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Ariane 5, V88 Therac-25 Toll Collect

• self-driving car, 2016; wrong strategy in traffic situation; crash, no injury

• game distribution platform, 2015; unintentional rm -rf /; damage not quantified

• car, 2015; security issue, remote exploit; 1.4 Mio. cars recalled

• car, 2014; unintended acceleration, stack overflows; people injured and killed

• photocopier, 2013; unintentional lossy compression; no damage known

• tiltrotor aircraft, 2000; hydraulic failure not handled; 4 killed

• credit card failures, 2000; incompatibility of new EMV chip; parties ruined

• spacecraft lander, 1998; landing gear operation in flight; 100s Mio. $

• war vessel, 1997; uncontrolled ship by division by 0; no damage

• plane landing, 1993; environment assumptions problem; 2 killed, 54 injured

• ambulance management, 1992; management issues, poor QA; 46 killed

• missile defense, 1991; integer overflow; 28 killed

• telephone infrastructure, 1990; erronously entered mode; 9h no phones, 75 + 100 Mio. $

• defense system, 1979; random bits, false rocket attack announced; no harm

• weather balloons, 1971; poor protocol design; 72 weather-balloons and data lost

• . . .
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• none, because mandatory course

• overall

✔ well-structured lectures

(✔) praxis oriented

✘ practical knowledge about planning, designing and testing software

✔ improve skills in scientific work

(✔) more about scientific methods

• other courses

✘ more on how courses are linked together

✘ skills we need to organise SoPra

✔ maybe transfer knowledge in SoPra

• “real world”

✔ vocabulary and methods in professional software development

✔ learn how things work in a company, to easier integrate into
teams, e.g., communication

• kinds of software

✔ embedded systems and software

✘ how to combine HW and SW parts

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu
Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu
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• software development

✔ understand how software development practically works

✔ developing, maintaining software at bigger scale

✔ aspects of software development

• software project management

✔ learn what is important to plan

✔ how to structure the process of a project

✔ how to keep control of project, measure success

✘ which projects need full-time project manager

✘ which kind of documentation is really necessary

✘ want to get better in leading a team; how to lead team of engineers

• cost estimation

✔ how to estimate time and effort

(✘) formal methods for better planning of projects

✘ tools which help planning

• quality

✔ learn ways how to judge quality based on the requirements

✔ avoid mistakes during software development

✔ make better programs, or make programs more efficiently

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu
Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu
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• requirements

✔ formal ways to specify requirements

✔ learn techniques to reduce misunderstandings

✔ understand types of requirements

(✔) learn how requirements are to be stated

(✔) how to create requirements/specification document

• design

✔ techniques for design

✔ predict potential risks and crucial design errors

(✘) come up with good design, learn how to design

(✘) practical knowledge on application of design patterns

✘ how to structure, compose components, how to define interfaces

✘ standards for keeping parts of project compatible

✘ how to guarantee a particular reliability

• Implementation

(✔) modular programming, better documentation of big projects

✘ more of computers and programming, write faster better programs

✘ strengths and weaknesses of standards, training in their application

✘ improve coding skills

✘ how to increase (software) performance

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu
Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu
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• code quality assurance

✔ methods for testing to guarantee high level of quality

(✔) how to conduct most exhaustive test as possible in reasonable time

✔ formal methods like program verification

✘ learn about practical implementation of these tools

• extra information

• “will work as teacher”

• “want to work on medical software”

• “want to work in automotive industry”

• “worked as software-engineer”

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu
Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu
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•VL 2 Software Metrics

• Properties of Metrics

• Scales

• Examples

• Cost Estimation

• Deadlines and Costs

• Expert’s Estimation

• Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

.

..

VL 5
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• Software Metrics

• Motivation

• Vocabulary

• Requirements on Useful Metrics

• Excursion: Scales

• Example: LOC

• Other Properties of Metrics

• Subjective and Pseudo Metrics

• Discussion

• Cost Estimation

• Deadlines and Costs

• Expert’s Estimation

• Algorithmic Estimation
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Engineering vs. Non-Engineering
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workshop
(technical product)

studio
(artwork)

Mental
prerequisite

the existing and
available technical
know-how

artist’s inspiration,
among others

Deadlines can usually be planned
with sufficient precision

cannot be planned due
to dependency on
artist’s inspiration

Price oriented on cost,
thus calculable

determined by market
value, not by cost

Norms and
standards

exist, are known, and
are usually respected

are rare and, if known,
not respected

Evaluation and
comparison

can be conducted using
objective, quantified
criteria

is only possible
subjectively,
results are disputed

Author remains anonymous,
often lacks emotional
ties to the product

considers the artwork as
part of him/herself

Warranty and
liability

are clearly regulated,
cannot be excluded

are not defined and in
practice hardly
enforceable

(Ludewig and Lichter, 2013)
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• Goal: specify, and systematically compare and improve industrial products.

• Approach: precisely describe and assess the products (and the process of creation).

• This is common practice for material goods:
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• Not so obvious (and common) for immaterial goods, like software.

It should be common: objective measures are central to engineering approaches.
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Why “no so obvious” for software?
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• Recall, e.g., quality (ISO/IEC 9126-1:2000 (2000)):

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability

maturity

fault tolerance

recoverability

usability

understandability

learnability

operability

attractiveness

efficiency
time behaviour

resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence

replaceability
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metric — A quantitative measure of the degree to which a system, component, or pro-
cess posesses a given attribute.
See: quality metric. IEEE 610.12 (1990)

quality metric —

(1) A quantitative measure of the degree to which an item possesses a given quality
attribute.

(2) A function whose inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which the software possesses a given
quality attribute. IEEE 610.12 (1990)
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Important motivations and goals for using software metrics:

• specify quality requirements

• assess the quality of products and processes

• quantify experience, progress, etc.

• predict cost/effort, etc.

• support decisions

Software metrics can be used:

• prescriptive, e.g., “all prodecures must not have more then N parameters”, or

• descriptive, e.g., “procedure P has N parameters”.

A descriptive metric can be

• diagnostic, e.g., “the test effort was N hours”, or

• prognostic, e.g., “the expected test effort is N hours”.

Note: prescriptive and prognostic are different things.

• Examples: support decisions by diagnostic measurements:

(i) Measure time spent per procedure, then “optimize” most time consuming procedure.

(ii) Measure attributes which indicate architecture problems, then re-factor accordingly.
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Definition. A software metric is a function m : P → S which assigns to each proband
p ∈ P a valuation yield (“Bewertung”) m(p) ∈ S. We call S scale.

In order to be useful, a (software) metric should be:

differentiated worst case: same valuation yield for all probands

comparable ordinal scale, better: rational (or absolute) scale (→ in a minute)

reproducible multiple applications of a metric to the same proband should
yield the same valuation

available valuation yields need to be in place when needed

relevant wrt. overall needs

economical worst case: doing the project gives a perfect prognosis of project
duration — at a high price;
irrelevant metrics are not economical (if not available for free)

plausible (→ pseudo-metric)

robust developers cannot arbitrarily manipulate the yield;
antonym: subvertible

westphal
Bleistift

westphal
Bleistift
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Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself
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Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Nominal Scale

• nationality, gender, car manufacturer, geographic direction, train number, . . .

• Software engineering example: programming language (S = {Java, C, . . . })

→ There is no (natural) order between elements of S; the lexicographic order can be imposed
(“C < Java”), but is not related to the measured information (thus not natural).
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Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Ordinal Scale

• strongly agree > agree > disagree > strongly disagree; Chancellor > Minister (administrative ranks);

• leaderboard (finishing number tells us that 1st was faster than 2nd, but not how much faster)

• types of scales, . . .

• Software engineering example: CMMI scale (maturity levels 1 to 5) (→ later)

→ There is a (natural) order between elements of M ,
but no (natural) notion of distance or average.
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Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Interval Scale

• temperature in Fahrenheit

• “today it is 10°F warmer than yesterday” (∆(ϑtoday, ϑyesterday) = 10°F)

• “100°F is twice as warm as 50°F”: . . . ? No. Note: the zero is arbitrarily chosen.

• Software engineering example: time of check-in in revision control system

→ There is a (natural) notion of difference ∆ : S × S → R, but no (natural) proportion and 0.
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Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Rational Scale

• age (“twice as old”); finishing time; weight; pressure; price; speed; distance from Freiburg. . .

• Software engineering example: runtime of a program for given inputs.

→ The (natural) zero induces a meaning for proportion m1/m2.
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Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Absolute Scale

• seats in a bus, number of public holidays, number of inhabitants of a country, . . .

• “average number of children per family: 1.203” – what is a 0.203-child?
The absolute scale has been used as a rational scale (makes sense for certain purposes if done with care).

• Software engineering example: number of known errors.

→ An absolute scale has a median, but in general not an average in the scale.
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Recall:

Definition. [Metric Space (math.)]

Let X be a set. A function d : X ×X → R is called metric on X
if and only if, for each x, y, x ∈ X ,

(i) d(x, y) ≥ 0 (non-negative)

(ii) d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

(iii) d(x, y) = d(y, x) (symmetry)

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

(X, d) is called metric space.

→ different from all scales discussed before;
a metric space requires more than a rational scale.

→ definitions of, e.g., IEEE 610.12, may use standard (math.) names for different things
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M1 M2 M3 M4 M5

LOC 127 213 152 139 13297

• arithmetic average: 2785.6

• median: 127, 139, 152, 213, 13297

• a boxplot visualises 5 aspects of data at once
(whiskers sometimes defined differently, with “outliers”):

100 % (maximum)

75 % (3rd quartile)

50 % (median)

25 % (1st quartile)

0 % (minimum)

40.000

30.000

20.000

10.000

median: 2,078

average: 7,033.027

LOC of 2015’s lecture’s *.tex files
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m: commits took place at n-th day of project.

Team A:

10, 20, 30, 40, 50, 60, 70, 80, 90, 100

100

75

50

25

median: 50

average: 55.5

Team B:

5, 50, 60, 75, 80, 85, 95, 100

100

75

50

25

median: 75

average: 55.5

Team B: “Oh, this SoPra was so stressful. . .Could we have done something about that?”
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In order to be useful, a (software) metric should be:

differentiated worst case: same valuation yield for all probands

comparable ordinal scale, better: rational (or absolute) scale

reproducible multiple applications of a metric to the same proband should yield the
same valuation

available valuation yields need to be in place when needed

relevant wrt. overall needs

economical worst case: doing the project gives a perfect prognosis of project duration
— at a high price;
irrelevant metrics are not economical (if not available for free)

plausible (→ pseudo-metric)

robust developers cannot arbitrarily manipulate the yield;
antonym: subvertible
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1 /* h t t p s : / / de . w i k i p e d i a . o r g / w i k i /
2 * L i s t e _ v o n _ H a l l o−Welt−Programmen /
3 * H%C3%B 6 h e r e _ P r o g r a m m i e r s p r a c h e n#J a v a */
4

5 c l a s s Ha l l o {
6

7 pub l i c s t a t i c void

8 main ( S t r i n g [ ] a r g s ) {
9 System . out . p r i n t (

10 " Ha l l o Welt ! " ) ; // no n e w l i n e
11 }
12 }

dimension unit measurement procedure

program size LOCtot number of lines in total

net program
size

LOCne number of non-empty lines

code size LOCpars number of lines with not
only comments and
non-printable

delivered
program size

DLOCtot,
DLOCne,
DLOCpars

like LOC, only code
(as source or compiled)
given to customer

(Ludewig and Lichter, 2013)

differentiated

comparable

reproducible

available

relevant

economical

plausible

robust
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characteristic
(‘Merkmal’)

positive example negative example

differentiated program length in LOC CMM/CMMI level below 2

comparable cyclomatic complexity review (text)

reproducible memory consumption grade assigned by inspector

available number of developers number of errors in the code
(not only known ones)

relevant expected development
cost; number of errors

number of subclasses (NOC)

economical number of discovered
errors in code

highly detailed timekeeping

plausible cost estimation
following COCOMO
(to a certain amount)

cyclomatic complexity of a
program with pointer
operations

robust grading by experts almost all pseudo-metrics

(Ludewig and Lichter, 2013)
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base measure — measure defined in terms of an attribute and the method for quanti-
fying it. ISO/IEC 15939 (2011)

Examples:

• lines of code, hours spent on testing, . . .

•

derived measure — measure that is defined as a function of two or more values of base
measures. ISO/IEC 15939 (2011)

Examples:

• average/median lines of code, productivity (lines per hour), . . .

•
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objective metric pseudo metric subjective metric

Procedure measurement, counting,
poss. normed

computation (based on
measurements or
assessment)

review by inspector, verbal
or by given scale

Advantages exact, reproducible, can
be obtained
automatically

yields relevant, directly
usable statement on not
directly visible
characteristics

not subvertable, plausible
results, applicable to
complex characteristics

Disadvantages not always relevant,
often subvertable, no
interpretation

hard to comprehend,
pseudo-objective

assessment costly, quality
of results depends on
inspector

Example,
general

body height, air pressure body mass index (BMI),
weather forecast for the
next day

health condition, weather
condition (“bad weather”)

Example in
Software
Engineering

size in LOC or NCSI;
number of (known) bugs

productivity; cost
estimation following
COCOMO

usability; severeness of an
error

Usually used for collection of simple
base measures

predictions (cost
estimation); overall
assessments

quality assessment; error
weighting

(Ludewig and Lichter, 2013)
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Some of the most interesting aspects of software development projects
are hard or impossible to measure directly, e.g.:

• how maintainable is the software?

• how much effort is needed until completion?

• how is the productivity of my software people?

• do all modules do appropriate error handling?

• is the documentation sufficient and well
usable?

Due to high relevance, people want
to measure despite the difficulty in
measuring. Two main approaches:

diff
er

en
tia

te
d

co
m

par
ab

le
re

pro
duc

ib
le

av
ail

ab
le

re
le

va
nt

ec
onom

ica
l

pla
usib

le
ro

bust

Expert review,
grading (✔) (✔) (✘) (✔) ✔! (✘) ✔ ✔

Pseudo-metrics,
derived measures ✔ ✔ ✔ ✔ ✔! ✔ ✘ ✘

Note: not every derived measure is a pseudo-metric:

• average LOC per module: derived, not pseudo → we really measure average LOC per module.

• measure maintainability in average LOC per module: derived, pseudo

→ we don’t really measure maintainability; average-LOC is only interpreted as maintainability.

Not robust if easily subvertible (see exercises).
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Example: productivity (derived).

• Team T develops software S with LOC N = 817 in t = 310h.

• Define productivity as p = N/t, here: ca. 2.64 LOC/h.

• Pseudo-metric: measure performance, efficiency, quality, . . .
of teams by productivity (as defined above).

• team may write

x
:=
y
+
z;

instead of x := y + z;

→ 5-time productivity increase, but real efficiency actually decreased.

→ not (at all) plausible.

→ clearly pseudo.

westphal
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complexity —

(1) The degree to which a system or component has a design or implementation that is
difficult to understand and verify. Contrast with: simplicity.

(2) Pertaining to any of a set of structure-based metrics that measure the attribute in
(1). IEEE 610.12 (1990)

Definition. [Cyclomatic Number [graph theory]]

Let G = (V,E) be a graph comprising vertices V and edges E.

The cyclomatic number of G is defined as

v(G) = |E| − |V |+ 1.

Intuition: minimum number of edges to be removed to make G cycle free.
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Definition. [Cyclomatic Complexity [McCabe, 1976]]

Let G = (V,E) be the Control Flow Graph of program P .

Then the cyclomatic complexity of P is defined as v(P ) = |E| − |V | + p where p is the
number of entry or exit points.

1 void i n s e r t i o n S o r t ( i n t [ ] a r r a y ) {
2 f o r ( i n t i = 2 ; i < a r r a y . l e n g t h ; i + + ) {
3 tmp = a r r a y [ i ] ;
4 a r r a y [0] = tmp ;
5 i n t j = i ;
6 whi l e ( j > 0 && tmp < a r r a y [ j − 1 ] ) {
7 a r r a y [ j ] = a r r a y [ j − 1 ] ;
8 j −−;
9 }

10 a r r a y [ j ] = tmp ;
11 }
12 }

Number of edges: |E| = 11
Number of nodes: |V | = 6 + 2 + 2 = 10
External connections: p = 2

→ v(P ) = 11 − 10 + 2 = 3

1

2

3

4

5

8

7

6

10

Entry

Exit
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Definition. [Cyclomatic Complexity [McCabe, 1976]]

Let G = (V,E) be the Control Flow Graph of program P .

Then the cyclomatic complexity of P is defined as v(P ) = |E| − |V | + p where p is the
number of entry or exit points.

• Intuition: number of paths, number of decision points.

• Interval scale (not absolute, no zero due to p > 0);
easy to compute

• Somewhat independent from programming language.

• Plausibility:

+ loops and conditions are harder to understand than
sequencing.

− doesn’t consider data.

• Prescriptive use:

“For each procedure, either limit cyclomatic
complexity to [agreed-upon limit] or provide
written explanation of why limit exceeded.”

1

2

3

4

5

8

7

6

10

Entry

Exit
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