposition.

The model-checking problem for communicating finite automata is decidable.

25/42

Model Architecture — Who Talks What to Whom

Content

• tool demo (simulator).

—• query language.

• CFA model-checking.

 Deadlock, Reachability Transition Sequences

Uppaal

Communicating Finite Automata (CFA)
Concrete and abstract syntax.
Control of CFA
Concrete and abstract syntax.
Concrete and abstract syntax.
Concrete and abstract syntax.

- drive to configuration.
- scenarios.
- invariants.
- tool demo (verifier).
- CFA vs. Software

26/42

CFA and Queries at Work

- Shared variables:
 bool water_enabled;
 int w = 3, s = 3, t = 3;
- Note: Our model does not use scopes ("information hiding") for channels.
 That is, "Service" could send "WATER" if the modeler wanted to.

27/42

Model Architecture — Who Talks What to Whom

- * Shared variables:

 * bool vasez_mabled, soft_anabled, tea_embled;

 * bot u = 3, s = 3, t = 3;

 * Note Our model does not use scopes ("rformation hiding") for channels.

 Thatis, Service could send VAATER if the modeler wanted to.

28/42

Design Sanity Check: Drive to Configuration

Question: Is is (at all) possible to have no water in the vending machine model?
 (Otherwise, the design is definitely broken.)

STOEMEWERN CO

- Approach: Check whether a configuration satisfying
- w = 0

is reachable, i.e. check

 $N_{\rm VM} \models \exists \lozenge \, w = 0.$ for the vending machine model $N_{\rm VM}$

29/42

References

41/42

Berman, G., Dacké, and lama, K.G. (DOO). Autorillo repasil/OO(4-17). Rehnolingsof, Alberglinkering, Demonk.
Luora, K.G., Peterson, P., and Y. W. (1975). Lawse, a na halvé a hemotionoliporati of Solemer bolde friendosty. Proside (1) 194-192.
Ludwej, J. and Jordone (1, (10)). Soleme Rejoyaning dyschisterings. J. action.
Oderrog E.R. and Denis Int (2008). Real-finer Systems - Formal Specification and Automatic Helita Bon. Carbridge University Press.

References