
–
6

–
2

0
16

-0
5

-1
2

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 6: Requirements Engineering

2016-05-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



You Are Here.
–

6
–

2
0

16
-0

5
-1

2
–

m
ai

n
–

2/37

Introduction L 1: 18.4., Mon

L 2: 21.4., ThuScales, Metrics,
Costs L 3: 25.4., Mon

T 1: 28.4., Thu

Development L 4: 2.5., Mon

- 5.5., Thu

Process L 5: 9.5., Mon

L 6: 12.5., Thu

- 16.5., Mon

- 19.5., Thu

T 2: 23.5., Mon

- 26.5., Thu

L 7: 30.5., Mon

L 8: 2.6., Thu
Requirements
Engineering

L 9: 6.6., Mon

T 3: 9.6., Thu

L10: 13.6., Mon

L 11: 16.6., Thu
Architecture &

Design
L 12: 20.6., Mon

T 4: 23.6., Thu

L 13: 27.6., MonSoftware
Mondelling L 14: 30.6., Thu

L 15: 4.7., Mon

T 5: 7.7., Thu

L16: 11.7., Mon

L 17: 14.7., Thu
Quality Assurance
(Testing, Formal

Verification) L18: 18.7., Mon
Wrap-Up L19: 21.7., Thu

westphal
Bleistift



Topic Area Requirements Engineering: Content
–

6
–

2
0

16
-0

5
-1

2
–

S
b

lo
ck

co
n

te
n

t
–

3/37

• Introduction

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary, Specification

• Specification Languages

• Natural Language

• Working Definition: Software

• Decision Tables

• Syntax, Semantics

• Consistency, Completeness, . . .

• Scenarios

• User Stories, Use Cases

• Live Sequence Charts

• Syntax, Semantics

• Discussion

VL 6

..

.

VL 7

..

.

VL 8

..

.

VL 9
..
.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Recall: Structure of Topic Areas
–

6
–

2
0

16
-0

5
-1

2
–

S
b

lo
ck

st
ru

ct
–

4/37

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.

Techniques

informal

semi-formal

formal



Content
–

6
–

2
0

16
-0

5
-1

2
–

S
co

n
te

n
t

–

5/37

• Introduction

• Vocabulary: Requirements (Analysis)

• Usages of Requirements Specifications

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary

• Specification

• Specification Languages

• Natural Language



Introduction

–
6

–
2

0
16

-0
5

-1
2

–
m

ai
n

–

6/37



–
6

–
2

0
16

-0
5

-1
2

–
S

re
in

tr
o

–

7/37

Needs!

need 1
need 2
need 3
. . .

Solution!

Customer Developer

announcement
(Lastenheft)

→

. . .e
prop. 1
prop. 2
. . .

Customer Developer

offer
(Pflichtenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

Needs!

Developer Customer

software delivery

requirement –

(1) A condition or capability needed by a user to solve a problem or achieve an ob-
jective.

(2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally im-
posed documents.

(3) A documented representation of a condition or capability as in (1) or (2).

IEEE 610.12 (1990)

requirements analysis –

(1) The process of studying user needs to arrive at a definition of system, hardware,
or software requirements.

(2) The process of studying and refining system, hardware, or software requirements.

IEEE 610.12 (1990)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



–
6

–
2

0
16

-0
5

-1
2

–
S

re
in

tr
o

–

8/37

The hardest single part of building a software system is deciding precisely what to build.

No other part of the conceptual work is as difficult as establishing the detailed technical
requirements ...

No other part of the work so cripples the resulting system if done wrong.

No other part is as difficult to rectify later. F.P. Brooks (Brooks, 1995)



Usages of The Requirements Specification
–

6
–

2
0

16
-0

5
-1

2
–

S
re

in
tr

o
–

9/37

Needs!

need 1
need 2
need 3
. . .

Solution!

Customer Developer

announcement
(Lastenheft)

→

. . .e
prop. 1
prop. 2
. . .

Customer Developer

offer
(Pflichtenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

Needs!

Developer Customer

software delivery

• negotiation
(with customer, marketing department, or . . . )

• design and implementation,

• without specification, programmers may just “ask
around” when in doubt, possibly yielding different
interpretations → difficult integration

• documentation, e.g., the user’s manual,

• without specification, the user’s manual author can
only describe what the system does, not what it
should do (“every observation is a feature”)

• preparation of tests,

• without a description of allowed outcomes, tests
are randomly searching for generic errors (like
crashes) → systematic testing hardly possible

• acceptance by customer,
resolving later objections or regress claims,

• without specification, it is unclear at delivery time
whether behaviour is an error (developer needs to
fix) or correct (customer needs to accept and pay)
→ nasty disputes, additional effort

• re-use,

• without specification, re-use needs to be based on
re-reading the code → risk of unexpected changes

• later re-implementations.

• the new software may need to adhere to
requirements of the old software; if not properly
specified, the new software needs to be a 1:1
re-implementation of the old → additional effort



Requirements Specifications

–
6

–
2

0
16

-0
5

-1
2

–
m

ai
n

–

10/37



Requirements Analysis. . .
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

11/37

. . . in the sense of “finding out what the exact requirements are”.

“Analysing an existing requirements/feature specification” → later.

In the following we shall discuss:

(i) desired properties of

• requirements specifications,

• requirements specification documents,

(ii) kinds of requirements

• hard and soft,

• open and tacit,

• functional and non-functional.

(iii) (a selection of) analysis techniques

(iv) documents of the requirements
analysis:

• dictionary,

• requirements specification (‘Lastenheft’),

• feature specification (‘Pflichtenheft’).

• Note: In the following (unless otherwise noted), we discuss the feature specification,
i.e. the document on which the software development is based.

To maximise confusion, we may occasionally (inconsistently) call it requirements specification
or just specification — should be clear from context. . .

• Recall: one and the same content can serve both purposes; only the title defines the purpose then.



Requirements on Requirements Specifications
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

12/37

A requirements specification should be

• correct
— it correctly represents the wishes/needs of
the customer,

• complete
— all requirements (existing in somebody’s
head, or a document, or . . . ) should be present,

• relevant
— things which are not relevant to the project
should not be constrained,

• consistent, free of contradictions
— each requirement is compatible with all other
requirements; otherwise the requirements are
not realisable,

• neutral, abstract
— a requirements specification does not
constrain the realisation more than necessary,

• traceable, comprehensible
— the sources of requirements are documented,
requirements are uniquely identifiable,

• testable, objective
— the final product can objectively be checked
for satisfying a requirement.

• Correctness and completeness are defined relative to something
which is usually only in the customer’s head.

→ is is difficult to be sure of correctness and completeness.

• “Dear customer, please tell me what is in your head!” is in almost all cases not a solution!

It’s not unusual that even the customer does not precisely know. . . !

For example, the customer may not be aware of contradictions due to technical limitations.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Requirements on Requirements Specifications
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

12/37

A requirements specification should be

• correct
— it correctly represents the wishes/needs of
the customer,

• complete
— all requirements (existing in somebody’s
head, or a document, or . . . ) should be present,

• relevant
— things which are not relevant to the project
should not be constrained,

• consistent, free of contradictions
— each requirement is compatible with all other
requirements; otherwise the requirements are
not realisable,

• neutral, abstract
— a requirements specification does not
constrain the realisation more than necessary,

• traceable, comprehensible
— the sources of requirements are documented,
requirements are uniquely identifiable,

• testable, objective
— the final product can objectively be checked
for satisfying a requirement.

• Correctness and completeness are defined relative to something
which is usually only in the customer’s head.

→ is is difficult to be sure of correctness and completeness.

• “Dear customer, please tell me what is in your head!” is in almost all cases not a solution!

It’s not unusual that even the customer does not precisely know. . . !

For example, the customer may not be aware of contradictions due to technical limitations.

Excursion: Informal vs. Formal Techniques

–
1

–
2

0
16

-0
4

-1
8

–
S

cc
o

n
te

n
t

–

20/36

Example: Requirements Engineering, Airbag Controller

D
ai

m
le

rC
h

ry
sl

e
r

A
G

,C
C

B
Y

-S
A

3
.0

Requirement:

Whenever a crash is detected, the airbag has to be fired within 300ms (±ε).

Developer A

‘within’ means
‘≤’; so 100ms is

okay, too

Developer B

‘within’ means
between 300− ε

and 300 + ε

vs.

• Fix observables: crashdetected : Time → {0, 1} and fireairbag : Time → {0, 1}

• Formalise requirement:

∀ t, t
′
∈ Time • crashdetected(t) ∧ airbagfired(t′) =⇒ t

′
∈ [t+ 300− ε, t+ 300 + ε]

→ no more misunderstandings, sometimes tools can objectively decide: requirement satisfied yes/no.



Requirements on Requirements Specification Documents
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

13/37

The representation and form of a requirements specification should be:

• easily understandable,
not unnecessarily complicated —
all affected people should be able to
understand the requirements specification,

• precise —
the requirements specification should not
introduce new unclarities or rooms for
interpretation (→ testable, objective),

• easily maintainable —
creating and maintaining the requirements
specification should be easy and should not
need unnecessary effort,

• easily usable —
storage of and access to the requirements
specification should not need significant effort.

Note: Once again, it’s about compromises.

• A very precise objective requirements specification
may not be easily understandable by every affected person.

→ provide redundant explanations.

• It is not trivial to have both, low maintenance effort and low access effort.

→ value low access effort higher,
a requirements specification document is much more often read than changed or written
(and most changes require reading beforehand).



Pitfall: Vagueness vs. Abstraction
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

14/37

Consider the following examples:

• Vague (not precise):

“the list of participants should be sorted conveniently”

• Precise, abstract:

“the list of participants should be sorted by immatriculation number, lowest number first”

• Precise, non-abstract:
“the list of participants should be sorted by

public static <T> void Collections::sort( List<T> list, Comparator c );

where T is the type of participant records, c compares immatriculation number numerically.”

• A requirements specification should always be as precise as possible (→ testable, objective).

It need not denote exactly one solution;
precisely characterising acceptable solutions is often more appropriate.

• Being to specific, may limit the design decisions of the developers, which may cause unnecessary costs.

• Idealised views advocate a strict separation between
requirements (“what is to be done?”) and design (“how are things to be done?”).

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Kinds of Requirements

–
6

–
2

0
16

-0
5

-1
2

–
S

re
–

15/37



Kinds of Requirements: Functional and Non-Functional
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

16/37

• Proposal: View software S as a function

S : i1, i2, i3, · · · 7→ o0, o1, o2, . . .

which maps sequences of inputs to sequences of outputs.

Examples:

• Software “compute shipping costs”:

• o0 : initial state,

• i1 : shipping parameters
(weight, size, destination, . . . ),

• o1 : shipping costs

And no more inputs, S : i1 7→ o1 .

• Software “traffic lights controller”:

• o0 : initial state,

• i1 : pedestrian presses button,

• o1, o2, . . . : stop traffic, give green to pedestrians,

• in : button pushed again

• . . .

• Every constraint on things which are observable in the sequences
is a functional requirement (because it requires something for the function S).

Thus timing, energy consumption, etc. may be subject to functional requirements.

• Clearly non-functional requirements:

programming language, coding conventions, process model requirements, portability. . .

westphal
Bleistift

westphal
Bleistift



Kinds of Requirements: Hard and Soft Requirements
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

17/37

• Example of a hard requirement:

• Cashing a cheque over N emust result in a new balance decreased by N ;
there is not a micro-cent of tolerance.

• Examples of soft requirements:

• If a vending machine dispenses the selected item within 1 s, it’s clearly fine; if it takes 5 min., it’s clearly
wrong — where’s the boundary?

• A car entertainment system which produces “noise” (due to limited bus bandwidth or CPU power)
in average once per hour is acceptable, once per minute is not acceptable.

The border between hard/soft is difficult to draw, and

• as developer, we want requirements specifications to be “as hard as possible”,
i.e. we want a clear right/wrong.

• as customer, we often cannot provide this clarity;
we know what is “clearly wrong” and we know what is “clearly right”, but we don’t have a sharp boundary.

→ intervals, rates, etc. can serve as precise specifications of soft requirements.



Kinds of Requirements: Open and Tacit
–

6
–

2
0

16
-0

5
-1

2
–

S
re

–

18/37

• open: customer is aware of and able to explicitly communicate the requirement,

• (semi-)tacit:
customer not aware of something being a requirement (obvious to the customer
but not considered relevant by the customer, not known to be relevant).

Examples:

• buttons and screen of a mobile phone
should be on the same side,

• important web-shop items should be on
the right hand side because the main
users are socialised with right-to-left
reading direction,

• the ECU (embedded control unit) may
only be allowed use a certain amount of
bus capacity.

Analyst
knows domain new to domain

C
u

st
o

m
e

r/
C

li
e

n
t e

xp
lic

it

requirements
discovered

requirements
discoverable

se
m

i-
ta

ci
t

requirements
discoverable

requirements
discoverable

with difficulties

ta
ci

t

hard/impossible to discover

(Gacitua et al., 2009)• distinguish don’t care:

intentionally left open to be decided by developer.



Requirements Analysis Techniques

–
6

–
2

0
16

-0
5

-1
2

–
m

ai
n

–

19/37



(A Selection of) Analysis Techniques
–

6
–

2
0

16
-0

5
-1

2
–

S
re

an
a

–

20/37

Focus
current desired innovation

Analysis Technique situation situation consequences

Analysis of existing data and documents

Observation

Questionning with

(

closed
structured

open

)

questions

Interview

Modelling

Experiments

Prototyping

Participative development

(Ludewig and Lichter, 2013)



Requirements Elicitation
–

6
–

2
0

16
-0

5
-1

2
–

S
re

an
a

–

21/37

• Observation:

Customers can not be assumed to be trained in stating/communicating requirements.

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions, difficulties,
corner-cases,

• have technical background to know
technical difficulties,

• communicate (formal) specification to
customer,

• “test” own understanding by asking
more questions.

→ i.e. to elicit the requirements.

Goal: automate opening/closing of a main
door with a new software.

A made up dialogue. . .

Analyst: So in the morning, you open the door at

the main entrance?

Customer: Yes, as I told you.

A: Every morning?

C: Of course.

A: Also on the weekends?

C: No, on weekends, the entrance stays closed.

A: And during company holidays?

C: Then it also remains closed of course.

A: And if you are ill or on vacation?

C: Then Mr. M opens the door.

A: And if Mr. M is not available, too?

C: Then the first client will knock on the window.

A: Okay. Now what exactly does “morning” mean?

. . . (Ludewig and Lichter, 2013)

westphal
Bleistift



How Can Requirements Engineering Look In Practice?
–

6
–

2
0

16
-0

5
-1

2
–

S
re

an
a

–

22/37

• Set up a core team for analysis (3 to 4 people),
include experts from the domain and
developers. Analysis benefits from highest
skills and strong experience.

• During analysis, talk to decision makers
(managers), domain experts, and users.

Users can be interviewed by a team of 2
analysts, ca. 90 min.

• The resulting “raw material” is sorted and
assessed in half- or full-day workshops in a
team of 6-10 people.

Search for, e.g., contradictions between
customer wishes, and for priorisation.

Note: The customer decides. Analysts may
make proposals (different options to choose
from), but the customer chooses. (And the
choice is documented.)

• The “raw material” is basis of a preliminary
requirements specification (audience: the
developers) with open questions.

Analysts need to communicate the
requirements specification appropriately
(explain, give examples, point out particular
corner-cases).

Customers without strong maths/computer
science background are often overstrained
when “left alone” with a formal requirements
specification.

• Result: dictionary, specified requirements.

• Many customers do not want (radical) change, but improvement.

• Good questions: How are things done today? What should be improved?



Requirements Documents

–
6

–
2

0
16

-0
5

-1
2

–
m

ai
n

–

23/37



Dictionary
–

6
–

2
0

16
-0

5
-1

2
–

S
re

d
o

cs
–

24/37

• Requirements analysis should be based on a dictionary.

• A dictionary comprises definitions and clarifications of terms that are relevant to the project and of
which different people (in particular customer and developer) may have different understandings before
agreeing on the dictionary.

• Each entry in the dictionary should provide the following information:

• term and synonyms (in the sense of the requirements specification),

• meaning (definition, explanation),

• deliminations (where not to use this terms),

• validness (in time, in space, . . . ),

• denotation, unique identifiers, . . . ,

• open questions not yet resolved,

• related terms, cross references.

Note: entries for terms that seemed “crystal clear” at first sight are not uncommon.

• All work on requirements should, as far as possible,
be done using terms from the dictionary consistently and consequently.

The dictionary should in particular be negotiated with the customer
and used in communication (if not possible, at least developers should stick to dictionary terms).

• Note: do not mix up real-world/domain terms with ones only “living” in the software.

westphal
Bleistift

westphal
Bleistift



Dictionary Example
–

6
–

2
0

16
-0

5
-1

2
–

S
re

d
o

cs
–

25/37

(Arenis et al., 2014)

Example: Wireless Fire Alarm System

• During a project on designing a highly reliable, EN-54-25
conforming wireless communication protocol, we had to
learn that the relevant components of a fire alarm system are

• terminal participants
(heat/smoke sensors and manual indicators),

• repeaters (a non-terminal participant),

• and a central unit (not a participant).

• Repeaters and central unit are technically very similar, but
need to be distinguished to understand requirements.
The dictionary explains these terms.

Excerpt from the dictionary (ca. 50 entries in total):

Part A part of a fire alarm system is either a participant or a central unit.

Repeater A repeater is a participant which accepts messages for the central unit from other participants,
or messages from the central unit to other participants.

Central Unit A central unit is a part which receives messages from different assigned participants, as-
sesses the messages, and reacts, e.g. by forwarding to persons or optical/acustic signalling devices.

Terminal Participant A terminal participant is a participant which is not a repeater. Each terminal partic-
ipant consists of exactly one wireless communication module and devices which provide sensor and/or
signalling functionality.

westphal
Bleistift



Requirements Specification
–

6
–

2
0

16
-0

5
-1

2
–

S
re

d
o

cs
–

26/37

specification — A document that specifies,

• in a complete, precise, verifiable manner,

the

• requirements, design, behavior, or other characteristics of a system or component,

and, often, the procedures for determining whether these provisions have been satis-
fied. IEEE 610.12 (1990)

software requirements specification (SRS) — Documentation of the essential require-
ments (functions, performance, design constraints, and attributes) of the software and
its external interfaces. IEEE 610.12 (1990)



–
6

–
2

0
16

-0
5

-1
2

–
S

re
d

o
cs

–

27/37

 

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 0-7381-0332-2

 

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior 
written permission of the publisher.

 

IEEE Std 830-1998

 

(Revision of

IEEE Std 830-1993)

 

IEEE Recommended Practice for 
Software Requirements 
SpeciÞcations

 

Sponsor

 

Software Engineering Standards Committee
of the
IEEE Computer Society

 

Approved 25 June 1998

 

IEEE-SA Standards Board

 

Abstract:

 

 The content and qualities of a good software requirements specification (SRS) are de-

scribed and several sample SRS outlines are presented. This recommended practice is aimed at

specifying requirements of software to be developed but also can be applied to assist in the selec-

tion of in-house and commercial software products. Guidelines for compliance with IEEE/EIA

12207.1-1997 are also provided.

 

Keywords:

 

 contract, customer, prototyping, software requirements specification, supplier, system

requirements specifications



Structure of a Requirements Document: Example
–

6
–

2
0

16
-0

5
-1

2
–

S
re

d
o

cs
–

28/37

1 INTRODUCTION

1.1 Purpose
1.2 Acronyms and Definitions
1.3 References
1.4 User Characteristics

2 FUNCTIONAL REQUIREMENTS

2.1 Function Set 1
2.2 etc.

3 REQUIREMENTS TO EXTERNAL INTERFACES

3.1 User Interfaces
3.2 Interfaces to Hardware
3.3 Interfaces to Software Products / Software / Firmware
3.4 Communication Interfaces

4 REQUIREMENTS REGARDING TECHNICAL DATA

4.1 Volume Requirements
4.2 Performance
4.3 etc.

5 GENERAL CONSTRAINTS AND REQUIREMENTS

5.1 Standards and Regulations
5.2 Strategic Constraints
5.3 Hardware
5.4 Software
5.5 Compatibility
5.6 Cost Constraints
5.7 Time Constraints
5.8 etc.

6 PRODUCT QUALITY REQUIREMENTS

6.1 Availability, Reliability, Robustness
6.2 Security
6.3 Maintainability
6.4 Portability
6.5 etc.

7 FURTHER REQUIREMENTS

7.1 System Operation
7.2 Customisation
7.3 Requirements of Internal Users

(Ludewig and Lichter, 2013) based on (IEEE, 1998)

westphal
Bleistift

westphal
Bleistift



Content
–

6
–

2
0

16
-0

5
-1

2
–

S
co

n
te

n
t

–

29/37

• Introduction

• Vocabulary: Requirements (Analysis)

• Usages of Requirements Specifications

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary

• Specification

• Specification Languages

• Natural Language



Specification Languages

–
6

–
2

0
16

-0
5

-1
2

–
m

ai
n

–

30/37



Requirements Specification Language
–

6
–

2
0

16
-0

5
-1

2
–

S
sp

e
cl

an
g

–

31/37

specification language — A language, often a machine-processible combination of nat-
ural and formal language, used to express the requirements, design, behavior, or other
characteristics of a system or component.

For example, a design language or requirements specification language. Contrast with:
programming language; query language. IEEE 610.12 (1990)

requirements specification language — A specification language with special constructs
and, sometimes, verification protocols, used to develop, analyze, and document hard-
ware or software requirements. IEEE 610.12 (1990)



Natural Language Specification (Ludewig and Lichter, 2013) based

on (Rupp and die SOPHISTen, 2009)

–
6

–
2

0
16

-0
5

-1
2

–
S

sp
e

cl
an

g
–

32/37

rule explanation, example

R1 State each requirement
in active voice.

Name the actors, indicate whether the user or the system does
something. Not “the item is deleted”.

R2
Express processes by
full verbs.

Not “is”, “has”, but “reads”, “creates”; full verbs require information
which describe the process more precisely. Not “when data is
consistent” but “after program P has checked consistency of the data”.

R3
Discover incompletely
defined verbs.

In “the component raises an error”,
ask whom the message is addressed to.

R4
Discover incomplete
conditions.

Conditions of the form “if-else”
need descriptions of the if- and the then-case.

R5
Discover universal
quantifiers.

Are sentences with “never”, “always”, “each”, “any”, “all” really
universally valid? Are “all” really all or are there exceptions.

R6
Check nominalisations. Nouns like “registration” often hide complex processes that need

more detailed descriptions; the verb “register” raises appropriate
questions: who, where, for what?

R7
Recognise and refine
unclear substantives.

Is the substantive used as a generic term or does it denote something
specific? Is “user” generic or is a member of a specific classes meant?

R8
Clarify responsibilities. If the specification says that something is “possible”, “impossible”, or

“may”, “should”, “must” happen,
clarify who is enforcing or prohibiting the behaviour.

R9
Identify implicit
assumptions.

Terms (“the firewall”) that are not explained further often hint to
implicit assumptions (here: there seems to be a firewall).

westphal
Bleistift



Natural Language Patterns
–

6
–

2
0

16
-0

5
-1

2
–

S
sp

e
cl

an
g

–

33/37

Natural language requirements can be (tried to be) written as an instance of
the pattern “〈A〉 〈B〉 〈C〉 〈D〉 〈E〉 〈F 〉.” (German grammar) where

A clarifies when and under what conditions the activity takes place

B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)

C is either “the system” or the concrete name of a (sub-)system

D one of three possibilities:

• “does”, description of a system activity,
• “offers”, description of a function offered by the system to somebody,
• “is able if”,

usage of a function offered by a third party, under certain conditions

E extensions, in particular an object

F the actual process word (what happens)

(Rupp and die SOPHISTen, 2009)

Example:

After office hours (= A), the system (= C) should (= B) offer to the operator (= D)
a backup (= F ) of all new registrations to an external medium (= E).



Other Pattern Example: RFC 2119
–

6
–

2
0

16
-0

5
-1

2
–

S
sp

e
cl

an
g

–

34/37

Network Working Group                                         S. Bradner
Request for Comments: 2119                            Harvard University
BCP: 14                                                       March 1997
Category: Best Current Practice

        Key words for use in RFCs to Indicate Requirement Levels

Status of this Memo

   This document specifies an Internet Best Current Practices for the
   Internet Community, and requests discussion and suggestions for
   improvements.  Distribution of this memo is unlimited.

Abstract

   In many standards track documents several words are used to signify
   the requirements in the specification.  These words are often
   capitalized.  This document defines these words as they should be
   interpreted in IETF documents.  Authors who follow these guidelines
   should incorporate this phrase near the beginning of their document:

      The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
      NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and
      "OPTIONAL" in this document are to be interpreted as described in
      RFC 2119.

   Note that the force of these words is modified by the requirement
   level of the document in which they are used.

1. MUST   This word, or the terms "REQUIRED" or "SHALL", mean that the
   definition is an absolute requirement of the specification.

2. MUST NOT   This phrase, or the phrase "SHALL NOT", mean that the
   definition is an absolute prohibition of the specification.

3. SHOULD   This word, or the adjective "RECOMMENDED", mean that there
   may exist valid reasons in particular circumstances to ignore a
   particular item, but the full implications must be understood and
   carefully weighed before choosing a different course.

4. SHOULD NOT   This phrase, or the phrase "NOT RECOMMENDED" mean that
   there may exist valid reasons in particular circumstances when the
   particular behavior is acceptable or even useful, but the full
   implications should be understood and the case carefully weighed
   before implementing any behavior described with this label.

Bradner                  Best Current Practice                  [Page 1]

RFC 2119                     RFC Key Words                    March 1997

5. MAY   This word, or the adjective "OPTIONAL", mean that an item is
   truly optional.  One vendor may choose to include the item because a
   particular marketplace requires it or because the vendor feels that
   it enhances the product while another vendor may omit the same item.
   An implementation which does not include a particular option MUST be
   prepared to interoperate with another implementation which does
   include the option, though perhaps with reduced functionality. In the
   same vein an implementation which does include a particular option
   MUST be prepared to interoperate with another implementation which
   does not include the option (except, of course, for the feature the
   option provides.)

6. Guidance in the use of these Imperatives

   Imperatives of the type defined in this memo must be used with care
   and sparingly.  In particular, they MUST only be used where it is
   actually required for interoperation or to limit behavior which has
   potential for causing harm (e.g., limiting retransmisssions)  For
   example, they must not be used to try to impose a particular method
   on implementors where the method is not required for
   interoperability.

7. Security Considerations

   These terms are frequently used to specify behavior with security
   implications.  The effects on security of not implementing a MUST or
   SHOULD, or doing something the specification says MUST NOT or SHOULD
   NOT be done may be very subtle. Document authors should take the time
   to elaborate the security implications of not following
   recommendations or requirements as most implementors will not have
   had the benefit of the experience and discussion that produced the
   specification.

8. Acknowledgments

   The definitions of these terms are an amalgam of definitions taken
   from a number of RFCs.  In addition, suggestions have been
   incorporated from a number of people including Robert Ullmann, Thomas
   Narten, Neal McBurnett, and Robert Elz.



Tell Them What You’ve Told Them. . .
–

6
–

2
0

16
-0

5
-1

2
–

S
tt

w
y

tt
–

35/37

• Requirements Documents are important — e.g., for

• negotiation, design & implementation, documentation,
testing, delivery, re-use, re-implementation.

• A Requirements Specification should be

• correct, complete, relevant, consistent, neutral, traceable, objective.

Note: vague vs. abstract.

• Requirements Representations should be

• easily understandable, precise, easily maintainable, easily usable

• Distinguish

• hard / soft,

• functional / non-functional,

• open / tacit.

• It is the task of the analyst to elicit requirements.

• Natural language is inherently imprecise, counter-measures:

• natural language patterns.

• Do not underestimate the value of a good dictionary.

westphal
Bleistift



References

–
6

–
2

0
16

-0
5

-1
2

–
m

ai
n

–

36/37



References
–

6
–

2
0

16
-0

5
-1

2
–

m
ai

n
–

37/37

Arenis, S. F., Westphal, B., Dietsch, D., Muñiz, M., and Andisha, A. S. (2014). The wireless fire alarm system:
Ensuring conformance to industrial standards through formal verification. In Jones, C. B., Pihlajasaari, P., and Sun,
J., editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of LNCS, pages 658–672. Springer.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison-Wesley.

Gacitua, R., Ma, L., Nuseibeh, B., Piwek, P., de Roeck, A., Rouncefield, M., Sawyer, P., Willis, A., and Yang, H.
(2009). Making tacit requirements explicit. talk.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

IEEE (1998). IEEE Recommended Practice for Software Requirements Specifications. Std 830-1998.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2009). Requirements-Engineering und -Management. Hanser, 5th edition.


	You Are Here.
	Topic Area Requirements Engineering: Content
	Recall: Structure of Topic Areas
	Content
	Introduction
	
	
	Usages of The Requirements Specification

	Requirements Specifications
	Requirements Analysis…
	Requirements on Requirements Specifications
	Requirements on Requirements Specification Documents
	Pitfall: Vagueness vs. Abstraction

	Kinds of Requirements
	Kinds of Requirements: Functional and Non-Functional
	Kinds of Requirements: Hard and Soft Requirements
	Kinds of Requirements: Open and Tacit

	Requirements Analysis Techniques
	(A Selection of) Analysis Techniques
	Requirements Elicitation
	How Can Requirements Engineering Look In Practice?

	Requirements Documents
	Dictionary
	Dictionary Example
	Requirements Specification
	
	Structure of a Requirements Document: Example
	Content

	Specification Languages
	Requirements Specification Language
	Natural Language Specification LudewigLichter2013 based on Rupp2009 
	Natural Language Patterns
	Other Pattern Example: RFC 2119
	Tell Them What You've Told Them…

	References
	References




