
–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 4: Software Project Management

2016-05-02

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Project Management: Content

–
4

–
2

0
16

-0
5

-0
2

–
S

b
lo

ck
co

n
te

n
t

–

2/103

•VL 2 Software Metrics

• Properties of Metrics

• Scales

• Examples

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Expert’s Estimation

• Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

.

..

VL 5



Content

–
4

–
2

0
16

-0
5

-0
2

–
S

co
n

te
n

t
–

3/103

• (Software) Project

• Project Management

• Goals and Activities

• Common Activities

• Excursion: Risk

• Software Project Planning

• Costs and Deadlines

• phase, milestone, deadline

• Tasks and Activities

• cycle, life cycle

• software life cycle

• People and Roles

• responsibilities and rights

• Software Development Process

• Procedure and Process Models

Project

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

4/103



Vocabulary: Project

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

je
ct

–

5/103

project – A temporary activity that is characterized by having

• a start date,

• specific objectives and constraints,

• established responsibilities,

• a budget and schedule, and

• a completion date.

If the objective of the project is to develop a software system,
then it is sometimes called a software development project
or software engineering project. R. H. Thayer (1997)

We could refine our earlier definition as follows: a project is successful if and only if

• started at start date,

• achieved objectives, respected constraints,

• adheres to budges and schedule,

• stops at completion date.

Whether, e.g., objectives have been achieved can still be subjective (→ customer/user happy).

Vocabulary: Software Project

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

je
ct

–

6/103

(software) project – characteristics:

• Duration is limited.

• Has an originator (person or institution which initiated the project).

• The project owner is the originator or its representative.

• The project leader reports to the project owner.

• Has a purpose, i.e. pursue a bunch of goals.

• The most important goal is usually to create or modify software; this software is
thus the result of the project, the product.
Other important goals are extension of know-how, preparation of building blocks
for later projects, or utilisation of employees.

The project is called successful if the goals are reached to a high degree.

• Has a recipient (or will have one).

• This recipient is the customer.

• Later users (conceptionally) belong to the customer.

• The project links people,
results (intermediate/final products), and resources.

The organisation determines their roles and relations, and the external
interfaces of the project. Ludewig & Lichter (2013)

Developer

Customer

User



Project Management

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

7/103

Goals and Activities of Project Management

–
4

–
2

0
16

-0
5

-0
2

–
S

m
gm

t
–

8/103

• Main and general goal: a successful project,

10
0

10
0

10
0

Developer Customer

software delivery

i.e. the project delivers

• defined results

• in demanded quality

• within scheduled time

• using the assigned resources.

There may be secondary goals, e.g.,

• build or strengthen good reputation on market,

• acquire knowledge which is useful for later projects,

• develop re-usable components (to save resources later),

• be attractive to employees.

• . . .

• Main project management activities (and responsibilities of project manager):

• Planning

• Assessment and Control

• Recognising and Fighting
Difficulties as Early as
Possible

• Communication

• Leading and Motivation
of Employees

• Creation and Preservation
of Beneficial Conditions



Activities of Project Management

–
4

–
2

0
16

-0
5

-0
2

–
S

m
gm

t
–

9/103

• Planning

• Assessment
and Control

• Recognising and
Fighting Difficulties
as Early as Possible

• Communication

• Leading and
Motivation
of Employees

• Creation and
Preservation
of Beneficial
Conditions

Without plans, a project
cannot be managed.
Note: mistakes in planning
can be hard to resolve.

Work results and project
progress have to be assessed
and compared to the plans;
it has to be observed
whether participants stick to
agreements.

Unforeseen difficulties and
problems in projects are not
exceptional but usual.

Therefore, project
management needs to
constantly “screen the
horizon for icebergs”, and,
when spotting one, react
timely and effectively.

In other words: systematic
risk management.

Distribute information
between project participants
(project owner, customer,
developers, administration).

Leading means: going
ahead, showing the way,
“pulling” the group.

Most developers want to
achieve good results, yet
need orientation and
feedback (negative and
positive).

Provide necessary
infrastructure and working
conditions for developers

(against: demanding
customers, imprecisely
stated goals, organisational
restructuring, economy
measures, tight office space,
other projects, etc.).

Quick Excursion: Risk and Riskvalue

–
4

–
2

0
16

-0
5

-0
2

–
S

m
gm

t
–

10/103

risk — a problem, which did not occur yet, but on occurrence threatens important
project goals or results. Whether it will occur, cannot be surely predicted.

Ludewig & Lichter (2013)

riskvalue = p ·K

p: probability of problem occurrence,

K : cost in case of problem occurrence.

10
5

10
6

10
7

10
8

cost in
case of
incidence /
e

10
−5

10
−4

10
−3 0.01 0.1 0.5

incidence
probability
p

acceptable risks

inacceptable

risks

extreme

risks

• Avionics requires: “Average Probability per Flight Hour for Catastrophic Failure Conditions
of 10−9 or ‘Extremely Improbable”’ (AC 25.1309-1).

• “problems with p = 0.5 are not risks, but environment conditions to be dealt with”



Software Project Planning

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

12/103



What to (Plan and) Manage?

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

13/103

Planning and managing software projects involves

• costs and deadlines,

• tasks and activities,

• people and roles.

Phases, Milestones

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

14/103

A phase is a continuous, i.e. not interrupted range of time in which certain works are
carried out and completed. At the end of each phase, there is a milestone.

A phase is successfully completed if the criteria defined by the milestone are satisfied.
Ludewig & Lichter (2013)

• Phases (in this sense) do not overlap!

Yet there may be different “threads of development” running in parallel,
structured by different milestones.

• Splitting a project into phases makes controlling easier;
milestones may involve the customer (accept intermediate results) and trigger payments.

• The granularity of the phase structuring is critical:

• very short phases may not be tolerated by a customer,

• very long phases may mask significant delays longer than necessary.

If necessary:
define internal (customer not involved) and external (customer involved) milestones.



Milestones, Deadlines

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

15/103

A phase is a continuous, i.e. not interrupted range of time in which certain works are
carried out and completed. At the end of each phase, there is a milestone.

A phase is successfully completed if the criteria defined by the milestone are satisfied.
Ludewig & Lichter (2013)

Milestones, Deadlines

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

15/103

A phase is a continuous, i.e. not interrupted range of time in which certain works are
carried out and completed. At the end of each phase, there is a milestone.

A phase is successfully completed if the criteria defined by the milestone are satisfied.
Ludewig & Lichter (2013)

• Whether a milestone is reached (or successfully completed) must be assessable by

• clear,

• objective, and

• unambiguous

criteria.

• The definition of a milestone often comprises:

• a definition of the results which need to be achieved,

• the required quality properties of these results,

• the desired time for reaching the milestone (the deadline), and

• the instance (person or committee) which decides whether the milestone is reached.

• Milestones can be part of the development contract;
not reaching a defined milestone as planned can lead to legal claims.



What to (Plan and) Manage?

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

16/103

Planning and managing software projects involves

• costs and deadlines,

• tasks and activities,

• people and roles.

Cycle and Life Cycle

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

17/103

cycle — (1) A period of time during which a set of events is completed. See also: ...

IEEE 610.12 (1990)

system life cycle — The period of time that begins when a system is conceived and
ends when it is no longer available for use. IEEE 610.12 (1990)

software life cycle — The period of time that begins when a software product is con-
ceived and ends when the software is no longer available for use. [...]IEEE 610.12 (1990)

software development cycle — The period of time that begins with the decision to
develop a software product and ends when the software is delivered. [...]

IEEE 610.12 (1990)



Software Life and Development Cycle

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

18/103

software life cycle — The period of time that begins when a software product is con-
ceived and ends when the software is no longer available for use.

The software life cycle typically includes

• a concept phase,

• a requirements phase,

• a design phase,

• an implementation phase,

• a test phase,

• an installation and checkout phase,

• on operation and maintenance phase, and,

• sometimes, a retirement phase.

Note: These phases may overlap or be performed iteratively. IEEE 610.12 (1990)

software development cycle — The period of time that begins with the decision to
develop a software product and ends when the software is delivered.

This cycle typically includes

• a requirements phase,

• a design phase,

• an implementation phase,

• a test phase, and

• sometimes an installation and checkout phase.

Notes:

(1) the phases listed above may overlap or be performed iteratively,
depending upon the software development approach used.

(2) This term is sometimes used to mean a longer period of time, either the period that ends when
the software is no longer being enhanced by the developer, or the entire software life cycle.

IEEE 610.12 (1990)

Common Activities in Order to Develop or Adapt Software

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

19/103

• Analysis

• Requirements
Specification

• Design, Specifi-
cation of Modules

• Coding and
Module Test

• Integration, Test,
Approval

• Deployment,
Operation, and
Maintenance

• Dismissing and
Replacement

Software is developed to solve
a problem or satisfy a need.

Goal of analysis: understand
the problem, assess whether/
in how far software can be
used to solve it.

Sort out, document,
assess, extend, correct
. . . the results of analysis.

Resulting documents are
basis of most other
activities!

Formal methods: check
consistency, realisability.

Most software systems
consist of modules or
components which
interact to realise the
overall functionality
(antonym: monolithic).

Design overall structure
(called software
architecture) specify
component interfaces as
precise as possible to
enable concurrent
development and
seamless integration.

Formal methods: code
contracts, verify design
meets requirements.

Implement the needed
modules using the chosen
programming language(s).

Done if tested as needed,
and ready for integration.

Formal methods: verify
code implements design.

Done if system is constructed
from completed components,
interplay is tested.

Customer checks system and
declares approval (or not).

Done if system is installed
up to customer needs
and becomes operational.
Occurring errors are fixed.

New requirements
(changes, extensions):
new project (so-called
maintenance project).

Most software systems (sooner or
later) become obsolete, and are
often replaced by a successor
system.

Common reasons: existing
system no longer maintainable,
not adaptable to new or changed
requirements.



What to (Plan and) Manage?

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

20/103

Planning and managing software projects involves

• costs and deadlines,

• tasks and activities,

• people and roles.

The Concept of Roles

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

21/103

In a software project, at each point in time,

there is a set R of (active) roles, e.g. R =

{

mgr , prg , tst , ana
}

.

A role has responsibilities and rights, and necessary skills and capabilities.

For example,

• mgr : project manager

• has the right to raise issue reports

• is responsible for closing issue reports

• prg : programmer

• has the right to change the code

• is responsible for reporting unforeseen problems to the project manager

• is responsible for respecting coding conventions

• is responsible for addressing issue reports

• tst : test engineer

• has the right to raise issue reports

• is responsible for quality control



The Concept of Roles Cont’d

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

22/103

Given a set R of roles, e.g. R =
{

mgr , prg , tst , ana
}

,

and a set P of people, e.g. P =

{

, , , ,

}

, each with skills or capabilities.

An aspect of project management is to assign (a set of) people to each role:

assign : R → 2P

such that each person p ∈ assign(r) assigned to role r

has (at least) the skills and capabilities required by role r.

Note: assign may change over time, there may be different assignments for different phases.

Sanity check: ensure that assign(r) 6= ∅ for each role r.

• Example:

mgr

one person, one role

prg

,
prg

,
prg

multiple persons, one role

tst

ana

one person, multiple roles

assign =

{

mgr 7→ { }, prg 7→ { , , }, tst 7→ { }, ana 7→ { }

}

Useful and Common Roles

–
4

–
2

0
16

-0
5

-0
2

–
S

p
la

n
–

23/103

Customer Developer

Recall: roles “Customer” and “Developer” are as-
sumed by legal persons, which often represent many
people.

The same legal person may act as “Customer” and
“Developer” in the same project.

· · · · · ·

Clients Software people

Useful and common roles
in software projects:

• customer, user

• project manager

• (sytems) analyst

• software architect, designer

• (lead) developer
programmer, tester, . . .

• maintenance engineer

• systems administrator

• invisible clients: legislator,
norm/standard supervisory committee



Content

–
4

–
2

0
16

-0
5

-0
2

–
S

co
n

te
n

t2
–

24/103

• (Software) Project

• Project Management

• Excursion: Risk

• Software Project Planning

• Costs and Deadlines

• Tasks and Activities

• People and Roles

• Software Development Process

• Vocabulary: role, artefact, activity

• Describing & prescribing processes

• Procedure and Process Models

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Procedure classification

• Process Model Examples

• V-Modell, RUP

• Agile (XP, Scrum)

Software Development Process

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

25/103



Process

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

26/103

Process —

(1) A sequence of steps performed for a given purpose;
for example, the software development process.

(2) See also: task; job.

(3) To perform operations on data.
IEEE 610.12 (1990)

Software Development Process —
The process by which user needs are translated into a software product.
The process involves translating user needs into software requirements,
transforming the software requirements into design,
implementing the design in code, testing the code, and
sometimes, installing and checking out the software for operational use.

IEEE 610.12 (1990)

• The process of a software development project may be

• implicit,

• informally agreed on, or

• explicitly prescribed (by a procedure or process model).

• Note: each software development project has a process!

Describing Software Development Processes

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

27/103

Over time, the following notions proved useful to describe
and model (→ in a minute) software development processes:

• role — has resposibilities and rights, needs skills and capabilities. role

In particular: responsibility for artefacts, participates in activities.

• artefact — all documents, evaluation protocols, software modules, etc.,

state

artefactall products emerging during a development process.

Is processed by activities, may have state.

is responsible for

• activity — any processing of artefacts, manually or automatic.
activityDepends on artefacts, creates/modifies artefacts.

participates in

depends on creates/modifies

• decision point — special case of activity: a decision is made based on artefacts (in a certain state),
creates a decision artefacts.

Delimits phases, corresponds to milestone.

state

decision point



How Software S May Have Been Created. . .

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

28/103

role , role

artefact

activity

decision point

responsible

participates

depends on

creates/modifies

code Bcode B

B. . .

rev. 139.

test Btest B

B. . .

rev. 139.

✔

A,B ready?A,B ready?

decision

integrateintegrate S

code Acode A

A. . .

rev. 127.

test Atest A

A. . .

rev. 127.

✘

code Acode A

A. . .

rev. 254.

test Atest A

A. . .

rev. 254.

✔

spec. of B tests for B

prg tst

spec. of A tests for A

prgprg tst prg tst

mgr
int

• S consists of modules A and B.

• Assume: specifications and test cases for A and B were available.

• Person coded B (according to spec.), then person tested B (with test cases), no errors found.

• Person coded A, with the help of person . Then person tested A, some errors found.

• Person fixed A, person tested again, no errors found.

• A and B ready caused a positive decision, then person integrated A and B and obtained S.

How the Plan for Creating S May Have Looked Like. . .

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

29/103

role , role

artefact

activity

decision point

responsible

participates

depends on

creates/modifies

code Bcode B

B. . .

test Btest B

B. . .

A,B ready?A,B ready?

decision

integrateintegrate S

code Acode A

A. . .

test Atest A

A. . .

code Acode A

A. . .

test Atest A

A. . .

spec. of B tests for B

prg tst

spec. of A tests for A

prgprg tst prg tst

mgr int

• S consists of modules A and B; specifications and test cases for A and B are available.

• Some prg codes B (according to spec.), then some tst tests B (with test cases), and creates test report.

• Some prg codes A, with the help of some prg . Then some tst tests A, and creates test report.

• If errors in A found, some single prg fixes A, some tst tests again, and creates test report.

• If A and B ready causes a positive decision, then some int integrates A and B and obtains S.



How the Plan for Creating S May Have Been Created. . .

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

30/103

M

✘

codingcoding

M

spec. of M

prgprg
. . .

• A software module M has a responsible prg ,

any number of prg may help with work on M .

• A software module M is created/modified by
activity coding.

• Activity coding depends on a specification of M ,
and may consider a positive test report for M .

• The responsible prg (and the helper prg ’s)

participate in activity coding.

• Activity coding is done, if M exists and there is
a negative test report for M (all tests passed).

M

testingtesting

rep: M

✔/✘

tests for M

tst

• A test report for a module M has a responsible tst .

• A test report is created/modified by activity testing.

• Activity testing depends on software module M

and tests (in state “finished”) for M .

• The responsible tst participates in activity testing.

• Activity testing is done, if M exists and there is
a negative test report for M (all tests passed).

How the Plan for Creating S May Have Been Created. . .

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

31/103

M1

✔

...

Mn

✔

M1, . . . ,Mn

ready?
M1, . . . ,Mn

ready?

decision

mgr

• A ready decision for a modules M1, . . . ,Mn has a responsible

mgr .

• A ready decision is created/modified by decision point ready?.

• Decision point ready? depends on negative test reports for
M1, . . . ,Mn .

• The responsible mgr participates in decision point ready?.

• Decision point ready? is done, if a positive decision exists.

M1

✔

...

Mn

✔

integrateintegrate

decision

S

int

• A software S has a responsible int .

is created by integrating modules M1, . . . ,Mn

• A software is created/modified by activity integration.

• Activity integration depends on software modules
M1, . . . ,Mn in state “finished”.

• The responsible int participates in activity integrate.

• Activity integration is done, if S exists.



From Building Blocks to Process (And Back)

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

32/103

M

✘

codingcoding

M

spec. of M

prgprg
. . .

M

testingtesting

rep: M

✔/✘

tests for M

tst

M1

✔

...

Mn

✔

M1, . . . ,Mn

ready?
M1, . . . ,Mn

ready?

decision

mgr

M1

✔

...

Mn

✔

integrateintegrate

decision

S

int

Building Blocks

Plan

code Bcode B

B. . .

test Btest B

B. . .

A,B ready?A,B ready?

decision

integrateintegrate S

code Acode A

A. . .

test Atest A

A. . .

code Acode A

A. . .

test Atest A

A. . .

spec. of B tests for B

prg tst

spec. of A tests for A

prgprg tst prg tst

mgr int

code Bcode B

B. . .

rev. 139.

test Btest B

B. . .

rev. 139.

✔

A,B ready?A,B ready?

decision

integrateintegrate S

code Acode A

A. . .

rev. 127.

test Atest A

A. . .

rev. 127.

✘

code Acode A

A. . .

rev. 254.

test Atest A

A. . .

rev. 254.

✔

spec. of B tests for B

prg tst

spec. of A tests for A

prgprg tst prg tst

mgr
int

Process

Building Blocks Can Be Arbitrarily Complicated

–
4

–
2

0
16

-0
5

-0
2

–
S

p
ro

ce
ss

–

33/103

• Example: Distinguish coding and fixing software.

M

✘

fixingfixing

M

report

spec. of M tests for M

programmer lead programmer

• If there is a negative test result for M ,

• a leadprogrammer is responsible for fixing M ,

• the programmer who was responsible for the

initial version assist;

• fixing depends on the test cases, in addition to
the specifiation of M ,

• a report (analysis of the error, documentation of
the fix) is created.

• Using such building blocks, the project management

• can prescribe particular procedures,

• analyse, which roles need to be filled in a project,

• avoid to “forget” things.



Content

–
4

–
2

0
16

-0
5

-0
2

–
S

co
n

te
n

t2
–

34/103

• (Software) Project

• Project Management

• Excursion: Risk

• Software Project Planning

• Costs and Deadlines

• Tasks and Activities

• People and Roles

• Software Development Process

• Vocabulary: role, artefact, activity

• Describing & prescribing processes

• Procedure and Process Models

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Procedure classification

• Process Model Examples

• V-Modell, RUP

• Agile (XP, Scrum)

Process vs. Procedure Models

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

35/103



Process Description and Reference Model

–
4

–
2

0
16

-0
5

-0
2

–
S

p
m

–

36/103

process description — documented expression of a set of activities performed to
achieve a given purpose.

NOTE: A process description provides an operational definition of the major components of a
process.

The description specifies, in a complete, precise, and verifiable manner, the requirements, design,
behavior, or other characteristics of a process.

It also may include procedures for determining whether these provisions have been satisfied.

Process descriptions can be found at the activity, project, or organizational level.IEEE 24765 (2010)

process reference model — a model comprising definitions of processes in a life cycle
described in terms of process purpose and outcomes, together with an architecture
describing the relationships between the processes. IEEE 24765 (2010)

Process vs. Procedure Model

–
4

–
2

0
16

-0
5

-0
2

–
S

p
m

–

37/103

(Ludewig and Lichter, 2013) propose to distinguish: process model and procedure model.

• A Process model (‘Prozessmodell’) comprises

(i) Procedure model (‘Vorgehensmodell’)

e.g., “waterfall model” (70s/80s).

(ii) Organisational structure — comprising requirements on

• project management and responsibilities,

• quality assurance,

• documentation, document structure,

• revision control.

e.g., V-Modell, RUP, XP (90s/00s).

• In the literature, process model and procedure model are often used as synonyms;
there is not universally agreed distinction.



Anticipated Benefits of Process Models

–
4

–
2

0
16

-0
5

-0
2

–
S

p
m

–

38/103

• “economy of thought”
— don’t re-invent principles.

• quantification, reproducibility
— one can assess the quality of how products are created (→ CMMI).

Identify weaknesses, learn from (bad) experience, improve the process.

• fewer errors
— e.g., testing a module cannot be forgotten because the

“ready” decision point depends on module with “test passed” flagged.

• clear responsibilities
— fewer “I thought you’d fix the module!”

• Process model-ing is easily overdone — the best process model
is worthless if your software people don’t “live” it.

• Before introducing a process model

• understand what you have, understand what you need.

• process-model as much as needed, not more (→ tailoring).

• assess whether the new/changed process model makes matters
better or worse (→ metrics).

• Note: customer may require a certain process model.

Procedure Models

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

39/103



Procedure Model (?!): Code and Fix

–
4

–
2

0
16

-0
5

-0
2

–
S

co
d

e
n

fi
x

–

40/103

Code and Fix — denotes an approach, where coding and correction alternating with
ad-hoc tests are the only consciously conducted activities of software development.

Ludewig & Lichter (2013)

Advantages:

• Corresponds to our desire to “get ahead”, to solve the stated problem quickly.

• The conducted activities (coding and ad-hoc testing) are easy.

Disadvantages:

• It is hard to plan the project, there are no rational/explicit decisions.

• It is hard to distribute work over multiple persons or groups.

• If requirements are not stated, there is no notion of correctness (= meeting requirements).

• Tests are lacking expected outcome (otherwise, e.g., derived from requirements).

• Resulting programs often hard to maintain.

• Effort for maintenance high: most errors are only detected in operation.

• Important concepts and decisions are not documented, but only in the heads of the developers, thus hard to transfer.

• . . .

The (In)famous Waterfall Model (Rosove, 1967)

–
4

–
2

0
16

-0
5

-0
2

–
S

w
at

e
rf

al
l–

41/103

Waterfall or Document-Model— Software develop-
ment is seen as a sequence of activities coupled by (par-
tial) results (documents).
These activities can be conducted concurrently or iter-
atively.

Apart from that, the sequence of activities is fixed as

(basically) analyse, specify, design, code, test, install,

maintain. Ludewig & Lichter (2013)

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance



References

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

102/103

References

–
4

–
2

0
16

-0
5

-0
2

–
m

ai
n

–

103/103

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development methods. review
and analysis. Technical Report 478.

Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-Wesley.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(5):61–72.

Hörmann, K., Dittmann, L., Hindel, B., and Müller, M. (2006). SPICE in der Praxis: Interpretationshilfe für Anwender
und Assessoren. dpunkt.verlag.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC/IEEE (2010). Systems and software engineering – Vocabulary. 24765:2010(E).

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rosove, P. E. (1967). Developing Computer-based Information Systems. John Wiley and Sons.

Schwaber, K. (1995). SCRUM development process. In Sutherland, J. et al., editors, Business Object Design and
Implementation, OOPSLA’95 Workshop Proceedings. Springer-Verlag.

Team, C. P. (2010). Cmmi for development, version 1.3. Technical Report ESC-TR-2010-033, CMU/SEI.

Thayer, R. H. (1997). Tutorial – Software Engineering Project Management. IEEE Society Press, revised edition.

V-Modell XT (2006). V-Modell XT. Version 1.4.

Züllighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with
the Tools and Materials Approach. dpunkt.verlag/Morgan Kaufmann.


