Softwaretechnik / Software-Engineering

Lecture 18: Runtime Verification, Review &
Wrapup

2016-07-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Recall: Three Basic Directions

all computation
paths satisfying the @xar

specification
expected /
outcomes Sott T
i =T

c? NoC?
=7 NS
e N
- prove
\ Sk
4 conclude
execution of Islel=1
(in. Soll)
]
input —. D 5 output J H\._ =] = jg
Testing Review Formal Verification
4

Topic Area Code Quality Assurance: Content

« Introduction and Vocabulary
 Limits of Software Testing

© Glass-Box Testing

L« statement- branch-,term-coverage

= Other Approaches

Model-based testing,
{ Runtime verification.

« Software quality assurance
in a larger scope.
o Program Verification

partial and total correctness,
{e Proof System PD.

« Runtime Verification
* Review
« Code QA: Discussion

Run-Time Verification

S

Content
Runtime-Verification
+ LSC-Observers
Reviews
L« Roles and artefacts
« Review procedure
Ui« Stronger and weaker variants
= Do’s and Don'ts in Code QA
Code QA Techniques Revisited
(e Formal Verification
= Dependability
Run-Time Verification: Idea D
« Assume, there is a function f in software S with the following specification: S a'®S
« pre-condition: p, post-condition: g,
« Computation paths of S may look like this:
00 Moy By gy D My gy LI
« Assume there are functions check, and check,,
which check whether p and ¢ hold at the current program state,
and which do not madify the program state (except for program counter),
« Idea: create software S’ by
ight after entering /.

i) call check, right before returning from f.
For $', obtain computation paths like:

o an- call checky checky .
00 D 01 2 0y T gy gy L g L g, LI

If check, and check, notify us of violations of p or g,

then we are notified of / violating its specification when running S’ (= at run-time).

brn

Run-Time Verification: Example A Very Useful Special Case: Assertions Assertions At Work

ation: Assertions.

E » Maybe the simplest instance of runtime ves « The abstract f-example from run-time verification:
o

 Available in standard libraries of many programming languages (C, C++, Java,

« For example, the C standard library manual reads:

ASSERT(3) Linux Programmers Manual ASSERTE) « Compute the width of a progress bay Si\»\.lﬁ
Name

o| assert - abort the programif assrton s ase. m
+| smopsis

Finclde casserths Progress Bar

vord verify_sum(

«
d i s 1 ey
11 (x oy > 99999999
a8 1sum < 0))

void assertscalar expression

«
fprintf (stderr
“verify_sum: _error\n” |
abort ()
)

DESCRIPTION
v L the macro assert)prints an eror message o stanie

 progress_ba WGt int progres . in1 window_lel
| dstaytaom)
D R

window_right
s fale . compares equal o zer0) right)

© e window_right): /* pre-condition

assert (window._
The purpose of this macrosto help th programmer find bugs in his o e .
program The message "asserton faied i fie fooc. function ¥ treat special cases 0 and 100
¢| dobarl. ine 287" s of no help atall 103 user

o assert O « progress & progress < 100): // extremal cases alieady treated

8 ¢ cx window_right). /* post-condition */

» In C code, assert can be disabled in production code (-D NDEBUG). |

T : 8a

Assertions At Work 11 More Complex Run-Time Verification: LSC Observers

Run-Time Verification: Discussion

SR

ChoicePanel: « Experience:

During development, assertions for pre/post conditions and intermediate invariants are an

extremely powerful tool with a very attractive gain/effort ratio (low effort, high gain).
 Recall the structure model with Proto-OCL constraint from Exercise Sheet 4.

Assertions effectively work as safe-guard against unexpected use of functions and regression,

« Assume, we add amethod set_key() to class TreeNode: or efficiency

+ TreeNode (

o Canserve as formal (support of) documentation:
“Dear reader, at this point in the program, | expect condition expr to hold, because.

¢ key
reaNode parent. leftChild . rightChild

getkey () (return key:)

4 set_key(
ey - new_key

new_key) [

Development- vs. Release Versions:

« Common practice:

. sersion with run-time

bled (cf. assert (3)),

[, « release version without run-time verification
new_key) (
parent .get_key () <= new_key
new_key c- leFChild pet_key ()
new_key cr rightChild . get_ke

16
¢ assert (rightCh

If run-time verification is enabled in a release version,

)
)

o software should terminate as gracefully as possible (eg. try to save data),
© ey - newkey

« save nformation from assertion failure if possible for future analysis.

. Risk: with bad luck, the software only behaves well because of the run-time verification code.
.+ Usejava -ea ... toenable assertion checking (disabled by default).

Then disabling run-time verification “breaks” the software. Yet very complex run-time verification
(cf nttps://d 1 html)

may significantly slow down the software, so needs to be disabled.
: 1074 : T

Content

Reviews

Runtime-Verification
{—~o Idea
|~» Assertions
Lo LSC-Observers

Reviews
<o Roles and artefacts . . i : Roles:
Fe Reviem rocedune Review Input to Review Session: .)

) « Review item: can be every closed, Moderator: leads session, responsible for properly
e Stronger and weaker variants human-readable part of software conducted procedure
. b (documentation, module, test data, Author: (representative of the) creator(s) of the artefact

» Do'sand Don'ts in Code QA installation manual. etc) under review: is present to listen to the discussions;

Code QA Techniques Revisited can answer questions; dges not speak upif not

N which is examined, not the human asked
[Test) (who created it Reviewer(s): person who is ablg o judge the artefact
@ Runtime-Verification « Reference documents: need to under review; maybe different reviewers for different
[~ Review enable an assessment aspects (programming, tool usage, etc.), at best
I Static Checking del ienced in detecting or
Lte Formal Verification e, coding conventions), catalogue of incompleteness.
questions (all variables iitialised: Transcript Writer: keeps minutes of review session, can

» Dependability . etc) be assumed by author.

H « The review team consists of everybody but the authorls).
1374 =

14m ®
Review Procedure Over Time Review Rules (Ludewig and Lichier, 2013) Stronger and Weaker Review Variants
planning: reviews
needtime in the « Design and Code Inspection (Fagan, 1976, 1986)
project plan. preparation (i) The moderator organises the review, issues i) The review team is not supposed to de- fgn and spection (Fag)
reviewers investigate invitations, supervises the review session. velop solutions. » deluxe variant of review. ;
review tem. ecturs are not noted down in form of tasks « approx. 50% more time. approx. 50% more errors found.
review session: The moderator may terminate the review if for the author(s). Re
R reviewers report . ' « Review
Sy { Planning ; evaluate,and puts, preparation, or people missing. i) Each reviewer gets the opportunity to + Structured Walkthrough
lggered.eg, | IS=2 document ssues; present her/his findings appropriately.
by a submission nitation Tesolve open X X o simple variant of review:)
Lo the revision " [Preparation 2w \ ‘questions _ﬁrm review session s limited to 2 hours (i) Reviewers need to reach consensus on is- o developer moderates walkivough-session, X0 pai rogramming
s — — needed: organise more sessions. sues, consensus is noted down. © Geveloper resents neracty,
Sesson | omiton () The review item is under review, () Issues are classified as: e
under gukdance not the author(s). « critcal review unusable for purpose). e)
. Reviewers choose their words accordingly. ~ major usabilty severely affected), * Varinion pont doevevers seethe arfactbefor he ssson?
~~_ Postparation 2w) Approval “3rd hour time for Authors neither defend themselves nor the « minor (usability hardly affected), o less effort, less effective.
reviewitem informal chat, review item. « good (no problem), —d “salesmani™ P
reviewers may state c t(Stellungnahme)
¢ proposlsfor) Roles are not mixed up, e.g. the moderator | | (xi) The review team declares: « Comment (Stellungnahme’
solutions or
does not act as reviewer. « accept without changes, o colleague(s) of developer read artefacts,
improvements. (Exception: author may write trans N »ns”.s,; n_;:wcm « developer considers feedback.
N — advantage: low organisational effort;
analysis: Improve (vi) Style issues (outside fixed conver donot accept S ehaice o protoc
developmentand aithorty are not discussed. (i) The protocol i signed by all participants.) consideration of comments at discretion of developer
feview process. « Careful Reading (Durchsicht)
© « Reviewers re-assess reworked review item (until approval is declared). H ©« donebydeveloper,
. ’ i (use p or different d
1674 ® 17m

Some Final, General Guidelines

Code Quality Assurance Techniques Revisited

194

2m

Do’s and Don’ts in Code Quality Assurance

Avoid using special examination versions for examination.
(Test-harness, stubs, etc. may have errors which may cause false positives and () negatives)

D Avoid to stop examination when the first error is detected.
Clear: Examination should be aborted if the examined program is not executable at all.

Do not modify the artefact under examination during examinatin.
« otherwise, itis unclear what exactly has been examined (‘moving target’).
(examination results need to be uniquely traceable to one artefact version.)
« fundamental flaws are sometimes easier to detect
with a complete picture of unsuccessful/successful tests,
V%ﬁa are particularly error-prone, should not happen “en passant’ in examination,

ixing flaws during examination may cause them to go uncounted in the stati
(which we need for all kinds of estimation),

oles developer and examinor are different anyway:
an examinor fixing flaws would violate the role assignment.

b Do not switch (fine grained) between examination and debugging.

2070
Techniques Revisited
auto- | prove’can | toolchain | exhaus- | prove partial entry
matic run’ considered tive correct results cost

Test 2] v v x x v v
Runtime-
Verification
Review
Static Checking
Verification

Strengths:

« canbe ully automatic yet not easy for GUI programs’;

= negative test proves “program can run” for

« final i thus toolchain and

« one can stop at any time and take partial results; - ¢ A \Sn .

o few, simple test cases are usually easy to obtains& ™ ¢ o= P

 provid i ing point for repair).

Weaknesses:

« (in most cases) vastly incomplete, thus no proofs of correctness;

« creating test cases for or be difficult

. many, complex test

230

Content

i~ Idea

(s Assertions

(s LSC-Observers
Reviews

(e Roles and artefacts

Lo’ Review procedure
L« Stronger and weaker variants

« Do'sand Don'ts in Code QA
Code QA Techniques Revisited
|—o Test

{—e Runtime-Verification

{—* Review

[-e Static Checking

e Formal Verification

« Dependability

Techniques Revisited

auto- | prove “can toolchain exhaus- prove partial entry
run’ considered tive correct results cost

v v x X v v
) v x) x v [Z2)

Test

Runtime-
Verification
Review

Static Checking
Verification

Strengths:

« fully automatic (once observers are n placel;
« provides counter-example;
. s exami d

« one can stop at any time and take partial results;
fect ratio,

‘Weaknesses:

o counter-examples not necessarily reproducible;
« may negatively affect performance;
o codeis changed, may only run be f :
« completeness depends on usage.
may also be vastly incomplete, so no correctness proofs;
. be difficult,
‘one needs to learn how to construct observers.

Techniques Revisited

Techniques Revisited

auto- prove “can toolchain exhaus- prove partial entry auto- toolchain exhaus- prove partial entry
matic i considered five comect | results | cost matic considered | tive comect | results | cost
v v X X v 2] v X X v
v W) v x v v v (x) x v
Verification
x x X W) v W) Review x x X W) v)
Static Checking Static Checking v) X v v)
Verification Verification
Strengths: Strengths:
« human readers can understand the code, may spot point errors; « there are (commercial), fully automatic tools (lint, Coverity, Polyspace, etc.);
« reported to be highly effective; « some tools plete (relative tc n g ics, platform, etc);
= one can stop at any time and take partial results; « can be faster than testing;
« intermediate entry costs; « one can stop at any time and take partial results.
good effort/effect ratio achievable.
Weaknesses:
Weaknesses: + o results on actual execution, toolchain not reviewed;
* notool support; « can be very resource consuming (f few false positives wanted),
« noresults on actual execution, toolchain not reviewed; eg. code may need to be “designed for static analysi
« human readers may overlook errors; usually not aiming at proofs. « many false positives can be very annoying to developers (if fast checks wanted):;
« does (in general) not provide counter-examples, « distinguish false from true positives can be challenging:
developers may deny existence of error. e iguring the tools (to limit false positives) can be challenging.
2/ : 23/
Proposal: Dependability Cases (Jackson, 2009)
« Adependable system is one you can depend on - that is, you can place your trust in it.
“Developers [should] express the critical properties
and make an explicit argument that the system satisfies them.”
quality assurance - (1) A planned and systematic pattern of all actions necessary to
@:Q i ty Assurance — Concludin g Discussion provide adequate confidence that an item or product conforms to established techni-
- cal requirements. IEEE 610.12 (1990)
Proposed Approach:
« Identify the critical requirements, and determine what level of confidence is needed
Isoh. Lrequi
« Construct adependal
« anargument, i citical properties.
« The case should be
o audi -p
« complete: no holes in the argument, any assumptions that are not justified
should be nted (e g.assumptions ofi Compiler, on protocol obeyed by users,etc)
: + sound: e.g. should not claim full correctness [] based on nonexhaustive testing:
i i etc
D uuated asumlon:
244 25/

Techniques Revisited

auto- | prove "can toolchain exhaus- prove partial entry
matic run’ considered tive correct results cost
Test 2] v v x x v v
v v 3] 3 v “)
x x x W) v
Static Checking v) x ©) v
Verification [Z) x X v (x)

Strengths:

« some tool support available (few commercial tools);

. latform, etc);
« thus can provide correctness proofs;

o can be more efficient than other techniques.

Weaknesses:
. l \ , toolchain i
« not many intermediate results: “half of a proof” may not alow any useful conclusions:
« entry cost high: significant trining is useful to know how to deal with tool imitations;
« proving thir " aproof d llow any
« false negatives (broken program “proved” correct) hard to detect.

Critical Systems

St

it seems like computer systems more or less inevitably have errors.

Then why...

« ... do modern planes fly atall?

) very careful development,

do modern cars drive at all?

careful development,
thorough analysis,
regulatory obligations.

) very thorough analysis.

) strong regulatory obligations.

Plus: classical engineering wisdom

Plus: cla
fisr{iine eetmianey lus: classical engineering wisdom

for high reliability ke monitoring.

Tell Them What You’ve Told Them. . .

« Runtime Verification
« (as the name suggests) checks properties at program run-time,
« agood pinch of assert’s can be a valuable safe-guard against
o regressions,
o usage outside specification,

o etc

References

Fagan, M. (1976). Design and code inspections to reduce errors in program development. /BM Systems Journal,
15(3):182-211.

Fagan, M. (1986). Advances in software inspections. IEEE Transactions On Software Engineering, 12(7):744-751.
IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Jackson, D. (2009). A direct path to dependable software. Comm. ACM, 52(4).

References) . ; .
and serve as formal documentation of assumptions. Ludewig, . and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.
i - Mrugalla, C., Robbe, O., Schinz, I, Toben, T., and Westphal, B. (2005). Formal verification of a sensor voting and
* Review (structured examination of artefacts by humans) monitoring UML model. In Siv Hilde Houmb, Jan Jirjens, R. F., editor, Proceedings of the 4th International
variant) advocated in the XP approach, Workshop on Critical Systems Development Using Modeling Languages (CSDUML 2005). pages 37-51. Technische
not uncommon: Universitat Minchen.
lead programmer reviews all commits from team members,
o lif d effort/effect ratio achievable.
« Allapproaches to code quality assurance have their
« advantages and drawbacks,
 Which to use? It depends!
+ Dependability Cases
+ an (auditable, complete, sound) argument,
that a software has the critical properties. H
o 27m * 28/ * 294
Contents of the Course What Did We Do?
18.4. Mon [2)
Thu e % €
«Mon 5. 0. e
Thu
Mon
Thu P
Mon
' . Thu
Looking Back: e -
- Thu -
18 Lectures on Software Engineering M
Mon ks ¢
Thu 2
: NI
Mon . y
% S e A 5 b 1)
CTh Fad £EE A4 LYY A
z j il 1 il
Thu
Mon
Th
. Mon
The
47. Mon
7. Thu
7. Mon
7. Thu i
7. Mon | !
H i 27. Th VL V2 W3 VLA VLS G VL C VL7 VLB C VL9 VLI VLn S v | VLB VLM VLIS VLt Wi viie
| S
i e
N 3041 3V Ey)

Expectations

« none, because mandatory course
« ovenall
v
(V) praxis orented
x

uctwred lectures

v improve skilsn: ork
() more about scentifc methods

« other courses.

Q .HE_ world"

or. i ina company. to
teams, e g, communication
« kinds of software
+ embedded systems and software
X how to combine HW and SW parts

La

ntroduction.
Scales, Metris.
Costs

Development

Requrements.
Engineering

Archiecture &
Design

an
33
Expectations Cont’d
« code quality assurance ntodocton
+ methods ortesting o gusanee high eveof usy s e,
rogram verification Development
plementationof these tools o
« extrainformation
I work as teacher”
to work on medical software” wmﬁ:uﬂau
« “want to work in automotive industry” rEnee
+ “worked as software-engineer” s
Design
Softuare
Mondeing
—
Wap-lp.
12

3641

Expectations Cont’d

« software development
¥ understand how software development practically works
¥ developing mainaining sftwas atbiggsxscale
+ aspects ofsoftware development

« software project management

portant o plan

theprocess of aproect

« costestimation

+/ how to estimate time and effort

(¥) formal methods for better planning of projects
X tools which help planning

« quality
- W leam vays how to judge qulty based on the requirements
+ avoid mistabes during software development
¥/ make betterprograms,or make programs more efficiently

That’s Today’s Software Engineering — More or Less. ..

34m

37

Expectations Cont’d

« requirements
 formal ways ta specify requirements
 lear techniques to reduce misunderstandings
 understand types of requirements.

) tearn hoy

) howtocr

ents 22,30 be stated
rements /specification document

o design

 techniques for design

th good design,lear how to design
sowledge on application of d

atterns

X standards for keeping parts of project compatible
X how to guarantee a partcul

« Implementation
() modular programmingbetter documentation of bigprojects
X more of computersand progamming wite faste beter programs

x
X improve coding sils
X howtoincrease (oftware)performance

Lo,

Coming Soon to Your Local Lecture Hall. . .

394

Course Software-Engineering vs. Other Courses

40

Thursday, 2016-07-21, 1200 to 1400:
Plenary Tutorial 6 & Questions Session

in 101-0-026 (right here)

41

