
–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

Softwaretechnik / Software-Engineering

Lecture 18: Runtime Verification, Review &

Wrapup

2016-07-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Code Quality Assurance: Content

–
18

–
2

0
16

-0
7-

18
–

S
b

lo
ck

co
n

te
n

t
–

2/41

• Introduction and Vocabulary

• Limits of Software Testing

• Glass-Box Testing

• Statement-, branch-, term-coverage.

• Other Approaches

• Model-based testing,

• Runtime verification.

• Software quality assurance
in a larger scope.

• Program Verification

• partial and total correctness,

• Proof System PD.

• Runtime Verification

• Review

• Code QA: Discussion

VL 15

VL 16

..

.

VL 17

..

.

VL 18

..

.

Content

–
18

–
2

0
16

-0
7-

18
–

S
co

n
te

n
t

–

3/41

• Runtime-Verification

• Idea

• Assertions

• LSC-Observers

• Reviews

• Roles and artefacts

• Review procedure

• Stronger and weaker variants

• Do’s and Don’ts in Code QA

• Code QA Techniques Revisited

• Test

• Runtime-Verification

• Review

• Static Checking

• Formal Verification

• Dependability

Run-Time Verification

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

5/41

Run-Time Verification: Idea

–
18

–
2

0
16

-0
7-

18
–

S
ru

n
ti

m
e

–

6/41

Software S
• Assume, there is a function f in software S with the following specification:

• pre-condition: p, post-condition: q.

• Computation paths of S may look like this:

σ0

α1−−→ σ1

α2−−→ σ2 · · ·
αn−1

−−−→ σn
call f
−−−→ σn+1 · · ·σm

f returns
−−−−−→ σm+1 · · ·

• Assume there are functions checkp and checkq ,
which check whether p and q hold at the current program state,
and which do not modify the program state (except for program counter.

• Idea: create software S′ by

(i) extending S by implementations
of checkp and checkq ,

(ii) call checkp right after entering f ,

(iii) call checkq right before returning from f .

• For S′, obtain computation paths like:

σ0

α1−−→ σ1

α2−−→ σ2 · · ·
αn−1

−−−→ σn
call f
−−−→ σn+1

checkp

−−−−→ σ
′

n+1 · · · σm

checkq

−−−−→ σ
′

m

f returns
−−−−−→ σm+1 · · ·

• If checkp and checkq notify us of violations of p or q,
then we are notified of f violating its specification when running S′ (= at run-time).

Run-Time Verification: Example

–
18

–
2

0
16

-0
7-

18
–

S
ru

n
ti

m
e

–

7/41

12345678
+ 27

7 8 9 0

4 5 6 +

1 2 3 =

1 i n t main () {
2

3 whi l e (t r u e) {
4 i n t x = read_number () ;
5 i n t y = read_number () ;
6

7 i n t sum = add (x , y) ;
8

9 ver i fy_sum (x , y , sum) ;
10

11 d i s p l a y (sum) ;
12 }
13 }

1 void ver i fy_sum (i n t x , i n t y ,
2 i n t sum)
3 {
4 i f (sum ! = (x +y)
5 | | (x + y > 99999999
6 && ! (sum < 0)))
7 {
8 f p r i n t f (s t d e r r ,
9 " ver i fy_sum : e r r o r \n") ;

10 a b o r t () ;
11 }
12 }

A Very Useful Special Case: Assertions

–
18

–
2

0
16

-0
7-

18
–

S
ru

n
ti

m
e

–

8/41

• Maybe the simplest instance of runtime verification: Assertions.

• Available in standard libraries of many programming languages (C, C++, Java, . . .).

• For example, the C standard library manual reads:

1 ASSERT(3) Linux Programmer’s Manual ASSERT(3)
2

3 NAME
4 assert − abort the program if assertion is false
5

6 SYNOPSIS
7 #include <assert.h>
8

9 void assert(scalar expression);
10

11 DESCRIPTION
12 [...] the macro assert() prints an error message to stanâ
13 dard error and terminates the program by calling abort(3) if expression
14 is false (i.e., compares equal to zero).
15

16 The purpose of this macro is to help the programmer find bugs in his
17 program. The message "assertion failed in file foo.c, function
18 do_bar(), line 1287" is of no help at all to a user.

• In C code, assert can be disabled in production code (-D NDEBUG).

Assertions At Work

–
18

–
2

0
16

-0
7-

18
–

S
ru

n
ti

m
e

–

9/41

1 ASSERT(3) Linux Programmer’s Manual ASSERT(3)
2

3 NAME
4 assert − abort the program if assertion is false
5

6 SYNOPSIS
7 #include <assert.h>
8

9 void assert(scalar expression);
10

11 DESCRIPTION
12 [...] the macro assert() prints an error message to stanâ
13 dard error and terminates the program by calling abort(3) if expression
14 is false (i.e., compares equal to zero).
15

16 The purpose of this macro is to help the programmer find bugs in his
17 program. The message "assertion failed in file foo.c, function
18 do_bar(), line 1287" is of no help at all to a user.

• The abstract f-example from run-time verification:

1 void f (. . .) {
2 a s s e r t (p) ;
3 . . .
4 a s s e r t (q) ;
5 }

• Compute the width of a progress bar:

1

2 i n t p r o g r e s s _ b a r _w idth (i n t progress , i n t window_left , i n t window_r ight)
3 {
4 a s s e r t (window_left <= window_r ight) ; /* pre−c o n d i t i o n */
5 . . .
6 /* t r e a t s p e c i a l c a s e s 0 and 100 */
7 . . .
8 a s s e r t (0 < p r o g r e s s && p r o g r e s s < 100) ; // e x t r e m a l c a s e s a l r e a d y t r e a t e d
9 . . .

10 a s s e r t (window_left <= r && r <= window_r ight) ; /* p o s t−c o n d i t i o n */
11 return r ;
12 }

Assertions At Work II

–
18

–
2

0
16

-0
7-

18
–

S
ru

n
ti

m
e

–

10/41

TreeNode

- key : int

leftChild

rightChild

parent

0,1

0,1

0,1

Object

value
*

inv: self.key <= rightChild.key

&& self.key >= leftChild.key

• Recall the structure model with Proto-OCL constraint from Exercise Sheet 4.

• Assume, we add a method set_key() to class TreeNode:

1 c l a s s TreeNode {
2

3 pr i va t e in t key ;
4 TreeNode parent , l e f t C h i l d , r i g h t C h i l d ;
5

6 pub l i c in t get_key () { return key ; }
7

8 pub l i c void set_key (i n t new_key) {
9 key = new_key ;

10 }
11 }

• We can check consistency with the Proto-OCL constraint at runtime by using assertions:

1 pub l i c void set_key (i n t new_key) {
2 a s s e r t (pa rent == nu l l | | pa rent . get_key () <= new_key) ;
3 a s s e r t (l e f t C h i l d == nu l l | | new_key <= l e f t C h i l d . get_key ()) ;
4 a s s e r t (r i g h t C h i l d == nu l l | | new_key <= r i g h t C h i l d . get_key ()) ;
5

6 key = new_key ;
7 }

• Use java -ea ... to enable assertion checking (disabled by default).
(cf. https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html)

More Complex Run-Time Verification: LSC Observers

–
18

–
2

0
16

-0
7-

18
–

S
ru

n
ti

m
e

–

11/41

half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

ChoicePanel:

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !)

water_in_stock

dWATER

OK

¬(dSoft! ∨ dTEA!)

st : { idle, wsel, ssel, tsel, reqs, half };

take_event(E : { TAU, WATER, SOFT, TEA, ... }) {

bool stable = 1;

switch (st) {

case idle :

switch (E) {

case WATER :

if (water_enabled) { st := wsel; stable := 0; }

;;

case SOFT :

...

}

case wsel:

switch (E) {

case TAU :

send_DWATER(); st := reqs;

hey_observer_I_just_sent_DWATER();

;;

} }

hey_observer_I_just_sent_DWATER();

q1

q2

q3 q4

q5

q6

¬C50 !

C50 !

¬C50? ∧

ϕ1 ∧

¬WATER!

C50?∧ϕ1 ∧

¬WATER!

¬C50? ∧

WATER!∧

ϕ1

¬C50?

∧ϕ1

C50? ∧ ϕ1

C50? ∧

WATER!∧

ϕ1

¬WATER!

∧ϕ1

WATER! ∧ ϕ1

¬WATER? ∧ ϕ1

WATER?∧

ϕ1 ∧

water_in_stock

q1

q2

q3

q4

¬dWATER!∧

ϕ2

dWATER! ∧ ϕ2

¬dWATER?∧

¬OK ! ∧

ϕ2

dWATER?∧

OK ! ∧ ϕ2 ∧

¬output_blocked

¬OK?∧

ϕ2

OK? ∧ ϕ2

true

dWATER? ∧

OK ! ∧ ϕ2 ∧

output_blocked

Run-Time Verification: Discussion

–
18

–
2

0
16

-0
7-

18
–

S
ru

n
ti

m
e

–

12/41

• Experience:

During development, assertions for pre/post conditions and intermediate invariants are an
extremely powerful tool with a very attractive gain/effort ratio (low effort, high gain).

• Assertions effectively work as safe-guard against unexpected use of functions and regression,
e.g. during later maintenance or efficiency improvement.

• Can serve as formal (support of) documentation:

“Dear reader, at this point in the program, I expect condition expr to hold, because. . . ”.

• Development- vs. Release Versions:

• Common practice:

• development version with run-time verification enabled (cf. assert(3)),

• release version without run-time verification.

If run-time verification is enabled in a release version,

• software should terminate as gracefully as possible (e.g. try to save data),

• save information from assertion failure if possible for future analysis.

Risk: with bad luck, the software only behaves well because of the run-time verification code. . .

Then disabling run-time verification “breaks” the software. Yet very complex run-time verification
may significantly slow down the software, so needs to be disabled. . .

Content

–
18

–
2

0
16

-0
7-

18
–

S
co

n
te

n
t

–

13/41

• Runtime-Verification

• Idea

• Assertions

• LSC-Observers

• Reviews

• Roles and artefacts

• Review procedure

• Stronger and weaker variants

• Do’s and Don’ts in Code QA

• Code QA Techniques Revisited

• Test

• Runtime-Verification

• Review

• Static Checking

• Formal Verification

• Dependability

Review

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

14/41

Reviews

–
18

–
2

0
16

-0
7-

18
–

S
re

vi
e

w
–

15/41

rev. item

ref. docs

review
session
review
session

protocol

moderator author reviewer transcript

• Input to Review Session:

• Review item: can be every closed,
human-readable part of software
(documentation, module, test data,

installation manual, etc.)

Social aspect: it is an artefact
which is examined, not the human
(who created it).

• Reference documents: need to
enable an assessment

(requirements specification, guidelines

(e.g. coding conventions), catalogue of

questions (“all variables initialised?”),

etc.)

• Roles:

Moderator: leads session, responsible for properly
conducted procedure.

Author: (representative of the) creator(s) of the artefact
under review; is present to listen to the discussions;
can answer questions; does not speak up if not
asked.

Reviewer(s): person who is able to judge the artefact
under review; maybe different reviewers for different
aspects (programming, tool usage, etc.), at best
experienced in detecting inconsistencies or
incompleteness.

Transcript Writer: keeps minutes of review session, can
be assumed by author.

• The review team consists of everybody but the author(s).

Review Procedure Over Time

–
18

–
2

0
16

-0
7-

18
–

S
re

vi
e

w
–

16/41

t

Planning

Analysis

Preparation (2 w)

Review

Session (2 h)

“3rd hour” (1 h)

Postparation (2 w)

Initiation

Review
organisation
under guidance
of moderator

Approval of
review item

planning: reviews
need time in the

project plan.

a review is
triggered, e.g.,

by a submission
to the revision
control system:

the moderator
invites (include
review item in
invitation), and
states review

missions.

preparation:
reviewers investigate

review item.

review session:
reviewers report,

evaluate, and
document issues;

resolve open
questions.

“3rd hour”: time for
informal chat,

reviewers may state
proposals for
solutions or

improvements.

postparation: rework
review item;

responsibility of the
author(s).

analysis: improve
development and

review process.

• Reviewers re-assess reworked review item (until approval is declared).

Review Rules (Ludewig and Lichter, 2013)

–
18

–
2

0
16

-0
7-

18
–

S
re

vi
e

w
–

17/41

(i) The moderator organises the review, issues
invitations, supervises the review session.

(ii) The moderator may terminate the review if
conduction is not possible, e.g., due to in-
puts, preparation, or people missing.

(iii) The review session is limited to 2 hours.
If needed: organise more sessions.

(iv) The review item is under review,
not the author(s).
Reviewers choose their words accordingly.
Authors neither defend themselves nor the
review item.

(v) Roles are not mixed up, e.g., the moderator
does not act as reviewer.
(Exception: author may write transcript.)

(vi) Style issues (outside fixed conventions)
are not discussed.

(vii) The review team is not supposed to de-
velop solutions.
Issues are not noted down in form of tasks
for the author(s).

(viii) Each reviewer gets the opportunity to
present her/his findings appropriately.

(ix) Reviewers need to reach consensus on is-
sues, consensus is noted down.

(x) Issues are classified as:

• critical (review unusable for purpose),

• major (usability severely affected),

• minor (usability hardly affected),

• good (no problem).

(xi) The review team declares:

• accept without changes,

• accept with changes,

• do not accept.

(xii) The protocol is signed by all participants.

Stronger and Weaker Review Variants

–
18

–
2

0
16

-0
7-

18
–

S
re

vi
e

w
–

18/41

• Design and Code Inspection (Fagan, 1976, 1986)

• deluxe variant of review,
• approx. 50% more time, approx. 50% more errors found.

• Review

• Structured Walkthrough

• simple variant of review:

• developer moderates walkthrough-session,
XP’s pair programming

(“on-the-fly review”?)

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer

• developer presents artefact(s),

• reviewer poses (prepared or spontaneous) questions,

• issues are noted down,

• Variation point: do reviewers see the artefact before the session?
• less effort, less effective.

→ disadvantages: unclear reponsibilities; “salesman”-developer may trick reviewers.

• Comment (‘Stellungnahme’)

• colleague(s) of developer read artefacts,
• developer considers feedback.

→ advantage: low organisational effort;
→ disadvantages: choice of colleagues may be biased; no protocol;

consideration of comments at discretion of developer.

• Careful Reading (‘Durchsicht’)

• done by developer,
• recommendation: “away from screen” (use print-out or different device and situation)

Some Final, General Guidelines

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

19/41

Do’s and Don’ts in Code Quality Assurance

–
18

–
2

0
16

-0
7-

18
–

S
gu

id
e

–

20/41

Avoid using special examination versions for examination.
(Test-harness, stubs, etc. may have errors which may cause false positives and (!) negatives.)

Avoid to stop examination when the first error is detected.

Clear: Examination should be aborted if the examined program is not executable at all.

Do not modify the artefact under examination during examinatin.

• otherwise, it is unclear what exactly has been examined (“moving target”),
(examination results need to be uniquely traceable to one artefact version.)

• fundamental flaws are sometimes easier to detect
with a complete picture of unsuccessful/successful tests,

• changes are particularly error-prone, should not happen “en passant” in examination,

• fixing flaws during examination may cause them to go uncounted in the statistics
(which we need for all kinds of estimation),

• roles developer and examinor are different anyway:
an examinor fixing flaws would violate the role assignment.

Do not switch (fine grained) between examination and debugging.

Content

–
18

–
2

0
16

-0
7-

18
–

S
co

n
te

n
t

–

21/41

• Runtime-Verification

• Idea

• Assertions

• LSC-Observers

• Reviews

• Roles and artefacts

• Review procedure

• Stronger and weaker variants

• Do’s and Don’ts in Code QA

• Code QA Techniques Revisited

• Test

• Runtime-Verification

• Review

• Static Checking

• Formal Verification

• Dependability

Code Quality Assurance Techniques Revisited

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

22/41

Techniques Revisited

–
18

–
2

0
16

-0
7-

18
–

S
q

aw
ra

p
u

p
–

23/41

auto-
matic

prove “can
run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

Review

Static Checking

Verification

Strengths:

• can be fully automatic (yet not easy for GUI programs);

• negative test proves “program not completely broken”, “can run” (or positive scenarios);

• final product is examined, thus toolchain and platform considered;

• one can stop at any time and take partial results;

• few, simple test cases are usually easy to obtain;

• provides reproducible counter-examples (good starting point for repair).

Weaknesses:

• (in most cases) vastly incomplete, thus no proofs of correctness;

• creating test cases for complex functions (or complex conditions) can be difficult;

• maintenance of many, complex test cases be challenging.

• executing many tests may need substantial time (but: can sometimes be run in parallel);

Techniques Revisited

–
18

–
2

0
16

-0
7-

18
–

S
q

aw
ra

p
u

p
–

23/41

auto-
matic

prove “can
run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review

Static Checking

Verification

Strengths:

• fully automatic (once observers are in place);

• provides counter-example;

• (nearly) final product is examined, thus toolchain and platform considered;

• one can stop at any time and take partial results;

• assert-statements have a very good effort/effect ratio.

Weaknesses:

• counter-examples not necessarily reproducible;

• may negatively affect performance;

• code is changed, program may only run because of the observers;

• completeness depends on usage,
may also be vastly incomplete, so no correctness proofs;

• constructing observers for complex properties may be difficult,
one needs to learn how to construct observers.

Techniques Revisited

–
18

–
2

0
16

-0
7-

18
–

S
q

aw
ra

p
u

p
–

23/41

auto-
matic

prove “can
run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static Checking

Verification

Strengths:

• human readers can understand the code, may spot point errors;

• reported to be highly effective;

• one can stop at any time and take partial results;

• intermediate entry costs;
good effort/effect ratio achievable.

Weaknesses:

• no tool support;

• no results on actual execution, toolchain not reviewed;

• human readers may overlook errors; usually not aiming at proofs.

• does (in general) not provide counter-examples,
developers may deny existence of error.

Techniques Revisited

–
18

–
2

0
16

-0
7-

18
–

S
q

aw
ra

p
u

p
–

23/41

auto-
matic

prove “can
run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static Checking ✔ (✘) ✘ ✔ (✔) ✔ (✘)

Verification

Strengths:

• there are (commercial), fully automatic tools (lint, Coverity, Polyspace, etc.);

• some tools are complete (relative to assumptions on language semantics, platform, etc.);

• can be faster than testing;

• one can stop at any time and take partial results.

Weaknesses:

• no results on actual execution, toolchain not reviewed;

• can be very resource consuming (if few false positives wanted),
e.g., code may need to be “designed for static analysis”.

• many false positives can be very annoying to developers (if fast checks wanted);

• distinguish false from true positives can be challenging;

• configuring the tools (to limit false positives) can be challenging.

Techniques Revisited

–
18

–
2

0
16

-0
7-

18
–

S
q

aw
ra

p
u

p
–

23/41

auto-
matic

prove “can
run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static Checking ✔ (✘) ✘ ✔ (✔) ✔ (✘)

Verification (✔) ✘ ✘ ✔ ✔ (✘) ✘

Strengths:

• some tool support available (few commercial tools);

• complete (relative to assumptions on language semantics, platform, etc.);

• thus can provide correctness proofs;

• can prove correctness for multiple language semantics and platforms at a time;

• can be more efficient than other techniques.

Weaknesses:

• no results on actual execution, toolchain not reviewed;

• not many intermediate results: “half of a proof” may not allow any useful conclusions;

• entry cost high: significant training is useful to know how to deal with tool limitations;

• proving things is challenging: failing to find a proof does not allow any useful conclusion;

• false negatives (broken program “proved” correct) hard to detect.

Quality Assurance — Concluding Discussion

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

24/41

Proposal: Dependability Cases (Jackson, 2009)

–
18

–
2

0
16

-0
7-

18
–

S
d

e
p

e
n

d
–

25/41

• A dependable system is one you can depend on — that is, you can place your trust in it.

“Developers [should] express the critical properties
and make an explicit argument that the system satisfies them.”

quality assurance — (1) A planned and systematic pattern of all actions necessary to
provide adequate confidence that an item or product conforms to established techni-
cal requirements. IEEE 610.12 (1990)

Proposed Approach:

• Identify the critical requirements, and determine what level of confidence is needed.

Most systems do also have non-critical requirements.

• Construct a dependability case:

• an argument, that the software, in concert with other components, establishes the critical properties.

• The case should be

• auditable: can (easily) be evaluated by third-party certifier.

• complete: no holes in the argument, any assumptions that are not justified
should be noted (e.g. assumptions on compiler, on protocol obeyed by users, etc.)

• sound: e.g. should not claim full correctness [...] based on nonexhaustive testing;
should not make unwarranted assumptions on independence of component failures; etc.

Critical Systems

–
18

–
2

0
16

-0
7-

18
–

S
d

e
p

e
n

d
–

26/41

Still, it seems like computer systems more or less inevitably have errors.

Then why. . .

L
au

re
n

t
E

R
R

E
R

A
,C

C
B

Y
-S

A
2

.0
,c

o
m

-
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
/

w
/

in
d

e
x.

p
h

p
?c

u
ri

d
=2

9
8

3
8

5
6

7

• . . . do modern planes fly at all?

(i) very careful development,

(ii) very thorough analysis,

(iii) strong regulatory obligations.

Plus: classical engineering wisdom
for high reliability, like redundancy.

angle

∠

∠

∠

velocity

FC1

FC2

FC3

shared memory

actuator

(Mrugalla et al., 2005)

R
o

b
e

rt
B

o
sc

h
G

m
b

H

• . . . do modern cars drive at all?

(i) careful development,

(ii) thorough analysis,

(iii) regulatory obligations.

Plus: classical engineering wisdom
for high reliability, like monitoring.

 1

el

el

 3

h
tt

p
s:

//
w

w
w

.ia
v.

co
m

/
si

te
s/

d
e

fa
u

lt
/

fi
le

s/
at

ta
ch

m
e

n
ts

/
se

it
e

/a
k-

e
ga

s-
v5

-5
-

e
n

-1
3

0
70

5
.p

d
f

Tell Them What You’ve Told Them. . .

–
18

–
2

0
16

-0
7-

18
–

S
tt

w
y

tt
–

27/41

• Runtime Verification

• (as the name suggests) checks properties at program run-time,

• a good pinch of assert’s can be a valuable safe-guard against

• regressions,

• usage outside specification,

• etc.

and serve as formal documentation of assumptions.

• Review (structured examination of artefacts by humans)

• (mild variant) advocated in the XP approach,

• not uncommon:
lead programmer reviews all commits from team members,

• literature reports good effort/effect ratio achievable.

• All approaches to code quality assurance have their

• advantages and drawbacks.

• Which to use? It depends!

• Dependability Cases

• an (auditable, complete, sound) argument,
that a software has the critical properties.

References

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

28/41

References

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

29/41

Fagan, M. (1976). Design and code inspections to reduce errors in program development. IBM Systems Journal,
15(3):182–211.

Fagan, M. (1986). Advances in software inspections. IEEE Transactions On Software Engineering, 12(7):744–751.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Jackson, D. (2009). A direct path to dependable software. Comm. ACM, 52(4).

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Mrugalla, C., Robbe, O., Schinz, I., Toben, T., and Westphal, B. (2005). Formal verification of a sensor voting and
monitoring UML model. In Siv Hilde Houmb, Jan Jürjens, R. F., editor, Proceedings of the 4th International
Workshop on Critical Systems Development Using Modeling Languages (CSDUML 2005), pages 37–51. Technische
Universität München.

Looking Back:

18 Lectures on Software Engineering

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

30/41

What Did We Do?

–
18

–
2

0
16

-0
7-

18
–

S
re

su
m

e
–

32/41

Some Empirical Findings (Buschermöhle et al. (2006))

–
1

–
2

0
16

-0
4

-1
8

–
S

su
cc

e
ss

–

14/36

3.17

30.16

6.88

5.03

25.66

29.1

1-9,999

10,000-99,999

100,000-499,999

500,000-999,999

≥ 1,000,000

not specified

budget in e (378 responses)

33.07
2.91

10.05

22.49
25.13

≤ 3

> 3-6

> 6-12

> 12-24

> 24

planned duration in months (378 responses)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

business critical mission critical safety critical

Criticality (378 responses, 30 ’not spec.’)

97.35
2.65

completed

cancelled

project completion (378 responses)

72.01

24.73

2.45

kept

early

late

deadline (368 responses)

0.27

82.61

4.89

4.89

5.16

1.9
25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

main functionality realised (368 responses)

81.52

11.14

3.26

kept

below

above

budget (368 responses)

29.67

15.38

5.49

9.89

20.88

< 20 %

20-49 %

50-99 %

100-199 %

≥ 200 %

deadline missed by (91 responses)

4.89

57.61

8.15
7.61

13.04

4.89

2.99

< 25 %

25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

secondary functionality realised (368 responses)

From Abstract to Concrete Syntax

–
12

–
2

0
16

-0
6

-2
0

–
S

u
m

ls
ig

–

10/48

C

D
x : Int
f(Int) : Bool
get_x () : Int

p
0..1

p 0..1

n

0..∗

S = (T,C, V, atr , F,mth)

• T ={Int ,Bool}

• C ={C,D}

• V ={x : Int , p : C0,1, n : C∗}

• atr ={C 7→ {p, n}, D 7→ {p, x}}

• F ={f : Int → Bool , get_x : Int}

• mth ={C 7→ ∅, D 7→ {f, get_x}}

More Interesting Example

–
12

–
2

0
16

-0
6

-2
0

–
S

o
cl

–

38/48

σ :
1C : C

x = 13
|

n C
x : Int n

0..1

∀ c : C • x(n(c)) 6= 27

• Similar to the previous slide, we need the value of

σ (σ(IJcK(σ, β))(n)) (x)

• IJcK(σ, β) = β(c) = 1C

• σ(IJcK(σ, β))(n) = σ(1C)(n) = ∅

• σ (σ(IJcK(σ, β))(n)) (x) = ⊥

by the following rule:

IJv(F)K(σ, β) =

{

σ(u′)(v) , if IJF K(σ, β) = {u′} ⊆ dom(σ)

⊥ , otherwise
(if v : C0,1)

Example

–
14

–
2

0
16

-0
6

-3
0

–
S

u
m

ls
tm

–

30/38

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser

->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

VCC Web-Interface

–
17

–
2

0
16

-0
7-

14
–

S
vc

c
–

39/44
Example program DIV : http://rise4fun.com/Vcc/4Kqe

V-Modell XT: Decision Points

–
5

–
2

0
16

-0
5

-0
9

–
S

vx
t

–

34/62

%''����
��(��1
�2�����
-.&5.
�
����
��������
��-.����
��+�
�����
��1
������

Example: Illustrative Object Diagram (Schumann et al., 2008)

–
12

–
2

0
16

-0
6

-2
0

–
S

o
d

at
w

o
rk

–

30/48

: Iterator : Forest : Iterator

A : Node E : Node end : BaseNode

B : Node C : Node F : Node

D : Node

begin_it end_it

node node

firstChild

parent firstChild

parent

nextSib

prevSib
lastChild

firstChild
parent

nextSib

prevSib

lastChild firstChild
parent

nextSib

prevSib

BaseNode
parent : BaseNode∗

prevSibling : BaseNode∗

nextSibling : BaseNode∗

firstChild : BaseNode∗

lastChild : BaseNode∗

Node
data : T
Node(data : T)

Iterator

operator++() : Iterator
operator−−() : Iterator
operator∗() : BaseNode0,1

Forest

appendTopLevel(data: T)
appendChild(parent : Iterator, data : T)
remove(it : Iterator)
depth(it : Iterator) : int
end() : Iterator
begin() : Iterator
empty() : bool
size() : int

node

begin_it end_it

Example

–
14

–
2

0
16

-0
6

-3
0

–
S

im
p

l–

18/38

W0dispense

Wi

FILLUP?
w := 3

FILLUP?
w := 3

w == 0
DOK!

w > 0
DOK!

DWATER?
w := w - 1

int w := 3;

typedef {Wi , dispense,W0} st_T ;
st_T st := Wi ;

Set〈Act〉 take_action(Act α) {
Set〈Act〉 R := ∅;
if

� st = Wi : if

� α = DWATER? : w := w − 1;
st := dispense;
if (w = 0) R :=R ∪ {DOK !};
if (w > 0) R :=R ∪ {DOK !};

� α = FILLUP? : w := 3;
st := Wi ;
R :=R ∪ {FILLUP?,DWATER?};

fi;
� st = dispense : if

� α = DOK ! ∧ w = 0 : st := W0 ;
R :=R ∪ {FILLUP?};

� α = DOK ! ∧ w > 0 : st := Wi ;
R :=R ∪ {FILLUP?};

fi;
� st = W0 : if

� α = FILLUP? : w := 3;
st := Wi ;
R :=R ∪ {FILLUP?,DWATER?};

fi;
fi;
return R;

}

Coverage Example

–
16

–
2

0
16

-0
7-

11
–

S
co

ve
r

–

26/44

int f (int x, int y, int z)
{
i1 : if (x > 100 ∧ y > 10)
s1: z = z ∗ 2;

else

s2: z = z/2 ;
i2 : if (x > 500 ∨ y > 50)
s3: z = z ∗ 5 ;
s4: ;

}

i1

s1 s2

i2

s3

s4

true false

true false

• Requirement: {true} f {true} (no abnormal termination), i.e. Soll = Σ∗ ∪ Σω .

In % % i2/%

x, y, z i1/t i1/f s1 s2 i2/t i2/f c1 c2 s3 s4 stm cnd term

501, 11, 0 ✔ ✔ ✔ ✔ ✔ ✔ 75 50 25

501, 0, 0 ✔ ✔ ✔ ✔ ✔ ✔ 100 75 25

0, 0, 0 ✔ ✔ ✔ ✔ 100 100 75

0, 51, 0 ✔ ✔ ✔ ✔ ✔ 100 100 100

test suite coverage

em
pi

ric
al

da
ta

in
fo

rm
al

/f
or

m
al

sc
al

es
m

et
ric

s
M

cC
ab

e
co

m
pl

ex
ity

co
st

s
D

el
ph

i m
et

ho
d

C
O

C
O

M
O

pr
oj

ec
t p

la
nn

in
g

ro
le

, a
rt

ef
ac

t,
ac

tiv
ity

w
at

er
fa

ll
m

od
el

sp
ira

l m
od

el
V

-m
od

el
X

T
X

P,
S

cr
um

re
qu

ire
m

en
ts

on
re

qu
ire

m
en

ts

di
ct

io
na

ry
et

c.
la

ng
ua

ge
pa

tt
er

ns

D
ec

is
io

n
Ta

bl
es

co
m

pl
et

en
es

s
et

c.

co
nf

lic
t a

xi
om

s

FM
an

d
cu

st
om

er
s

us
e

ca
se

s
&

di
ag

ra
m

s

se
qu

en
ce

di
ag

ra
m

s

LS
C

sy
nt

ax
TB

A
cu

ts
, f

ire
ds

et
s

au
to

m
at

on
co

ns
tr

uc
tio

n

pr
ec

ha
rt

s
R

E
w

ith
sc

en
ar

io
s

de
fin

iti
on

S
W

LS
C

vs
. s

of
tw

ar
e

de
si

gn
, a

rc
hi

te
ct

ur
e

m
od

ul
ar

ity
, i

nf
or

m
at

io
n

hi
di

ng

m
od

el
vi

ew
s

an
d

vi
ew

po
in

ts

C
la

ss
D

ia
gr

am
s

sy
st

em
st

at
es

, O
D

s

(P
ro

to
-)

O
C

L
C

FA U
pp

aa
l

qu
er

y
la

ng
ua

ge
de

si
gn

ch
ec

ks

im
pl

em
en

tin
g

C
FA

U
M

L
st

at
e

m
ac

hi
ne

s

R
ha

ps
od

y
ar

ch
ite

ct
ur

e/
de

si
gn

pa
tt

er
ns

te
st

ca
se

th
e

cr
ux

of
te

st
in

g

ch
oo

si
ng

te
st

ca
se

s

co
ve

ra
ge

m
od

el
-b

as
ed

te
st

in
g

w
hi

le
pr

og
ra

m
s

H
oa

re
tr

ip
le

s

ca
lc

ul
us

PD
V

C
C

ru
nt

im
e

ve
rif

ic
at

io
n

R
ev

ie
w

Q
A

su
m

m
ar

y

Intro. Process Management Requirements Engineering Architecture & Design Code Quality Assurance

VL 1 VL 2 VL 3 VL 4 VL 5 VL 6 VL 7 VL 8 VL 9 VL 10 VL 11 VL 12 VL 13 VL 14 VL 15 VL 16 VL 17 VL 18

–
18

–
2

0
16

-0
7-

18
–

S
re

su
m

e
–

33/41

Expectations

–
2

–
2

0
16

-0
4

-2
1

–
S

go
al

s
–

4/47

• none, because mandatory course

• overall

✔ well-structured lectures

(✔) praxis oriented

✘ practical knowledge about planning, designing and testing software

✔ improve skills in scientific work

(✔) more about scientific methods

• other courses

✘ more on how courses are linked together

✘ skills we need to organise SoPra

✔ maybe transfer knowledge in SoPra

• “real world”

✔ vocabulary and methods in professional software development

✔ learn how things work in a company, to easier integrate into
teams, e.g., communication

• kinds of software

✔ embedded systems and software

✘ how to combine HW and SW parts

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu

Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu

–
18

–
2

0
16

-0
7-

18
–

S
re

su
m

e
–

34/41

Expectations Cont’d

–
2

–
2

0
16

-0
4

-2
1

–
S

go
al

s
–

5/47

• software development

✔ understand how software development practically works

✔ developing, maintaining software at bigger scale

✔ aspects of software development

• software project management

✔ learn what is important to plan

✔ how to structure the process of a project

✔ how to keep control of project, measure success

✘ which projects need full-time project manager

✘ which kind of documentation is really necessary

✘ want to get better in leading a team; how to lead team of engineers

• cost estimation

✔ how to estimate time and effort

(✘) formal methods for better planning of projects

✘ tools which help planning

• quality

✔ learn ways how to judge quality based on the requirements

✔ avoid mistakes during software development

✔ make better programs, or make programs more efficiently

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu

Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu

–
18

–
2

0
16

-0
7-

18
–

S
re

su
m

e
–

35/41

Expectations Cont’d

–
2

–
2

0
16

-0
4

-2
1

–
S

go
al

s
–

6/47

• requirements

✔ formal ways to specify requirements

✔ learn techniques to reduce misunderstandings

✔ understand types of requirements

(✔) learn how requirements are to be stated

(✔) how to create requirements/specification document

• design

✔ techniques for design

✔ predict potential risks and crucial design errors

(✘) come up with good design, learn how to design

(✘) practical knowledge on application of design patterns

✘ how to structure, compose components, how to define interfaces

✘ standards for keeping parts of project compatible

✘ how to guarantee a particular reliability

• Implementation

(✔) modular programming, better documentation of big projects

✘ more of computers and programming, write faster better programs

✘ strengths and weaknesses of standards, training in their application

✘ improve coding skills

✘ how to increase (software) performance

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu

Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu

–
18

–
2

0
16

-0
7-

18
–

S
re

su
m

e
–

36/41

Expectations Cont’d

–
2

–
2

0
16

-0
4

-2
1

–
S

go
al

s
–

7/47

• code quality assurance

✔ methods for testing to guarantee high level of quality

(✔) how to conduct most exhaustive test as possible in reasonable time

✔ formal methods like program verification

✘ learn about practical implementation of these tools

• extra information

• “will work as teacher”

• “want to work on medical software”

• “want to work in automotive industry”

• “worked as software-engineer”

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu

Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu

That’s Today’s Software Engineering — More or Less. . .

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

37/41

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

38/41

Coming Soon to Your Local Lecture Hall. . .

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

39/41

Thursday, 2016-07-21, 1200 to 1400:

Plenary Tutorial 6 & Questions Session

in 101-0-026 (right here)

–
18

–
2

0
16

-0
7-

18
–

m
ai

n
–

41/41

