Softwaretechnik / Software-Engineering

Lecture 3: Metrics Cont’d & Cost Estimation
2016-04-25

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Can Pseudo-Metrics be Useful?

« Pseudo-metrics can be useful if there is a (good) correlation (with few false positives and few
false negatives) between valuation yields and the property to be measured:

e
valuation yield e S upl’
low high felae. Lol
se positive true posiive
e x 5@ o
E tenegatve fle negaie
x X
low . . /
x x x x ke is ej&
Helde s b

« This may strongly depend on context information:

o If LOC was (or could be made non-subvertible (— tutorials)),
then productivity could be a useful measure for, e.g., team performance.

410

Content

Software Metrics

Motivation

Vocabulary

Requirements on Useful Metrics
Excursion: Scales LOCpois

Example: LOC — R

Other Properties of Metrics
Subjective and Pseudo Metrics
Discussion

o Cost Estimation

W “(Software) Economics in a Nutshell”
Cost Estimation

o Experts Estimation
Lo The Delphi Method

o Algorithmic Estimation

20
Code Metrics for OO Programs (Chidamber and Kemerer, 1994)
metric computation
weighted methods | 3" ¢, n = number of methods, c; = complexity of method i
per class (WMC) =
depth of inheritance | graph distance in inheritance tree (multiple inheritance ?)
tree (DIT)
number of children | number of direct subclasses of the class
of aclass (NOC)
couplingbetween | CBO(C) = |Ko U Kil.
object classes (CBO) | K, = set of classes used by C', K; = set of classes using C
response foraclass | RFC = [M UL, Ril, M set of methods of C',
(RFC) R; set of all methods calling method i
lack of cohesionin | max(|P| — |Q],0). P = methods using no common attribute,
methods (LCOM) Q = methods using at least one common attribute
o direct metrics: DIT, NOC, CBO; pseudo-metrics: WMC, RFC, LCOM
§ there seems to be agreement that it is far more important to focus on empirical validation (or
E refutation) of the proposed metrics than to propose new ones, (Kan, 2003)
50

Recall: Pseudo-Metrics

Some of the most interesting aspects of software development projects
are hard or impossible to measure directly, e.

« how maintainable is the software? « doallmodules do appropriate error handling?

» how much effort is needed until i » is th ion sufficient and well
usable?

o howis the productivity of my software people?

Due to high relevance, people want
to measure despite the difficulty
measuring. Two main approaches:

EXpert review,
grading
Pseudo-metrics,
derived measures

W@ ||| x| v |

viv|iv]iv|v v|x|x

Note: not every derived measure is a pseudo-metri
« average LOC per module: derived, not pseudo — we really measure average LOC per module.

o measure maintainability in average LOC per module: derived, pseudo

— we dont really measure maintainability: average-LOC is only interpreted as maintainabilty.
Not robust if easily subvertible (see exercises).
3140
Subjective Metrics
6r40

Subjective Metrics

example problems

Statement “The Termsmaybe | Allow only certain
specification is ambiguous, statements, characterise
availabl conclusions are | them precisely.

hardly possible.

Assessment “Themoduleis Notnecessarily | Only offer particular
codedinaclever comparable. | outcomes; put them on an
way! (at least ordinal)scale.
“Readabi Subjective: Define criteria for grades:
graded 4.0” grading not give examples how to grade:

reproducible. practice on existing artefacts

(Ludewig and Lichter, 2013)

Ts0

The Goal-Question-Metric Approach

90

Example: A (Subjective) Metric for Maintainability

© Goal: assess maint;

ability.

« One approach: grade the following aspects, eg. with scale S = {0,.., 10}.

« Norm Conformance « Locality

na: size of nits (modules etc) 11: use of parameters
ny: labelling Ly: information hiding
ia: naming of dentifers L3: local flow of control

o e yout L: design of interfaces
ns: separation of literals * Readability

ng: style of comments r1: datatypes
72: structure of control flow
r3: comments

« Testability

t1: testdriver

to: testdata

t3: preparation for test evaluation
t4: diagnostic components

t5: dynamic consistency checks

* Typing
11: type differen
1a? type restriction

o Define:m = ™*,-¥%2 (with weights:m, = 9™+ Fo0v2 G =320 g;)

o Procedure:
« Train reviewers on existing examples.
« Do not over-interpret results of first applications.

o Evaluate and adjust touse,

Information Overload!

(Ludewig and Lichter, 2013)

Now we have mentioned nearly 50 attributes one could measure...

Which ones should we measure?

It depends...

One approach: Goal-Question-Metric (GOM).

Example: A (Subjective) Metric for Maintainability

« Goal: assess maintainability.
+ Oneapproach: grade the following; ~ Development of a pseudo-metrics:

Identify aspect to be represented.
) Devise amodel of the aspect.

+ Norm Conformance « Loca
it model .) Fixascale for the metric.
. ' X
m size of units (modules etc) g (iv) Develop a definition of the pseudo-metric,
" e Iy o ie. how to compute the metric.
n: naming of identifiers S
o designayout) Li: de (V) Develop base measures for all parameters of
wavout the definition.
ns: separation of literals * Reac
s style of comments o d (i) Apply and improve the metric
r !
s comments ya: type restriction
o Define;m = 22412 (with weights: my = Lotttons ¢ = 320 g)

o Procedure:

« Trai reviewers on existing examples
Do ot over-interpret results of first applications.

o Evaluate and adjust to use, adj (Ludewig and Lichter, 2013)

80

Goal-Question-Metric (Basili and Weiss, 1984)

The three steps of GQM:

(i) Define the goals relevant for a project or an organisation.
) From each goal, derive questions
which need to be answered to check whether the goal is reached.

(iii) For each question, choose (or develop) metrics
which contribute to finding answers.

D Being good wrt. to a certain metric is (in general) not an asset on its own.

In particular critical: pseudo-metrics for quality.

Software and process measurements may yield personal
b data (“personenbezogene Dater).
._4_

collection may be regulated by laws.

4o

And Which Metrics Should One Use?

And Which Metrics Shoul

1240

Offten useful: collect some basic meas|
(in particular if collection is cheap / au

o size...

. of newly created and changed code,
(automatically provided by revision cd

o effort...

. for coding, review, tes

o error:

. atleast errors found during quality as:
(can be recorded via standardised revi

Measures derived from such basic me|

Tool support for software metrics e.g, SonarCube.

and buy time to take iate c

 error rate per release, error density (errors per LOC),

« average effort for error detection and correction,

o etc

over time. In case of unusual values: investigate further (maybe using ad

And Which Metrics Should One Use!

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

o size..

of newly created and changed code, etc.
(automatically provided by revision control software),

o effort.

for coding, review, testing, verification, fixing, maintenance, etc

o errors...

at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g, track

« error rate per release, error density (errors per LOC),

« average effort for error detection and correction,

o etc

over time. In case of unusual values: investigate further (maybe using additional metrics).

Tell Them What You've Told Them. ..

« Software metrics are defined in terms of scales
* Usesaftware metrics.tq

CopesiDassesauansiredict, support decisions

o prescribe / describe (diagnose / prognose),

« Whether a software metric is useful depends...

« Not every software attribute is directly measurable:

« derived measures,

« subjective metrics, and

« pseudo metrics.

have to be used with care - do we measure what we want to measure?

« Metric examples:

« LOC, McCabe / Cyclomatic Complexity.

= more than 50 more metrics named

« Goal-Question-Metric approach:
it's about the goal, not the metrics.

» Communicating figures: consider percentiles.

13740

And Which Metrics Should One Use?

Often useful: collect some basic meas
(in particular if collection is cheap / au

Iteaching/swt/swivELines of Code and Chur Level

* size..

... of newly created and changed code.
(automatically provided by revision cq

o effort...

.. for coding review, testing, verificatio|

o errors...

. atleast errors found during quality as:
(can be recorded via standardised rev

LOC and changed lines over time (obtained by statsvn().

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g. track

« error rate per release, error density (errors per LOC),

« average effort for error detection and correction,

o etc

over time. In case of unusual values: i

westigate further (maybe using additional metrics).

1240

Topic Area Project Management: Content

VL2 o Software Metrics
o Properties of Metrics
Lo Scales

Lo Examples

VL3 o Cost Estimation

(Software) Economics in a Nutshell”
o Expert' Estim:

n
Le Algorithmic Estimation

VL4
Project Management
[e Project
[e Process and Process Modelling
[Procedure Models
VLS

s Process Models

Process Metrics
Lo cmma, Spice

14710

“(Software) Economics in a Nutshell”

Costs: Economics in a Nutshell

Distinguish current cost (laufende Kosten), e.g.

and project-related cost (projektbezogene Koster

wages, b

vsiass
(business) management, marketing, adwsisfindia,
rooms,

computers, networks, software as part of __._:mmﬂanzaw

additional temporary personnel,
contract costs,

expenses,

hardware and software as part of product or system,

15040

18710

Costs

“Next to ‘Software] ‘Costs'is one of the terms occurring most o:ms in this book”
dewig and Lichter (2013)

A first approximation:

cost (Kosten) all disadvantages of a solution

benefit (Nutzen)

all benefits of a solution.
(or: negative costs)

Note: costs / benefits can be subjective - and not necessarily quantifiable in terms of money.

Super-ordinate goal of many projects:

 Minimize overall costs, i.e. maximise difference between benefits and costs.
(Equivalent: minimize sum of positive and negative costs.)

16/40
Software Costs in a Narrower Sense
vn_:fdm costs
isas_g ncw_,.fs.w mateance
emorprevention analyse-and-fix /aé/n&zi benelit
e e
T
error localisation error removal error caused costs
costs costs (in operation)
O
during and atr development Ludewig and Lich
T : s of sound engineering
principles software Jiable ad works ef
Siegtly.on real machines T b 171
19140

Costs vs. Benefits: A Closer Look

.—_ﬁ benefit of a software is determined by the advantages achievable using the software;

influenced by:

o the degree of coincidence between product and requirements,

« additional services, comfort, flexibility etc.

Some other examples of cost/benefit pairs: (inspired by Jones (1990)

Costs Possible Benefits

Labor during development | Use of result

(eg. develop new test (eg. faster testing)
machinery)

New equipment (purchase, | Better equipment
maintenance, (maintenance;

depreciation) maybe revenue from selling old)
New software purchases | (Other) use of new software
Conversion from old Improvement of system
system to new

Increased data gathering | Increased control

Training for employees Increased productivity

170

Discovering Fundamental Errors Late Can Be Expensive

relative cost of an error

200
100
5 larger projects
20
10 smallr projects
phase of error
detection
Analysis Design Coding Testd Acceptance
Integration &Operation

Relative error costs over latency according to investigations at IBM, etc
By (Boehm, 1979); Visualisation: Ludewig and Lichter (2013).

20/10

Plan

Cost Estimation

20

 Cost Estimation

W “(Software) Econornics in a Nutshell"””
Cost Estimation

o Experts

Lie The DelphiMethod

tion

o Algorithmic Estimation

W. cocomo
 Function Points

24740

Why Estimate Cost? ¢

Gotores Deroper Cstamer_ Devlopr oo Oevope
announcement offer softvare contract
ey b e .

Lastenheft (Requirements Specification) Vo Auftraggeber festgelegte Gesamtheit
der dielL

eines Auftrages.

ated by the customer)

« Developer can help with writing the requirements specification,
in particular if customer i lacking technical background,

DIN69901-5 (2009)

Pllichtenheft (Feature Specification) Vom Auftragnehmer erarbeitete Reali-
sierungsvorgaben aufgrund der Umsetzung des vom Auftraggeber vorgegebenen

Lastenhefts

DIN69901-5 (2009)

« One way of getting the feature specification: a pre-project (may be subject of a designated contract).
« Tricky: one and the same content can serve both purposes; then only the title defines the purpose.

Expert’s Estimation

25/40

The “Estimation Funnel”

effort estimated to real

4] efforlog scale
2
t
o5
025
Pre-Project 44 Analysis 4 Design A Coding &Test A

Uncertainty with estimations (following (8ochm et al,, 2000), p. 10).

Visualisation: Ludewig and Lichter (2013)

Expert’s Estimation

One approach: the Delphi method.

* Stepl: e down your
I ao2dy
© Step 2: PR
’ &
i 3323
« Step 3:

« Then take the median, for example.

23140

26710

Algorithmic Estimation

2710
Algorithmic Estimation: Principle
P P P P ot
Approach, more general:
dentify (measurable) factors Fi, ..., £, which influence overall cost, like size in LOC.
Take a big sample of data from previous projects.
Try to come up with a formula f such that (£, ..., Fy) matches previous costs.
« Estimate values for F1 ..., F, foranew project
o Take f(Fi,. .., Fy) as cost estimate C for new project.
« Conduct new project, measure F1 . .., F, and cost C.
o Adjust fif C # C.
Note
-« Theneed for (experts) estimation does not go away: one needs to estimate 7., .
©« Rationale: itis often easier to estimate technical aspect than to directly estimate cost.
2840

Algorithmic Estimation: Principle

P P P P P Rt

Assume
« Projects Py, P took place in the past,

« Sizes S, costs C, and kinds , (0 = blue, 1 = yellow) have been measured and recorded.

Question: What is the cost of the new project Ps?
Approach:

Try to find a function £ such that £(S;, k;) = Ci.for1 < i <5

(i) Estimate size S5 and kind ks. ,— eshwale

Estimate C as g = (S, ko).

(i the artficial example above, f(S. k) = 5 - 1.8 + k - 0.3 would work,

ie.if Py is of kind yellow (kg = 1)and size estimate s Sg = 2.7 then f(S6, kg) = 5.16)

28140

Algorithmic Estimation: COCOMO

Constructive Cost Model
Formulae which fit a huge set of archived project data (from the late 70's).
« Flavours:

 COCOMO 81(Eochm, 1981): basic, intermediate, detailed

« COCOMO Il (Bochm et al, 2000)

.

= All based on estimated program size § measured in

DS or kDS! (thousands of Delivered Source Instructions).

Factors like security requirements or experience of the project team
are mapped to values for parameters of the formulae.

« COCOMO examples: \ N
« textbooks like Ludewig and Lichter (2013) (most probably made up)

'COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

29740

Algorithmic Estimation: Principle

PP P PP Bt
Approach, more general:
+ Idengfy (measurable) factors F,

« Try to come up with a formula f such that f(
o Estimate values for F1 ..., F;, for anew project.

) matches previous costs.
o Take f(F4, ..., F) as cost estimate C' for new project.

« Conduct new project, measure F1. ..., F, and cost C.
o Adjust fif C # C.

28/10

COCOMO 81
Characteristcs of the Type 5 | Software
& Janovation | Deadiines/ Dev. Project Type
ize innovation Constraints
e Little Nottight Stable 32 [105 | organic
(50 KLOO) < gl
ooRioq Medum | Medm Medum 30 | 112 | Semi-detached
- Complex W/
Large Greater | Tight et 28 | 120 | Embedded
Basic COCOMO:

o effortrequired: E =a-(S/kDSI)" [PM (person-months)|

o timetodevelop: 7 =c-E* [months]

« headcount: H =E/T [FTE (full time employee)|

© productivity: P =S/E [DSlperPM] (-~ use to check for plausibility)

Intermediate COCOMO:
E=M-ga-(S/kDSI)" [person-months]
M = RELY - CPLX - TIME - ACAP - PCAP - LEXP - TOOL - SCED

30/40

COCOMO 81: Some Cost Drivers

M = RELY - CPLX - TIME - ACAP - PCAP - LEXP - TOOL - SCED

factor

RELY required software rel o75 088 |1 115 140
CPLX_ product complexity o070 o085 |1 115 130 | 165
TIME execution time constraint 1 1 130 | 166
ACAP analyst capability 146 119 1 086 | ot
PCAP programmer capability 142 17 1 086 | 07
LEXP programming language 107 1 095

experience
TOOL use of software tools 124 110 1 o9 083
SCED required development 123 108 |1 104 110

schedule

= Note: what, e.g. “extra high” TIME means, may depend on project context.

3140

COCOMO II: Post-Architecture Cont’d

M = RELY - DATA - --. - SCED

description
i reliability
Size of database
complexity of system
degree of development of reusable components
amount of required documentation

memory consumption constraint
stabilty of i

Team factors analyst capability

programmer capability

continutty of involved personnel

‘experience with application domain

experience with development environment
experience with programming languagels) and tools

use of software tools
degree of distributedness
vequired development schedule

Project factors

(also in COCOMO 81,

340

COCOMO 11 (Boch

ot al., 2000)

Consists of

« Application Composition Model - project work is configuring components, rather than

programming

 Early Design Model ~ adaption of Function Point approach (in a minute);
does not need completed architecture design

» Post-Architecture Model - improvement of COCOMO 81; needs completed archi-

tecture design, and size of components estimatable

Function Points

3240

35/40

COCOMO II: Post-Architecture

E=294-8-M

© Programsize: § = (1 + REVL) - (Suew + Sequiv)

o requirements volatility REVL:
new requirements make 10% of code unusable, then REVL = 0.1
estimated size minus size w of re-used code,

= w/qif writing new code takes g-times the effort of re-use.

« Scaling factors:
X=04+w w=091, 6= % -(PREC + FLEX + RESL+ TEAM + PMAT)

normal | high
PREC precedentness (experience with 620 | 496 | 372 | 248 | 124 000
similar projects)
FLEX development flexi 507 | 405 | 304 | 203 000
{development process fixed by
customer)

RESL Architecture/risk resolution (isk 707 | 565 | 424 | 283 [141 000
management. architecture size)

TEAM Team cohesion (communication 548 438 | 329 219 0.00
3 effort in team)
B PMAT Process maturity (see CMMI) 780 | 624 | 469 3 |16 000 5
o0
Algorithmic Estimation: Function Points
s
who .
- >
I Complexity Sum
Type low medium | high
[input 3= 4= 6=
output 4= 5= | __ 7=
query 3= 4= | __6=
_Em.nuﬂ _ 7= 0= | _ 15=
Lreference data 5= 7= 10—
Unadusted function points UFP . Lo
Value adjustment factor VAF & VAR = 0.65+ 1553 GSCs,
Adjusted function points AFP = UFP - VAF P =t

0<GSCi <5,

36/40

Algorithmic Estimation: Function Points

PM
W
1BM
100
50
AFP
output] o 500 1000 1500 2000
query — I1BM and VW curve for the conversion from AFPs to PM according to
user data T=| _| (Noth and Kretzschmar, 1984) and (Knéll and Busse, 199
reference data 5= =] 10 =
Unadjusted function points UFP -
i VAF = 0.65+—-) GSCi,

Value adjustment factor VAF W M
Adjusted function points AFP = UFP . VAF =

0< GSC; <5.

3640

References

Discussion

Ludewig and Lichter (2013) says:

« Function Point approach used in practice,
in particular for commercial software (business software?).

D buswss secets
« cocom@rends)

4 overestimate in this domai
needs to beadjusted by corresponding factors.

In the end, it's experience, experience, experience:
“Estimate, document, estimate better”” (Ludewig and Lichter, 2013)

Suggestion: start to explicate your experience g

« Take notes on your projects
(eg. Softwarepraktikum, Bachelor Projekt, Master Bacherlors Thesis, Master Projekt, Master’s Thesis,

« timestamps, size of program created, number of errors found, number of pages witten,

= Try to identify factors: what hindered productivity, what boosted productivity,
« Which detours and mistakes were avoidable in hindsight? How?

370

References

V. R. and Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE
Transactions of Software Engineering. 10(6):728-738.

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530-538.

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design specifications. In
EURO IFIP 79, pages 711-719. Elsevier North-Holland

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hal

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K. Steece, B., Brown, A.W., Chulani, S., and Abts, C.
(2000). Software Cost Estimation with COCOMO Il. Prentice-Hall.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493.

DIN (2009). DIN 69901-5.

Jones, G. W. (1990). Software Engineering. John Wiley & Sons
Kan, S. H. (2003). Metrics and models in Software Quality Engineering. Addison-Wesley, 2nd edition.

Knéll, H.-D. and Busse, |. (1991). Aufwandsschdtzung von Software-Projekten in der Praxis: Methoden,
Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Informatik. BI

Ludewig,). and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

Noth, T.and M.(1984) von DV-Projekten, Darstellung und der
wichtigsten Verfahren. Springer-Verlag. 40740

Tell Them What You'’ve Told Them. ..

For software costs, we can distinguish

« net production,

o quality costs,

« maintenance.

Software engineering is about being economic in all three aspects.
» Why estimate?

» Requirements specification (Lastenheft)

« Feature specification (‘Pflichtenheft)

The latter (plus budget) is usually part of software contracts.

Approaches:
« Expert’s Estimation
« Algorithmic Estimation
* COCOMO
Function Points

—+ estimate cost indirectly, by estimating more technical aspects.

In the end, it's experience.

3840

