
–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 15: Architecture and Design Patterns

2015-07-04

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Architecture & Design: Content
–

15
–

2
0

15
-0

7-
0

4
–

S
b

lo
ck

co
n

te
n

t
–

2/55

• Introduction and Vocabulary

• Principles of Design

(i) modularity

(ii) separation of concerns

(iii) information hiding and data encapsulation

(iv) abstract data types, object orientation

• Software Modelling
(i) views and viewpoints, the 4+1 view

(ii) model-driven/-based software engineering

(iii) Unified Modelling Language (UML)

(iv) modelling structure

a) (simplified) class diagrams

b) (simplified) object diagrams

c) (simplified) object constraint logic (OCL)

(v) modelling behaviour

a) communicating finite automata

b) Uppaal query language

c) implementing CFA

d) an outlook on UML State Machines

• Design Patterns

• Testing: Introduction

VL 11

...

VL 12

...

VL 13

...

VL 14
...

VL 15
...

westphal
Bleistift

westphal
Bleistift

Content (Part I)
–

15
–

2
0

15
-0

7-
0

4
–

S
co

n
te

n
t

–

3/55

• Architecture Patterns

• Layered Architectures,

• Pipe-Filter,

• Model-View-Controller.

• Design Patterns

• Strategy,

• Observer, State, Mediator,

• Singleton, Memento.

• Inversion of control.

• Libraries and Frameworks

• Quality Criteria on Architectures

• Development Approaches,

• Software Entropy.

Architecture Patterns

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

4/55

Introduction
–

15
–

2
0

15
-0

7-
0

4
–

S
ar

ch
–

5/55

• Over decades of software engineering,
many clever, proved and tested designs
of solutions for particular problems emerged.

• Question: can we generalise, document and re-use these designs?

• Goals:

• “don’t re-invent the wheel”,

• benefit from “clever”, from “proven and tested”, and from “solution”.

architectural pattern — An architectural pattern expresses a fundamental
structural organization schema for software systems.

It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them.

Buschmann et al. (1996)

Introduction Cont’d
–

15
–

2
0

15
-0

7-
0

4
–

S
ar

ch
–

6/55

architectural pattern — An architectural pattern expresses a fundamental
structural organization schema for software systems.

It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them.

Buschmann et al. (1996)

• Using an architectural pattern

• implies certain characteristics or properties of the software
(construction, extendibility, communication, dependencies, etc.),

• determines structures on a high level of the architecture,
thus is typically a central and fundamental design decision.

• The information that (where, how, . . .) a well-known architecture / design pattern
is used in a given software can

• make comprehension and maintenance significantly easier,

• avoid errors.

westphal
Bleistift

Layered Architectures

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

7/55

Example: Layered Architectures
–

15
–

2
0

15
-0

7-
0

4
–

S
la

ye
re

d
–

8/55

• (Züllighoven, 2005):

A layer whose components only interact with components
of their direct neighbour layers is called protocol-based layer.

A protocol-based layer hides all layers beneath it
and defines a protocol which is (only) used by the layers directly above.

• Example: The ISO/OSI reference model.

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

data

packets

frames

bits

westphal
Bleistift

Example: Layered Architectures Cont’d
–

15
–

2
0

15
-0

7-
0

4
–

S
la

ye
re

d
–

9/55

• Object-oriented layer: interacts with layers directly (and possibly further) above and below.

• Rules: the components of a layer may use

• only components of the protocol-based layer directly beneath, or

• all components of layers further beneath.

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango

Example: Layered Architectures Cont’d
–

15
–

2
0

15
-0

7-
0

4
–

S
la

ye
re

d
–

9/55

• Object-oriented layer: interacts with layers directly (and possibly further) above and below.

• Rules: the components of a layer may use

• only components of the protocol-based layer directly beneath, or

• all components of layers further beneath.

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango

Example: Three-Tier Architecture
–

15
–

2
0

15
-0

7-
0

4
–

S
la

ye
re

d
–

10/55

Desktop Host

presentation tier

Application Server

(business) logic tier

data tier

Database Server

DBMS

(Ludewig and Lichter, 2013)

• presentation layer (or tier):

user interface; presents information obtained from

the logic layer to the user, controls interaction with

the user, i.e. requests actions at the logic layer ac-

cording to user inputs.

• logic layer:

core system functionality; layer is designed without

information about the presentation layer, may only

read/write data according to data layer interface.

• data layer:

persistent data storage; hides information about

how data is organised, read, and written, offers par-

ticular chunks of information in a form useful for the

logic layer.

• Examples: Web-shop, business software (enterprise resource planning), etc.

Layered Architectures: Discussion
–

15
–

2
0

15
-0

7-
0

4
–

S
la

ye
re

d
–

11/55

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data link

1. Physical

data

packets

frames

bits

GNOME etc.

 Applications

GTK+

GDK ATK

Cairo GLib

GIOPango

Desktop Host

presentation tier

Application Server

(business) logic tier

data tier

Database Server

DBMS

(Ludewig and Lichter, 2013)

• Advantages:

• protocol-based:
only neighouring layers are coupled, i.e. components of these layers interact,

• coupling is low, data usually encapsulated,

• changes have local effect (only neighbouring layers affected),

• protocol-based: distributed implementation often easy.

• Disadvantages:

• performance (as usual) — nowadays often not a problem.

westphal
Bleistift

Pipe-Filter

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

12/55

Example: Pipe-Filter
–

15
–

2
0

15
-0

7-
0

4
–

S
p

ip
e

–

13/55

Example: Compiler

lexical analysis
(lexer)

syntactical analysis
(parser)

semantical
analysis

code
generation

ASCII Tokens AST dAST

Sourcecode

Objectcode

Errormessages

Example: UNIX Pipes

ls -l | grep Sarch.tex | awk ’{ print $5 }’

• Disadvantages:

• if the filters use a common data exchange format, all filters may need changes
if the format is changed, or need to employ (costly) conversions.

• filters do not use global data, in particular not to handle error conditions.

westphal
Bleistift

westphal
Bleistift

Model-View-Controller

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

14/55

Example: Model-View-Controller
–

15
–

2
0

15
-0

7-
0

4
–

S
m

vc
–

15/55

controller view

model

seesuses

change of
visualisation

manipulation
of data

notification of
updates

access to
data

h
tt

p
s:

//
co

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
/

w
ik

i/
F

ile
:M

as
ch

in
e

n
le

it
st

an
d

_
K

W
Z

.jp
g

D
e

rg
e

n
au

e
,C

C
-B

Y
-S

A
-2

.5

https://commons.wikimedia.org/wiki/File:Maschinenleitstand_KWZ.jpg
westphal
Bleistift

westphal
Bleistift

Example: Model-View-Controller
–

15
–

2
0

15
-0

7-
0

4
–

S
m

vc
–

15/55

controller view

model

seesuses

change of
visualisation

manipulation
of data

notification of
updates

access to
data

h
tt

p
s:

//
co

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
/

w
ik

i/
F

ile
:M

as
ch

in
e

n
le

it
st

an
d

_
K

W
Z

.jp
g

D
e

rg
e

n
au

e
,C

C
-B

Y
-S

A
-2

.5

• Advantages:

• one model can serve multiple view/controller pairs;

• view/controller pairs can be
added and removed at runtime;

• model visualisation always
up-to-date in all views;

• distributed implementation (more or less) easily.

• Disadvantages:

• if the view needs a lot of data, updating the view can be inefficient.

https://commons.wikimedia.org/wiki/File:Maschinenleitstand_KWZ.jpg

Design Patterns

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

16/55

Design Patterns
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

17/55

• In a sense the same as architectural patterns, but on a lower scale.

• Often traced back to (Alexander et al., 1977; Alexander, 1979).

Design patterns ... are descriptions of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common design

structure that make it useful for creating a reusable object-oriented design.

(Gamma et al., 1995)

Example: Pattern Usage and Documentation
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

18/55

Painter SimpleUpdateStrategy

DrawingView Tool

DrawingEditor CreationTool SelectionTool

Drawing Figure

Strategy: Strategy Strategy: ConcreteStrategy

Strategy: ConcreteContext
Observer: Observer
Mediator: Colleague
State: StateContext

Mediator: Colleague
State: State

Mediator: Mediator State: ConcreteState State: ConcreteState

Observer: Subject
Mediator: Colleague

Pattern usage in JHotDraw framework (JHotDraw, 2007) (Diagram: (Ludewig and Lichter, 2013))

Example: Strategy
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

19/55

Strategy

Problem The only difference between similar classes
is that they solve the same problem by different algorithms.

Solution

• Have one class StrategyContext with all common operations.

• Another class Strategy provides signatures
for all operations to be implemented differently.

• From Strategy, derive one sub-class ConcreteStrategy
for each implementation alternative.

• StrategyContext uses concrete Strategy-objects
to execute the different implementations via delegation.

Structure

StrategyContext

+ contextInterface()

Strategy

+ algorithm()

ConcreteStrategy1

+ algorithm()

ConcreteStrategy2

+ algorithm()

Example: Pattern Usage and Documentation
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

20/55

Painter SimpleUpdateStrategy

DrawingView Tool

DrawingEditor CreationTool SelectionTool

Drawing Figure

Strategy: Strategy Strategy: ConcreteStrategy

Strategy: ConcreteContext
Observer: Observer
Mediator: Colleague
State: StateContext

Mediator: Colleague
State: State

Mediator: Mediator State: ConcreteState State: ConcreteState

Observer: Subject
Mediator: Colleague

Pattern usage in JHotDraw framework (JHotDraw, 2007) (Diagram: (Ludewig and Lichter, 2013))

Strategy

Problem The only difference between similar classes
is that they solve the same problem by different algorithms.

Solution . . .

Structure

StrategyContext

+ contextInterface()

Strategy

+ algorithm()

ConcreteStrategy1

+ algorithm()

ConcreteStrategy2

+ algorithm()

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Example: Pattern Usage and Documentation
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

21/55

Painter SimpleUpdateStrategy

DrawingView Tool

DrawingEditor CreationTool SelectionTool

Drawing Figure

Strategy: Strategy Strategy: ConcreteStrategy

Strategy: ConcreteContext
Observer: Observer
Mediator: Colleague
State: StateContext

Mediator: Colleague
State: State

Mediator: Mediator State: ConcreteState State: ConcreteState

Observer: Subject
Mediator: Colleague

Pattern usage in JHotDraw framework (JHotDraw, 2007) (Diagram: (Ludewig and Lichter, 2013))

Observer

Problem Multiple objects need to adjust their state
if one particular other object is changed.

Example All GUI object displaying a file system need to change
if files are added or removed.

westphal
Bleistift

Example: Pattern Usage and Documentation
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

21/55

Painter SimpleUpdateStrategy

DrawingView Tool

DrawingEditor CreationTool SelectionTool

Drawing Figure

Strategy: Strategy Strategy: ConcreteStrategy

Strategy: ConcreteContext
Observer: Observer
Mediator: Colleague
State: StateContext

Mediator: Colleague
State: State

Mediator: Mediator State: ConcreteState State: ConcreteState

Observer: Subject
Mediator: Colleague

Pattern usage in JHotDraw framework (JHotDraw, 2007) (Diagram: (Ludewig and Lichter, 2013))

State

Problem The behaviour of an object depends on its (internal) state.

Example The effect of pressing the room ventilation button depends
(among others?) on whether the ventilation is on or off.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Example: Pattern Usage and Documentation
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

21/55

Painter SimpleUpdateStrategy

DrawingView Tool

DrawingEditor CreationTool SelectionTool

Drawing Figure

Strategy: Strategy Strategy: ConcreteStrategy

Strategy: ConcreteContext
Observer: Observer
Mediator: Colleague
State: StateContext

Mediator: Colleague
State: State

Mediator: Mediator State: ConcreteState State: ConcreteState

Observer: Subject
Mediator: Colleague

Pattern usage in JHotDraw framework (JHotDraw, 2007) (Diagram: (Ludewig and Lichter, 2013))

Mediator

Problem Objects interacting in a complex way should only be loosely coupled
and be easily exchangeable.

Example Appearance and state of different means of interaction (menus,
buttons, input fields) in a graphical user interface (GUI) should be
consistent in each interaction state.

westphal
Bleistift

Other Patterns: Singleton and Memento
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

22/55

Singleton

Problem Of one class, exactly one instance should exist in the system.

Example Print spooler.

Memento

Problem The state of an object needs to be archived in a way that allows
to re-construct this state without violating the principle of data
encapsulation.

Example Undo mechanism.

Meta Design Pattern: Inversion of Control
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

23/55

“don’t call us, we’ll call you”

• User interfaces, for example:

• define button_callback();

• register method with UI-framework (→ later),

• whenever button is pressed (handled by UI-framework),
button_callback() is called and does its magic.

• Also found in MVC and observer patterns:
model notifies view, subject notifies observer.

vs.

• Classical (small) embedded controller software:

• while (true) {

// read inputs

// compute updates

// write outputs

}

Design Patterns: Discussion
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sp

at
–

24/55

“The development of design patterns is considered to be one of the most
important innovations of software engineering in recent years.”

(Ludewig and Lichter, 2013)

• Advantages:

• (Re-)use the experience of others and employ well-proven solutions.

• Can improve on quality criteria like changeability or re-use.

• Provide a vocabulary for the design process,
thus facilitates documentation of architectures and discussions about architecture.

• Can be combined in a flexible way,
one class in a particular architecture can correspond to roles of multiple patterns.

• Helps teaching software design.

• Disadvantages:

• Using a pattern is not a value as such.
Having too much global data cannot be justified by “but it’s the pattern Singleton”.

• Again: reading is easy, writing need not be.

Here: Understanding abstract descriptions of design patterns or their use in existing software may be
easy — using design patterns appropriately in new designs requires (surprise, surprise) experience.

westphal
Bleistift

Libraries and Frameworks

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

25/55

Libraries and Frameworks
–

15
–

2
0

15
-0

7-
0

4
–

S
lib

fr
am

–

26/55

• (Class) Library:
a collection of operations or classes offering generally usable functionality in a re-usable way.

Examples:

• libc — standard C library (is in particular abstraction layer for operating system functions),

• GMP — GNU multi-precision library, cf. Lecture 6.

• libz — compress data.

• libxml — read (and validate) XML file, provide DOM tree.

• Framework: class hierarchies which determine a generic solution for similar problems in a
particular context.

• Example: Android Application Framework

h
tt

p
:/

/
d

e
ve

lo
p

e
r.a

n
d

ro
id

.c
o

m
/

tr
ai

n
in

g
/

b
as

ic
s/

ac
ti

vi
ty

-l
if

e
cy

cl
e

/
st

ar
ti

n
g.

h
tm

l

http://developer.android.com/training/basics/activity-lifecycle/starting.html

Libraries and Frameworks
–

15
–

2
0

15
-0

7-
0

4
–

S
lib

fr
am

–

26/55

• (Class) Library:
a collection of operations or classes offering generally usable functionality in a re-usable way.

Examples:

• libc — standard C library (is in particular abstraction layer for operating system functions),

• GMP — GNU multi-precision library, cf. Lecture 6.

• libz — compress data.

• libxml — read (and validate) XML file, provide DOM tree.

• Framework: class hierarchies which determine a generic solution for similar problems in a
particular context.

• Example: Android Application Framework

• The difference lies in flow-of-control:
library modules are called from user code, frameworks call user code.

• Product line: parameterised design/code
(“all turn indicators are equal, turn indicators in premium cars are more equal”).

• For some application domains, there are reference architectures (games, compilers).

Quality Criteria on Architectures

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

28/55

Quality Criteria on Architectures
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sq

–

29/55

• testability

• architecture design should keep testing (or formal verification) in mind
(buzzword “design for verification”),

• high locality of design units may make testing significantly easier (module testing),

• particular testing interfaces may improve testability
(e.g. allow injection of user input not only via GUI; or provide particular log output for tests).

• changeability, maintainability

• most systems that are used need to be changed or maintained,
in particular when requirements change,

• risk assessment: parts of the system with high probability for changes should be designed
such that changes are possible with acceptable effort (abstract, modularise, encapsulate),

• portability

• porting: adaptation to different platform (OS, hardware, infrastructure).

• systems with a long lifetime may need to be adapted to different platforms over time,
infrastructure like databases may change (→ introduce abstraction layer).

• Note:

• a good design (model) is first of all supposed to support the solution,

• it need not be a good domain model.

westphal
Bleistift

Development Approaches
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sq

–

30/55

task, problem

outside-in

inside-out

top-down

bottom-up

u
se

r
in

te
rf

ac
e

system software, hardware

• top-down risk: needed functionality hard to realise on target platform.

• bottom-up risk: lower-level units do not “fit together”.

• inside-out risk: user interface needed by customer hard to realise with existing system,

• outside-in risk: elegant system design not reflected nicely in (already fixed) UI.

Software Entropy
–

15
–

2
0

15
-0

7-
0

4
–

S
d

e
sq

–

32/55

• Lehman’s Laws of Software Evolution (Lehman and Belady, 1985):

(i) A program that is used will be modified.

(ii) When a program is modified, its complexity will increase,
provided that one does not actively work against this.

• (Jacobson et al., 1992): Software entropy E (measure of disorder), claim:

∆E ∼ E

• “when designing a system with the intention of it being maintainable,
we try to give it the lowest software entropy possible from the beginning.”

• Work against disorder: re-factoring

(re-assign data and operations to modules, introduce new layers generalising old and new solutions,
(automatically) check that intended interfaces are not bypassed, etc.)

• Proposal (Jacobson et al., 1992):

• use “probability for change”
as guideline in (architecture) design,

• i.e. base design on a thorough analysis
of problem and solution domain.

item probability
for change

Object from application [domain] Low
Long-lived information structures Low
Passive object’s attribute Medium
Sequences of behaviour Medium
Interface with outside world High
Functionality High

Tell Them What You’ve Told Them. . .
–

15
–

2
0

15
-0

7-
0

4
–

S
tt

w
y

tt
–

33/55

• Architecture & Design Patterns

• allow re-use of practice-proven designs,

• promise easier comprehension and maintenance.

• Notable Architecture Patterns

• Layered Architecture,

• Pipe-Filter,

• Model-View-Controller.

• Design Patterns: read (Gamma et al., 1995)

• Rule-of-thumb:

• library modules are called from user-code,

• framework modules call user-code.

• Mind Lehman’s Laws and software entropy.

westphal
Bleistift

Code Quality Assurance

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

34/55

Content (Part II)
–

15
–

2
0

15
-0

7-
0

4
–

S
co

n
te

n
t2

–

35/55

• Introduction

• quotes on testing,

• systematic testing vs. ‘rumprobieren’.

• Test Case

• definition,

• execution,

• positive and negative.

• The Specification of a Software

• Test Suite

• More Vocabulary

Testing: Introduction

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

36/55

Quotes On Testing
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

37/55

“Testing is the execution of a program with the goal to discover errors.”

(G. J. Myers, 1979)

“Testing is the demonstration of a program or system with the goal to show that
it does what it is supposed to do.” (W. Hetzel, 1984)

“Software testing can be used to show the presence of bugs, but never to show
their absence!” (E. W. Dijkstra, 1970)

Rule-of-thumb: (fairly systematic) tests discover half of all errors.
(Ludewig and Lichter, 2013)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Tests vs. Systematic Tests
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

38/55

Test — (one or multiple) execution(s) of a program on a computer with the goal
to find errors. (Ludewig and Lichter, 2013)

(Our) Synonyms: Experiment, ‘Rumprobieren’.

Not (even) a test (in the sense of this weak definition):

• any inspection of the program,

• demo of the program,

• analysis by software-tools for, e.g., values of metrics,

• investigation of the program with a debugger.

Systematic Test — a test such that

• (environment) conditions are defined or precisely documented,

• inputs have been chosen systematically,

• results are documented and assessed according to criteria
that have been fixed before. (Ludewig and Lichter, 2013)

In the following: test means systematic test; if not systematic, call it experiment.

westphal
Bleistift

More Formally: Test Case
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

39/55

Definition. A test case T is a pair (In ,Soll) consisting of

• a description In of sets of finite input sequences,

• a description Soll of expected outcomes,

and an interpretation J·K of these descriptions.

Plus, strictly speaking, for each pair a description Env of (environmental) conditions:,
i.e., any aspects which could have an effect on the outcome of the test such as:

• Which program (version) is tested? Built with which compiler, linker, etc.?

• Test host (OS, architecture, memory size, connected devices (configuration?), etc.)?

• Which other software (in which version, configuration) is involved?

• Who is supposed to test when? etc. etc.

→ test-cases should be (as) reproducible and objective (as possible).

Note: inputs can be

• input data, possibly with timing constraints,

• other interaction, e.g., from network,

• initial memory content,

• etc.

Test Case Cont’d
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

40/55

Full reproducibility is hardly possible in practice — obviously (err, why. . . ?).

• Steps towards reproducibility and objectivity:

• have a fixed build environment,

• use a fixed test host which does not do any other jobs,

• execute test cases automatically (test scripts).

Executing Test Cases: Preliminaries
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

41/55

Recall:

Definition. Software is a finite description S of a (possibly infinite) set JSK of (finite or

infinite) computation paths of the form σ
0

α
1

−−→ σ
1

α
2

−−→ σ
2
· · · where

• σi ∈ Σ, i ∈ N0 , is called state (or configuration), and

• αi ∈ A, i ∈ N0 , is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpretation of S.

• From now on, we assume that states consist of an input and an output/internal
part, i.e., there are Σin and Σout such that

Σ = Σin × Σout .

• Computation paths are then of the form

π =

(

σi

0

σo

0

)

α1

−→

(

σi

1

σo

1

)

α2

−→ · · ·

westphal
Bleistift

Executing Test Cases
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

42/55

• A computation path

π =

(

σi

0

σo

0

)

α1

−→

(

σi

1

σo

1

)

α2

−→ · · ·

from JSK is called execution of test case (In , Soll)
if and only if there is n ∈ N0 such that σi

0
, σi

1
, . . . , σi

n
∈ JInK.

• π is called successful (or positive) if it discovered an error, i.e., if π /∈ JSollK.

(Alternative: test item S failed to pass test; confusing: “test failed”.)

• π is called unsuccessful (or negative) if it did not discover an error, i.e., if π ∈ JSollK.

(Alternative: test item S passed test; okay: “test passed”.)

• Note: if input sequence not adhered to, or power outage, etc., π is not (even) a test execution.

westphal
Bleistift

westphal
Bleistift

Test Case Example
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

43/55

• Software S is the Java program:

public int successor(int x) { x = x + 1; return x; }

• Assume that J·K just considers call and return, i.e. computation paths are of the form

(

σi

0

σo

0

)

τ

−→

(

σi

1

σo

1

)

σi

0(x) is the input value for x and σo

1(ret) is the return value.

• Example test case: (In , Soll) = (27, 28) denoting

J27K := {σi

0(x) = 27} J28K :=

{(

σi

0

σo

0

)

,

(

σi

1

σo

1

) ∣

∣

∣

∣

σ
o

1(ret) = 28

}

.

• Then

π =

(

x = 27
ret = 0

)

τ

−→

(

x = 28
ret = 28

)

is an execution of (In , Soll).

• Is π successful or unsuccessful?

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

The Specification of a Software
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

44/55

• Same software S:

public int successor(int x) { x = x + 1; return x; }

• Assume 16-bit int, i.e. value of x is in [−215, 215 − 1] = [−32768, 32767].

• Test case (In ,Soll) = (32767, 32768).

• What will S compute?

π =

(

x = 32767
ret = 0

)

τ
−→

(

x = −32768
ret = −32768

)

• Is π successful or unsuccessful?

• Well, we operated S outside its specification:

• successor(int x);

• pre-condition:
x < 32767

• post-condition:
ret = old(x) + 1

If an input does not satisfy the pre-condition, S may do “whatever it wants”.
Its behaviour is not specified in that case (aka. chaos).

• Test cases are usually supposed to test that the software satisfies its specification.

westphal
Rectangle

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

By The Way. . .
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

45/55

• High quality software should be aware of its specification.

• successor() should check its inputs
and “complain” if operated outside of specification, e.g.

• throw an exception,

• abort program execution,

• (at least) print an error message,

• etc.

• Not: “garbage in, garbage out”

Wait, Why a Set of Inputs. . . ?
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

46/55

Definition. A test case T is a pair (In , Soll) consisting of

• a description In of sets of finite input sequences,

• a description Soll of expected outcomes,

and an interpretation J·K of these descriptions.

• Sometimes, a test case provides a degree of freedom or choices
to the person who conducts the tests.

• For example, for the vending machine

In = C50 ,WATER

could specify

“At some time after switching on the vending machine,
insert a 50 cent coin, and some time later request water.”

without fixing these times, thus there are many valid input sequences.

Test Suite
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
in

tr
o

–

47/55

• A test suite is a set of test cases.

• An execution of a test suite is a set of computation paths, such that there is at least
one execution for each test case.

• An execution of a test suite is called positive
if and only if at least one test case execution is positive.

Otherwise, it is called negative.

westphal
Bleistift

Testing Vocabulary

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

48/55

Specific Testing Notions
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
vo

c
–

49/55

• How are the test cases chosen?

• Considering only the specification (black-box or function test).

• Considering the structure of the test item (glass-box or structure test).

• How much effort is put into testing?

execution trial — does the program run at all?

throw-away-test — invent input and judge output on-the-fly (→ “rumprobieren),

systematic test — somebody (not author!) derives test cases, defines input/soll, documents
test execution.

In the long run, systematic tests are more economic.

• Complexity of the test item:

unit test — a single program unit is tested (function, sub-routine, method, class, etc.)

module test — a component is tested,

integration test — the interplay between components is tested.

system test — tests a whole system.

Specific Testing Notions Cont’d
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
vo

c
–

50/55

• Which property is tested?

function test —
functionality as specified by the requirements documents,

installation test —
is it possible to install the software with the provided documentation and tools?

recommissioning test —
is it possible to bring the system back to operation after operation was stopped?

availability test —
does the system run for the required amount of time without issues,

load and stress test —
does the system behave as required under high or highest load? . . . under overload?

“Hey, let’s try how many game objects can be handled!” — that’s an experiment, not a test.

regression test —
does the new version of the software behave like the old one
on inputs where no behaviour change is expected?

resource tests —
response time, minimal hardware (software) requirements, etc.

westphal
Bleistift

Specific Testing Notions Cont’d
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
vo

c
–

51/55

• Which roles are involved in testing?

• inhouse test —
only developers (meaning: quality assurance roles),

• alpha and beta test —
selected (potential) customers,

• acceptance test —
the customer tests whether the system (or parts of it, at milestones) test whether the
system is acceptable.

A First Rule-of-Thumb
–

15
–

2
0

15
-0

7-
0

4
–

S
te

st
vo

c
–

52/55

• How to choose test cases?

• “Everything, which is required, must be examined/checked. Otherwise it is
uncertain whether the requirements have been understood and realised.”

(Ludewig and Lichter, 2013)

• In other words:

Not having at least one (systematic) test case for each (required) feature
is (grossly?) negligent (Dt.: (grob?) fahrlässig).

• In even other words:

Without at least one test case for each feature,
we can hardly speak of software engineering.

westphal
Bleistift

westphal
Bleistift

Tell Them What You’ve Told Them. . .
–

15
–

2
0

15
-0

7-
0

4
–

S
tt

w
y

tt
2

–

53/55

• Testing is about

• finding errors, or

• demonstrating scenarios.

• A test case consists of

• input sequences and

• expected outcome(s).

• A test case execution is

• positive if an error is found,

• negative if no error is found.

• A test suite is a set of test cases.

• Distinguish (among others),

• glass-box test: structure (or source code) of test item available,

• black-box test: structure not available.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

References

–
15

–
2

0
15

-0
7-

0
4

–
m

ai
n

–

54/55

References
–

15
–

2
0

15
-0

7-
0

4
–

m
ai

n
–

55/55

Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.

Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language – Towns, Buildings, Construction. Oxford University Press.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, E., and Stal, M. (1996). Pattern-Oriented Software Architecture – A System of Patterns. John Wiley &
Sons.

Gamma, E., Helm, R., Johnsson, R., and Vlissides, J. (1995). Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley.

Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented Software Engineering - A Use Case Driven Approach. Addison-Wesley.

JHotDraw (2007). http://www.jhotdraw.org.

Lehman, M. M. and Belady, L. (1985). Program Evolution. Process of Software Change. Academic Press.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Züllighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with the Tools and Materials Approach.
dpunkt.verlag/Morgan Kaufmann.

http://www.jhotdraw.org

	Topic Area Architecture & Design: Content
	Content (Part I)
	Architecture Patterns
	Introduction
	Introduction Cont'd

	Layered Architectures
	Example: Layered Architectures
	Example: Layered Architectures Cont'd
	Example: Three-Tier Architecture
	Layered Architectures: Discussion

	Pipe-Filter
	Example: Pipe-Filter

	Model-View-Controller
	Example: Model-View-Controller

	Design Patterns
	Design Patterns
	Example: Pattern Usage and Documentation
	Example: Strategy
	Example: Pattern Usage and Documentation
	Example: Pattern Usage and Documentation
	Other Patterns: Singleton and Memento
	Meta Design Pattern: Inversion of Control
	Design Patterns: Discussion

	Libraries and Frameworks
	Libraries and Frameworks
	Reference Architecture Example: Games

	Quality Criteria on Architectures
	Quality Criteria on Architectures
	Development Approaches
	Transform vs. Write-Down-and-Check
	Software Entropy
	Tell Them What You've Told Them…

	Code Quality Assurance
	Content (Part II)

	Testing: Introduction
	Quotes On Testing
	Tests vs. Systematic Tests
	More Formally: Test Case
	Test Case Cont'd
	Executing Test Cases: Preliminaries
	Executing Test Cases
	Test Case Example
	The Specification of a Software
	By The Way…
	Wait, Why a Set of Inputs…?
	Test Suite

	Testing Vocabulary
	Specific Testing Notions
	Specific Testing Notions Cont'd
	Specific Testing Notions Cont'd
	A First Rule-of-Thumb
	Tell Them What You've Told Them…

	References
	References

