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1.1 Introduction

In this chapter, we are interested in program verification algorithms, i.e., in
algorithms that take a program and a correctness property and try to answer
the question whether the program is correct. Correctness is expressed by one
of two properties of program executions: safety (which we formalize as the
non-reachability of given error states), and termination. We are interested in
a general class of programs for which safety and termination are not decidable.
As a consequence, the algorithms must be based on abstraction.

The distinguishing feature of the algorithms is a specific way to call pro-
cedures over logical formulas in order to effectively construct an abstraction
and to effectively refine an abstraction. The two underlying concepts are
predicate abstraction and counterexample-guided abstraction refinement.

An abstraction maps a set of states to a superset. The terminology pred-
icate abstraction refers to the fact that the superset is constructed from a
basis of so-called predicates (pre-selected formulas that define sets of states).
Now, with more predicates one has a larger choice for the construction of the
superset, and the abstraction can be more precise. In this sense, adding more
predicates refines the abstraction. The terminology abstraction refinement
refers to the process of adding new predicates. The crux of the verification
algorithms is the counterexample-guided procedure to select new predicates.

In the analogous way, we use transition predicates in order to construct
the abstraction of a transition relation (a set of pairs of states).

Program verification with predicate abstraction is an ongoing research
topic. We can expect a great number of variations and optimizations to be
proposed in the future. Yet, a few basic principles have emerged which will
remain the basis for further developments even in the long term. Those few
basic principles keep reappearing in different settings, each setting being mo-
tivated by a specific application scenario. The idea of this chapter is to ab-
stract away from specific application scenarios and to present the few basic
principles in the shortest possible way in the simplest possible formalism. For
an exposition of the wealth of existing work in this area we refer to the sur-
vey in [42]. An account of the history of counterexample-guided abstraction
refinement is given in [18].

1.2 Definitions

In this section, we use a formal setting based on logical formulas in order
to introduce programs, computations, and two representative properties of
computations, namely safety and termination.
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main(int x, int y, int z) {

assume(y >= z);

while (x < y) {

x++;

}

assert(x >= z);

}

(a)

`1

`2

ρ1

ρ2

`3

ρ3

`4

ρ4

`5

ρ5

(b)

ρ1 = (goto(`1, `2) ∧ y ≥ z ∧ unchanged(x, y, z))

ρ2 = (goto(`2, `2) ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ unchanged(y, z))

ρ3 = (goto(`2, `3) ∧ x ≥ y ∧ unchanged(x, y, z))

ρ4 = (goto(`3, `4) ∧ x ≥ z ∧ unchanged(x, y, z))

ρ5 = (goto(`3, `5) ∧ x+ 1 ≤ z ∧ unchanged(x, y, z))

(c)

Fig. 1.1 An example program (a), its control flow graph (b), and its transition relations
(c). Formally, the program is P = (V, pc, ϕinit , T , ϕerr ) where V = (pc, x, y, z) is the

tuple of program variables, pc is the program counter variable, T = {ρ1, ρ2, ρ3, ρ4, ρ5} is

the set of transition relations, ϕinit = at `1 is the initial condition, and ϕerr = at `5
is the error condition. The primed variables are V ′ = (pc′, x′, y′, z′). We use goto and

unchanged as abbreviations. For example goto(`1, `2) stands for (pc = `1 ∧ pc′ = `2) and
unchanged(x, y, z) stands for (x′ = x ∧ y′ = y ∧ z′ = z).

1.2.1 Programs

We specify a program formally through logical formulas. For an example, see
Figure 1.1.

We assume a set V of logical variables that we call program variables. Each
program variable comes with a domain (a set of values, e.g., integers).

The program counter pc is a distinguished program variable of every pro-
gram, i.e., pc ∈ V . The domain of the program counter is a (finite) set Loc
of special values called the control locations of the program.

A program state s is a function that assigns each program variable a value
from its respective domain. Let Σ be the set of program states.

We sometimes fix an order on the variables by writing V as a tuple of
variables, say V = (pc, x, y, z), and then use a tuple of values to denote a
state, e.g., s = (`1, 1, 3, 2).

A formula ϕ with free variables in V represents a set of program states.
For example, the formula pc = ` represents the set of all states at the control
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location `. The formula x > 0 represents the set of states (at any program
location) where the program variable x has a value strictly greater than 0.

Each program variable (including pc) comes with its primed version. That
is, for each program variable x in V , we have another variable x′. We write
V ′ for the tuple of primed versions of program variables. A formula ψ with
free variables in V and V ′ represents a set of pairs of states, i.e., a binary
relation over states.

Formally, the pair (s1, s2) defines a valuation ν of variables in V ∪V ′ where
ν(x) = s1(x) and ν(x′) = s2(x) for each variable x in V (and thus x′ in V ′).
A formula ψ in unprimed and primed variables represents the set of pairs of
states (s1, s2) such that the corresponding valuation ν satisfies ψ.

For example, the formula pc = `1 ∧ pc′ = `2 represents the set of pairs
of states (s1, s2) whose first component s1 is a state at the control location
`1 and whose second component s2 is a state at the control location `2. The
formula x′ = x represents the set of pairs of states (s1, s2) (at any program
location) where the program variable x has the same value in the state s1
and in the state s2. The formula x > 0 ∧ x′ > x represents the set of pairs
of states (s1, s2) where the program variable x has a value greater than 0 in
the state s1 and its value in the state s1 is smaller than in the state s2.

The formula x′ > 0 represents the set of pairs of states (s1, s2) where the
program variable x has a value greater than 0 in the state s2 and its value
in the state s1 is unconstrained. Symmetrically, the formula x > 0 represents
the set of pairs of states (s1, s2) where the program variable x has a value
greater than 0 in the state s1 and its value in the state s2 is unconstrained.

We can use a formula ϕ in unprimed variables to represent both, a set of
states and a binary relation over states. Thus, we can represent the restriction
of the binary relation ψ to the set ϕ by the conjunction ψ ∧ ϕ.

To simplify the notation for transition relations, we introduce the following
abbreviations (here `, `1, and `2 are control locations and x1, . . . , xn are
program variables).

at ` = (pc = `)

at ′ ` = (pc′ = `)

goto(`1, `2) = (at `1 ∧ at ′ `2)

unchanged(x1, . . . , xn) = (x′1 = x1 ∧ . . . ∧ x′n = xn)

(1.1)

A program P is specified by the tuple P = (V, pc, ϕinit , T , ϕerr ) consisting
of the set of program variables V , the program counter pc, the initiation
condition ϕinit , the set of transition relations T = {ρ1, . . . , ρn}, and the
error condition ϕerr .

The initiation condition ϕinit and the error condition ϕerr are formulas
over variables in V . They represent the set of initial states and the set of
error states, respectively.

The elements ρ1, . . . , ρn are formulas over the program variables in V and
their primed versions V ′. If the formula ρi contains a conjunct of the form
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goto(`1, `2) for two locations `1 and `2, we say that ρi is a transition from `1
to `2.

The set of transition relations T = {ρ1, . . . , ρn} defines the program tran-
sition relation of P, which is represented by the formula

ρP = ρ1 ∨ . . . ∨ ρn . (1.2)

The formula ρP thus represents the union of the transition relations repre-
sented by the transitions ρ1, . . . , ρn.

Example 1. Our example program has an initiation condition ϕinit = (at `1)
and an error condition ϕerr = (at `5). That is, every state at control location
`1 is an initial state and every state at control location `5 is an error state.
The set of program transitions T = {ρ1, ρ2, ρ3, ρ4, ρ5} corresponds to the
graph as shown in Figure 1.1(b). We call this graph the control flow graph
of the program. The transition relations ρ1, ρ2, ρ3, ρ4, and ρ5 are defined in
Figure 1.1(c). The transition relation of the program is the disjunction ρP =
ρ1 ∨ ρ2 ∨ ρ3 ∨ ρ4 ∨ ρ5. �

It is convenient to identify formulas with the sets and relations that they
represent. Accordingly, we identify the logical consequence relation (entail-
ment) between formulas |= with the set inclusion ⊆ between the sets that
they represent. (All examples presented in this chapter use the theory of lin-
ear rational arithmetic.) Furthermore, we identify the satisfaction relation
between a valuation and a formula (which is also denoted by |=) with the
membership relation ∈ between the corresponding state and the represented
set of states (or between the corresponding pair of states and the represented
relation between states).

Often, a formal setting for program verification is based on the notion of
a control flow graph, i.e., a graph whose nodes correspond to the program
locations and whose edges are labeled by statements. This may reflect a par-
ticular design decision in a practical implementation. It is clear, however,
that one can derive the logical formula denoting the transition relation of
the program from a control flow graph, and vice versa. As in the example,
the logical formula denoting the transition relation of the program induces a
graph where each edge (`1, `2) arises from a conjunct goto(`1, `2) in the logi-
cal formula. By starting directly with logical formulas, we obtain a uniform
setting.

Example 2. For example, we consider the program shown in Figure 1.1. Let
s be a program state given by the tuple (`1, 1, 3, 2) (which stands for the
mapping that assigns 1, 3, 2, and `1 to the program variables x, y, z, and pc,
respectively). Then, we have s |= y ≥ z (or, written differently, s ∈ y ≥ z).
Furthermore, we have y ≥ z |= y + 1 ≥ z (or, written differently, y ≥ z ⊆
y + 1 ≥ z). �

7



1.2.2 Correctness: safety and termination

Given a progam P with the program transition relation ρP , the set of initial
states ϕinit , and the set of error states ϕerr , we formalize program correctness
as a property of program computations. A program computation of P is either
a finite sequence s1, . . . , sn or an infinite sequence s1, s2, . . . of states that
is generated by the program transition relation ρP , starts in an initial state,
and if it is finite then it can not be continued after the last state (sn is a
deadlock state). This means:

• each pair of consecutive states si and si+1 in the sequence is an element
of the program transition relation, i.e., (si, si+1) ∈ ρP ,

• the first element of the sequence is an initial state, i.e., s1 ∈ ϕinit ,
• if the sequence is finite with sn as its last element, then the state sn does

not have any successor state wrt. the program transition relation ρP , i.e.,
there is no state s such that (sn, s) ∈ ρP .

Example 3. The (finite) sequence of states below is a program computation
in our example program P.

(`1, 1, 3, 2), (`2, 1, 3, 2), (`2, 2, 3, 2), (`2, 3, 3, 2), (`3, 3, 3, 2), (`4, 3, 3, 2)

The sequence of states starts in an initial state and follows the sequence of
transitions ρ1, ρ2, ρ2, ρ3, ρ4. The last state in the sequence does not have any
successor state wrt. the program transition relation ρP . �

The verification of a large class of properties of program computations can
be reduced to reasoning about safety and to reasoning about termination.

A program is safe if no error state occurs in any program computation. A
program terminates if every program computation is finite.

In general, the length of program computations is unbounded even if the
program is terminating (see, for example, the program in Figure 1.1). Thus,
we will not try to verify termination by checking the existence of a bound on
the computation length. Let us note, in passing, that a method based on a
reduction to finite-state model checking amounts to checking boundedness,
since a finite-state program terminates if and only if the length of program
computations is bounded.

1.3 Characterizing correctness via reachability

We will next characterize safety and termination by conditions that are suit-
able for the abstraction-based verification of safety and termination. The
conditions are defined in terms of reachability of states and, respectively,
reachability of pairs of states (binary reachability).
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1.3.1 Safety and reachability

A state s is reachable if there exists a program computation s1, s2, . . . with
an occurence of s (i.e., there exists a position i such that si = s). We use

ϕreach

for the set of all reachable states.
An invariant is a set ϕ that contains all reachable states, i.e., ϕreach ⊆ ϕ.
The program P is safe if and only if the complement of the set of error

states is an invariant, i.e., if

ϕreach ⊆ Σ \ ϕerr . (1.3)

Example 4. For our example program, the set of reachable states is shown
below.

ϕreach = (at `1 ∨ (at `2 ∧ y ≥ z) ∨
(at `3 ∧ y ≥ z ∧ x ≥ y) ∨ (at `4 ∧ y ≥ z ∧ x ≥ y))

This set does not contain any error states, i.e., we have

ϕreach ⊆ ¬at `5 .

�

In Section 1.4.1, we show that one can construct the set ϕreach by an it-
erative application of a function on sets of states. In general, one needs to
iterate the application of the function infinitely many times. In Section 1.5.1,
we show that one can construct a superset of ϕreach by an iterative appli-
cation of an abstraction of the function. We construct the abstract function
automatically using predicate abstraction. With predicate abstraction, one
needs to iterate the application of the abstract function only finitely many
times.

1.3.2 Termination and binary reachability

We extend the notion of reachability from states to pairs of states. A pair of
states (s, s′) is reachable if s is reachable from the initial state and s′ is reach-
able from s. Which is, if there exists a program computation in which s is fol-
lowed by s′ (i.e., the program computation is of the form s1, . . . , si, . . . , sj , . . .
where si = s and sj = s′ for positions i and j such that 1 ≤ i < j). We use

ψreach
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for the set of reachable pairs of states and call it the binary reachability
relation.

A transition invariant is a binary relation over states ψ that contains the
binary reachability relation, i.e., ψreach ⊆ ψ.

Just as we used the notion of invariant to characterize safety, we will use
the notion of a transition invariant to characterize termination. The interest
of the characterization of termination in this way lies in a proof method
for termination which parallels the proof method for safety. As we show in
Section 1.4.2, one can construct the set ψreach by an iterative application
of a function on sets of pairs of states. In general, one needs to iterate the
application of the function infinitely many times. In Section 1.5.2, we show
that one can construct a superset of ψreach by an iterative application of an
abstraction of the function. We construct the abstract function automatically
using the analogue of predicate abstraction for transition predicates. One
needs to iterate the application of the abstract function only finitely many
times.

The termination of a program can be equivalently expressed as the well-
foundedness of its program transition relation. A binary relation ψ is defined
to be well-founded if it does not generate any infinite sequence (i.e., if there
is no infinite sequence s1, s2, . . . such that (si, si+1) ∈ ψ for all i = 1, 2, ...).
For example, the relation x > 0 ∧ x′ > x is well-founded. The union of well-
founded relations is in general not well-founded (take, for example, the union
of the relations x > 0 ∧ x′ > x and y > 0 ∧ y′ > y).

Assume we are given a number of well-founded relations ψ1, . . . , ψn (each
corresponding, for example, to the program transition relation of a terminat-
ing program). The program P is terminating if the union of the n well-founded
relations, which we call a disjunctively well-founded relation, is a transition
invariant, i.e., if

ψreach ⊆ ψ1 ∪ . . . ∪ ψn . (1.4)

The proof of this fact relies in Ramsey’s theorem on combinatorics for infinite
graphs, see [52].

Just as we used the notion of invariant to characterize safety, we have used
the notion of a transition invariant to characterize termination. The interest
of the characterization of termination by transition invariants lies in a proof
method for termination which parallels the proof method for safety. As we
show in Section 1.4.2, one can construct the set ψreach by an iterative applica-
tion of a function on sets of pairs of states. In general, one needs to iterate the
application of the function infinitely many times. In Section 1.5.2, we show
that one can construct a superset of ψreach by an iterative application of
an abstraction of the function. We construct the abstract function automat-
ically using the analogue of predicate abstraction for transition predicates.
One needs to iterate the application of the abstract function only finitely
many times.
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To be precise, we have characterized termination by the fact that the union
of a (finite) number of well-founded relations forms a transition invariant. We
have not said where the well-founded relations come from. For the purpose
of this presentation, we assume that they are given. There are, however,
many strategies to obtain formulas that represent the required well-founded
relations; see, e.g., [19, 52].

1.4 Characterizing correctness via inductiveness

In order to check reachability (or binary reachability), we need to construct
the set of reachable states (or the set of reachable pairs of states). The con-
struction is possible, in theory, by the iterative application of a function over
sets of states (or a function over sets of pairs of states). This construction
may need infinitely many iterations. It defines the smallest set that is induc-
tive, i.e., closed under the application of the function. We may not need to
construct the smallest set. It may be sufficient to construct a superset. The
only way to show that a given set is indeed a superset, i.e., that it contains
the set of reachable states (or the set of reachable pairs of states), is to show
that it is inductive.

1.4.1 Safety and closure under post

Let ϕ be a formula over V and let ρ be a formula over V and V ′. We define
a post-condition function post as follows.

post(ϕ, ρ) = ∃V ′′ : ϕ[V ′′/V ] ∧ ρ[V ′′/V ][V/V ′] (1.5)

Here ϕ[V ′′/V ] represents the result of replacing V by V ′′ in ϕ, while
ρ[V ′′/V ][V/V ′] requires first replacing V by V ′′ and then replacing V ′ by V .
An application post(ϕ, ρ) computes the image of the set ϕ under the rela-
tion ρ. We observe the following useful property of the post-condition func-
tion.

∀ϕ ∀ρ1 ∀ρ2 : post(ϕ, ρ1 ∨ ρ2) = (post(ϕ, ρ1) ∨ post(ϕ, ρ2))

∀ϕ1 ∀ϕ2 ∀ρ : post(ϕ1 ∨ ϕ2, ρ) = (post(ϕ1, ρ) ∨ post(ϕ2, ρ))

(1.6)

This property states that the post-condition computation distributes over
disjunction wrt. each argument.

Furthermore, for a natural number n we define postn(ϕ, ρ) to represent
the n-fold application of the post function to ϕ with respect to ρ. Formally,
we have:
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postn(ϕ, ρ) =

{
ϕ if n = 0

post(postn−1(ϕ, ρ), ρ) otherwise
(1.7)

Example 5. For example, given the transition relation ρ2 and the program
variables V = (pc, x, y, z) from our example program, we compute the fol-
lowing post condition.

post(at `2 ∧ y ≥ z, ρ2)

= (∃V ′′ : (at `2 ∧ y ≥ z)[V ′′/V ] ∧ ρ2[V ′′/V ][V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc′ = `2 ∧ x′′ + 1 ≤ y′′ ∧ x′ = x′′ + 1 ∧
y′ = y′′ ∧ z′ = z′′)[V/V ′])

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

We compute the 2-fold application by reusing the above result.

post2(at `2 ∧ y ≥ z, ρ2)

= post(post(at `2 ∧ y ≥ z, ρ2), ρ2)

= post(pc = `2 ∧ y ≥ z ∧ x ≤ y, ρ2)

= (∃V ′′ : (pc′′ = `2 ∧ y′′ ≥ z′′ ∧ x′′ ≤ y′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧ x = x′′ + 1 ∧
y = y′′ ∧ z = z′′))

= (pc = `2 ∧ y ≥ z ∧ x− 1 ≤ y ∧ x ≤ y)

= (pc = `2 ∧ y ≥ z ∧ x ≤ y)

�

We characterize ϕreach using post as follows.

ϕreach = ϕinit ∨ post(ϕinit , ρP ) ∨ post(post(ϕinit , ρP ), ρP ) ∨ . . .

=
∨
i≥0 post i(ϕinit , ρP )

(1.8)

The above disjunction (over every number of applications of the post-
condition function) ensures that all reachable states are taken into consider-
ation.

Example 6. We compute ϕreach for our example program. We first obtain the
post-condition after applying the transition relation of the program once.
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post(at `1, ρP )

= (post(at `1, ρ1) ∨ post(at `1, ρ2) ∨ post(at `1, ρ3) ∨
post(at `1, ρ4) ∨ post(at `1, ρ5))

= post(at `1, ρ1)

= (at `2 ∧ y ≥ z)

Next, we obtain the post-condition for one more application.

post(at `2 ∧ y ≥ z, ρP )

= (post(at `2 ∧ y ≥ z, ρ2) ∨ post(at `2 ∧ y ≥ z, ρ3))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y)

We repeat the application step once again.

post(at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y, ρP )

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρP ) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρP ))

= (post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ2) ∨ post(at `2 ∧ y ≥ z ∧ x ≤ y, ρ3) ∨
post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ4) ∨ post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ5))

= (at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y)

So far, by iteratively applying the post-condition function to ϕinit we obtained
the following disjunction.

at `1 ∨
at `2 ∧ y ≥ z ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `2 ∧ y ≥ z ∧ x ≤ y ∨ at `3 ∧ y ≥ z ∧ x = y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

We present this disjunction in a logically equivalent, simplified form as fol-
lows.

at `1 ∨
at `2 ∧ y ≥ z ∨
at `3 ∧ y ≥ z ∧ x ≥ y ∨
at `4 ∧ y ≥ z ∧ x ≥ y

Any further application of the post-condition function does not produce any
additional disjuncts. Hence, ϕreach is the above disjunction. �

Inductive proof of safety
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An inductive invariant ϕ contains the initial states and is closed under
successors [30, 40]. Formally, an inductive invariant is a formula over the
program variables that represents a superset of the initial program states
and is closed under the application of the post function wrt. the relation ρP ,
i.e.,

ϕinit |= ϕ and post(ϕ, ρP ) |= ϕ .

A program is safe if there exists an inductive invariant ϕ that does not contain
any error states, i.e., ϕ ∧ ϕerr |= false.

Example 7. For our example program, the weakest inductive invariant con-
sists of the set of all states and is represented by the formula true. The
strongest inductive invariant was obtained in Example 6. The strongest in-
ductive invariant does not contain any error states. We observe that a slightly
weaker inductive invariant below also proves the safety of our examples.

at `1 ∨ (at `2 ∧ y ≥ z) ∨ (at `3 ∧ y ≥ z ∧ x ≥ y) ∨ at `4

�

1.4.2 Termination and transitive closure

Let ρ1 and ρ2 be formulas over V and V ′. We define a relational composition
function ◦ as follows.

ρ1 ◦ ρ2 = ∃V ′′ : ρ1[V ′′/V ′] ∧ ρ2[V ′′/V ] (1.9)

Example 8. For example, given the transition relations ρ1, ρ2, and the pro-
gram variables V = (pc, x, y, z) from our example program we obtain the
following relational composition.

ρ1 ◦ ρ2 = (∃V ′′ : (pc = `1 ∧ pc′ = `2 ∧ y ≥ z ∧
x′ = x ∧ y′ = y ∧ z′ = z)[V ′′/V ′] ∧
(pc = `2 ∧ pc′ = `2 ∧ x+ 1 ≤ y ∧
x′ = x+ 1 ∧ y′ = y ∧ z′ = z)[V ′′/V ])

= (∃V ′′ : (pc = `1 ∧ pc′′ = `2 ∧ y ≥ z ∧
x′′ = x ∧ y′′ = y ∧ z′′ = z) ∧

(pc′′ = `2 ∧ pc′ = `2 ∧ x′′ + 1 ≤ y′′ ∧
x′ = x′′ + 1 ∧ y′ = y′′ ∧ z′ = z′′))

= (pc = `1 ∧ pc′ = `2 ∧ y ≥ z ∧ x+ 1 ≤ y ∧
x′ = x+ 1 ∧ y′ = y ∧ z′ = z)
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For a given ρP , a binary relation ψ and a natural number n, we define an
n-time transition composition compn(ρP ) of ρP with ψ as follows.

compn(ψ) =

{
ψ if n = 0

compn−1(ψ) ◦ ρP otherwise

We can compute the (irreflexive) transitive closure ρ+
P

using comp as follows.

ρ+
P

= ρP ∨ ρP ◦ ρP ∨ ρP ◦ ρP ◦ ρP ∨ . . .

=
∨
i≥1 compi(ρP )

(1.10)

We will be using a restriction of ρ+
P

to reachable states ϕreach . For this
reason, we define

ψti =
∨
i≥1

compi(ϕreach ∧ V ′ = V ) (1.11)

That is, ψti is a transition invariant that is characterized using iteration of
relational composition.

Inductive proof for termination
The restriction of the program transition relation ρP to the reachable

program states is given by ρP ∧ ϕreach (the conjunction of a formula over V
and V ′ and a formula over V ). A program terminates if and only if the binary
relation ρP ∧ ϕreach is well-founded.

Example 9. For our example, we obtain the following restriction of the pro-
gram transition relation to reachable states.

ρP∧ϕreach = (goto(`1, `2) ∧ y ≥ z ∧ unchanged(x, y, z) ∨
goto(`2, `2) ∧ y ≥ z ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ unchanged(y, z) ∨
goto(`2, `3) ∧ y ≥ z ∧ x ≥ y ∧ unchanged(x, y, z) ∨
goto(`3, `4) ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z ∧ unchanged(x, y, z))

The restriction consists of four disjuncts, since the transition relation ρ5 does
not intersect with ϕreach . Furthermore, the restriction is well-founded, i.e.,
our program terminates. Any attempt to construct an infinite sequence leads
to unbounded increase of the values of the variable x, which contradicts the
condition that x is bounded from above by y whenever the loop execution is
carried on. �

An inductive transition invariant ψ contains the restriction of the program
transition relation to reachable states and is closed under relational compo-
sition with the program transition relation [52]. Formally, given an inductive
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invariant ϕ, we require that an inductive transition invariant ψ satisfies the
following conditions:

ϕ ∧ ρP |= ψ and ψ ◦ ρP |= ψ .

A program terminates if there exist a finite number of well-founded rela-
tions ψ1, . . . , ψn whose union contains an inductive transition invariant, i.e.,
ψ |= ψ1 ∨ . . . ∨ ψn.

1.5 Abstraction

The computation of the set of reachable program states requires the iterative
application of the post-condition function on the initial program states, see
Equation (1.8). The iteration stops when no new disjuncts are being added.
Unfortunately, in many cases, the iteration will never stop.

Example 10. We consider the iterative computation of the set of states that
is reachable from at `2 ∧ x ≤ z by applying the transition ρ2 of our example
program. We obtain the following sequence of post-conditions (where V =
(pc, x, y, z)).

post(at `2 ∧ x ≤ z, ρ2) = (∃V ′′ : (pc′′ = `2 ∧ x′′ ≤ z′′) ∧
(pc′′ = `2 ∧ pc = `2 ∧ x′′ + 1 ≤ y′′ ∧
x = x′′ + 1 ∧ y = y′′ ∧ z = z′′))

= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y)

post2(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 2 ≤ z ∧ x ≤ y)

post3(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− 3 ≤ z ∧ x ≤ y)

. . .

postn(at `2 ∧ x ≤ z, ρ2) = (at `2 ∧ x− n ≤ z ∧ x ≤ y)

In this sequence, we observe that at each iteration yields a set of states that
contains states not discovered before. For example, the set of states reachable
after applying the post-condition function once is not included in the original
set, i.e.,

(at `2 ∧ x− 1 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x ≤ z) .

The set of states reachable after applying the post-condition function twice
is not included in the union of the above two sets, i.e.,

(at `2 ∧ x− 2 ≤ z ∧ x ≤ y) 6|= (at `2 ∧ x− 1 ≤ z ∧ x ≤ y ∨ at `2 ∧ x ≤ z) .
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Furthermore, we observe that the set of states reachable after n-fold applica-
tion of post , where n ≥ 1, still contains previously unreached states, i.e.,

∀n ≥ 1 : (at `2 ∧ x− n ≤ z ∧ x ≤ y)

6|= (at `2 ∧ x ≤ z ∨
∨

1≤i<n(at `2 ∧ x− i ≤ z ∧ x ≤ y)) .

�

A similar example can be used to show the possibility of non-termination
for the procedure which constructs the strongest transition invariant.

1.5.1 Safety and predicate abstraction

Instead of computing ϕreach , we compute an over-approximation of ϕreach by
a superset ϕ#

reach . Then, we check whether ϕ#
reach contains any error states.

If ϕ#
reach ∧ ϕerr |= false holds then ϕreach ∧ ϕerr |= false. Hence the program

is safe.
Similarly to the iterative computation of ϕreach , we compute ϕ#

reach by
applying iteration. However, instead of iteratively applying the post-condition
function post we use its over-approximation post# such that

∀ϕ ∀ρ : post(ϕ, ρ) |= post#(ϕ, ρ) . (1.12)

We decompose the computation of post# into two steps. First, we apply post
and then, we over-approximate the result using a function α such that

∀ϕ : ϕ |= α(ϕ) . (1.13)

That is, given an over-approximating function α we define post# as follows.

post#(ϕ, ρ) = α(post(ϕ, ρ)) (1.14)

Finally, we obtain ϕ#
reach :

ϕ#
reach = α(ϕinit) ∨

post#(α(ϕinit), ρP ) ∨
post#(post#(α(ϕinit), ρP ), ρP ) ∨ . . .

=
∨
i≥0(post#)i(α(ϕinit), ρP )

(1.15)

We formalize our over-approximation based reachability computation as
follows. The set of reachable program states is contained in the result of
abstract post condition computation given by Equation (1.15). Formally,

ϕreach |= ϕ#
reach .
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Predicate abstraction We construct an over-approximation using a given
set of building blocks, so-called predicates. Each predicate is a formula over
the program variables V .

We fix a finite set of predicates Preds = {p1, . . . , pn}. Then, we define an
over-approximation of ϕ that is constructed using Preds as follows [23,31].

α(ϕ) =
∧
{p ∈ Preds | ϕ |= p} (1.16)

If the set of entailed predicates is empty then the result of applying predicate
abstraction is

∧
∅ and is equivalent to true.

Example 11. For example, we consider a set of predicates Preds =
{at `1, . . . , at `5, y ≥ z, x ≥ y}. We compute α(at `2 ∧ y ≥ z ∧ x+ 1 ≤ y) as
follows. First, we check the logical consequence between the argument to the
abstraction function and each of the predicates. The results are presented in
the following table.

at `1 at `2 at `3 at `4 at `5 y ≥ z x ≥ y
at `2 ∧ y ≥ z ∧ x+ 1 ≤ y 6|= |= 6|= 6|= 6|= |= 6|=

Then, we take the conjunction of the entailed predicates as the result of the
abstraction.

α(at `2 ∧ y ≥ z ∧ x+ 1 ≤ y) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z

�

The predicate abstraction function in Equation (1.16) approximates ϕ us-
ing a conjunction of predicates, which requires n entailment checks where n
is the number of given predicates.

Example 12. We use predicate abstraction to compute ϕ#
reach for our example

program following the iterative scheme presented in Equation (1.15). Let
Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ y}. First, let ϕ1 be the over-
approximation of the set of initial states ϕinit :

ϕ1 = α(at `1) =
∧
{at `1} = at `1 .

We apply post# on ϕ1 wrt. each program transition and obtain

ϕ2 = post#(ϕ1, ρ1) = α(at `2 ∧ y ≥ z︸ ︷︷ ︸
post(ϕ1,ρ1)

) =
∧
{at `2, y ≥ z} = at `2 ∧ y ≥ z ,

whereas post#(ϕ1, ρ2) = · · · = post#(ϕ1, ρ5) =
∧
{false, . . . } = false.

Now we apply program transitions on ϕ2 using post#. The application of
ρ1, ρ4, and ρ5 on ϕ2 results in false for the following reason. ϕ2 requires
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at `2, but the transition relations ρ1, ρ4, and ρ5 are applicable if either at `1
or at `3 holds. For ρ2 we obtain

post#(ϕ2, ρ2) = α(at `2∧y ≥ z∧x ≤ y) =
∧
{at `2, y ≥ z} = at `2∧y ≥ z .

The resulting set above is equal to ϕ2 and, therefore, is discarded, since we
are already exploring states reachable from ϕ2. For ρ3 we obtain

post#(ϕ2, ρ3) = α(at `3 ∧ y ≥ z ∧ x ≥ y)

=
∧
{at `3, y ≥ z, x ≥ y} = at `3 ∧ y ≥ z ∧ x ≥ y

= ϕ3 .

We compute an over-approximation of the set of states that are reachable
from ϕ3 by applying post#. The transitions ρ1, ρ2, and ρ3 results in false due
to an inconsistency caused by the program counter valuations in ϕ3 and the
respective transition relations. For the transition ρ4 we obtain

post#(ϕ3, ρ4) = α(at `4 ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z)
=

∧
{at `4, y ≥ z, x ≥ y} = at `4 ∧ y ≥ z ∧ x ≥ y

= ϕ4 .

For the transition ρ5, which corresponds to the assertion violation, we obtain

post#(ϕ3, ρ5) = α(at `5 ∧ y ≥ z ∧ x ≥ y ∧ x+ 1 ≤ z)
= false .

Any further application of program transitions does not compute any addi-
tional reachable states. We conclude that ϕ#

reach = ϕ1∨ . . .∨ϕ4. Furthermore,

since ϕ#
reach ∧ at `5 |= false the program is safe. �

Algorithm AbstReach We combine the characterization of abstract
reachability using Equation (1.15) with the predicate abstraction function
given in Equation (1.16) and obtain an algorithm AbstReach for comput-
ing ReachStates#. The algorithm is shown in Figure 1.2.

AbstReach takes as input a finite set of predicates Preds and computes
a set of formulas ReachStates# that represents an over-approximation ϕ#

reach .
Furthermore, AbstReach records its intermediate computation steps in a
labeled tree Parent . (In the next section we will show how this tree can be
used to discover new predicates when a refined abstraction is needed.)

The initialization steps of AbstReach are shown in lines 1–5 of Figure 1.2.
First, we construct the abstraction function α according to Equation (1.16),
and then use it to construct an over-approximation post# of the post-
condition function according to Equation (1.14). We initialize ReachStates#

with an over-approximation of the initial program states, which corresponds
to the first disjunct in Equation (1.15). Since the initial states do not have any
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function AbstReach

input

Preds - predicates

begin

α := λϕ .
∧
{p ∈ Preds | ϕ |= p}

post# := λ(ϕ, ρ) . α(post(ϕ, ρ))

ReachStates# := {α(ϕinit )}
Parent := ∅
Worklist := ReachStates#

while Worklist 6= ∅ do
ϕ := choose from Worklist

Worklist := Worklist \ {ϕ}
for each ρ ∈ T do

ϕ′ := post#(ϕ, ρ)

if ϕ′ 6|=
∨

ReachStates# then

ReachStates# := {ϕ′} ∪ ReachStates#

Parent := {(ϕ, ρ, ϕ′)} ∪ Parent

Worklist := {ϕ′} ∪Worklist

return (ReachStates#,Parent)

end

Fig. 1.2 Algorithm AbstReach for abstract reachability computation wrt. a given finite
set of predicates.

predecessors, Parent is initially empty. Finally, we create a worklist Worklist
that contains sets of states on which post# has not been applied yet.

The main part of AbstReach in lines 6–14 implements the iterative ap-
plication of post# in Equation (1.15) using a while loop. The loop termi-
nation condition checks if Worklist has any items to process. In case the
worklist is not empty, we choose such an item, say ϕ, and remove it from
the worklist. For brevity, we leave the selection procedure unspecified, but
note that various strategies are possible, e.g., breadth- or depth-first search.
Then, we apply post# wrt. each program transition, say ρ, on ϕ. Let ϕ′ be
the result of such an application. We add ϕ′ to ReachStates# if ϕ′ contains
some program states that are not already contained in one of the formulas
in ReachStates#. We formulate the above test as an entailment check be-
tween ϕ′ and the disjunction of all formulas in ReachStates#. Often, there is
a formula ψ in ReachStates# such that ϕ′ |= ψ. Otherwise, that ϕ is added
to ReachStates#, we record that ϕ′ was computed by applying ρ on ϕ by
adding a tuple (ϕ, ρ, ϕ′) to Parent . Finally, ϕ′ is put on the worklist.

The loop execution terminates after a finite number of steps, since the
range of post# is finite (and is of size 2n where n is the size of Preds). The

disjunction of formulas in ReachStates# is logically equivalent to ϕ#
reach .
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ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z ∧ x ≥ y

ϕ4 : at `4 ∧ y ≥ z ∧ x ≥ y

ρ1

ρ2

ρ3

ρ4

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

Fig. 1.3 Applying AbstReach on the program in Figure 1.1 and the set of predi-

cates Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ y}. The nodes ϕ1, . . . , ϕ4 represent

elements of ReachStates#. Labeled edges connecting the nodes represent Parent . The dot-

ted edge denotes the entailment relation between post#(ϕ2, ρ2) and ϕ2.

Example 13. We describe the application of AbstReach on our example

program when Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ y}. Figure 1.3

provides a pictorial illustration. Example 12 provides details on computed

over-approximations of post-conditions.

After constructing α and post# for the given predicates, we compute ϕ1 =

(at `1) and put it into ReachStates# and into Worklist . See the node ϕ1 in

Figure 1.3.

During the first loop iteration, we choose ϕ1 to be the element taken from

the worklist. Now we compute post# wrt. each program transition. For ρ1

we obtain ϕ2 = (at `2 ∧ y ≥ z). The entailment check ϕ2 |=
∨

ReachStates#

fails, since
∨

ReachStates# is equal to ϕ1 and ϕ2 6|= ϕ1. Hence, ϕ2 is added

to ReachStates#. As a result, the tuple (ϕ1, ρ1, ϕ2) is added to Parent and

ϕ2 becomes a worklist item. See the node ϕ2 as well as the edge between

ϕ1 and ϕ2 in Figure 1.3. We continue with applying program transitions

on ϕ1. For ρ2 we obtain post#(ϕ1, ρ2) = false. Since false |=
∨

ReachStates#

there is no addition to ReachStates#. Similarly, applying ρ3, . . . , ρ5 does not

modify ReachStates#.

We start the second loop iteration with ReachStates# = {ϕ1, ϕ2},
Worklist = {ϕ2}, and Parent = {(ϕ1, ρ1, ϕ2)}. We choose ϕ2 from the work-

list. When applying post# on ϕ2 only ρ2 and ρ3 result sets of successor states

that are not equal to false. We obtain post#(ϕ2, ρ2) = (at `2 ∧ y ≥ z). Since

(at `2 ∧ y ≥ z) entails ϕ2 and hence
∨

ReachStates#, nothing is added to

ReachStates# and we proceed directly with ρ3. For ϕ3 = post#(ϕ2, ρ3) =

(at `3∧y ≥ z∧x ≥ y) we observe that ϕ3 6|=
∨

ReachStates#. Hence, we add
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ϕ3 to ReachStates# and Worklist , while (ϕ2, ρ3, ϕ3) is recorded in Parent .

See the node ϕ3 as well as the edge between ϕ2 and ϕ3 in Figure 1.3.

At the beginning of the third loop iteration we have ReachStates# =

{ϕ1, ϕ2, ϕ3}, Worklist = {ϕ3}, and Parent = {(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3)}. We

choose ϕ3 from the worklist. After computing ϕ4 by applying ρ4 and discov-

ering that ϕ4 6|=
∨

ReachStates#, we add ϕ4 following the algorithm. See the

node ϕ4 as well as the edge between ϕ3 and ϕ4 in Figure 1.3. Since all other

program transition yield false we proceed with the next iteration.

The fourth loop iteration removes ϕ4 from the worklist, but does

not add any new elements to it. Hence AbstReach terminates

and outputs ReachStates# = {ϕ1, . . . , ϕ4} as well as Parent =

{(ϕ1, ρ1, ϕ2), (ϕ2, ρ3, ϕ3), (ϕ3, ρ4, ϕ4)}. �

Our algorithm is presented as an instance of abstract interpretation [23].
This presentation is very general. It allows one to leave open many design
choices. For example, the algorithm may be split into two steps. The first
(“offline”) step is to compute the function post#. The second step is to iterate
post# until a fixpoint is reached. Often, e.g., in [2, 3, 5, 16], conjunctions of
predicates are viewed as abstract states (which can possibly be represented
as bitvectors). Instead of constructing the function post# directly, one first
constructs a relation between abstract states. If one views this relation as
the transition relation of an abstract program P# (the “abstraction of the
program P”), then the abstraction of the post operator for the program P
can be phrased as the post operator of the (finite-state) abstract program
P#,

post#P = postP# .

In this view, the first step is phrased as the construction of a finite model
and the second step is phrased as model checking (see also Chapters 12 and
18).

1.5.2 Termination and transition predicate abstraction

In this section, we show how predicate abstraction can be used for computing
transition invariants, and thus proving program termination.

In principle, transition invariants can be computed by applying the iter-
ative scheme in Equation (1.10) and then restricting the obtained result to
reachable states by relying on Equation (1.11). The iteration of comp fin-
ishes when no new pair of program states is discovered. Unfortunately, such
an iteration process does not terminate in finite time, for similar reasons as
presented in Section 1.5.1.
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Instead of computing ψti we compute its over-approximation by a super-
set ψ#

ti . Then, we check whether ψ#
ti is disjunctively well-founded. If ψ#

ti

satisfies disjunctive well-foundedness condition then ψti is disjunctively well-
founded as well. Hence the program terminates.

Similarly to the computation of ψti , we compute ψ#
ti by applying iteration.

However, instead of iteratively applying the relational composition function
comp we use its over-approximation comp# such that

∀ψ : comp(ψ) |= comp#(ψ) . (1.17)

We decompose the computation of comp# into two steps. First, we apply
comp and then we over-approximate the result using a function α̈ such that

∀ψ : ψ |= α̈(ψ) . (1.18)

That is, given an over-approximating function α̈ we define comp# as follows.

comp#(ψ) = α̈(comp(ψ)) (1.19)

Finally, we can obtain ψ#
ti by using a previously computed over-

approximation of reachable states ϕ#
reach as follows.

ψ#
ti = comp#(ϕ#

reach ∧ V ′ = V ) ∨
comp#(comp#(ϕ#

reach ∧ V ′ = V )) ∨ . . .
=

∨
i≥1(comp#)i(ϕ#

reach ∧ V ′ = V )

(1.20)

We formalize our over-approximation based transition invariant computa-
tion as follows. The strongest transition invariant of the program is contained
in the result of abstract computation given by Equation (1.20). Formally,

ψti |= ψ#
ti

Transition predicate abstraction We construct an over-approximation
ψ#
ti using a given set of building blocks, so-called transition predicates.

Each transition predicate is a formula over the program variables V and
their primed verions V ′, which represents a binary relation over program
states [53].

We fix a finite set of transition predicates TransPreds = {p̈1, . . . , p̈n}.
Then, we define an over-approximation of ψ that is constructed using
TransPreds as follows.

α̈(ψ) =
∧
{p̈ ∈ TransPreds | ψ |= p̈} (1.21)

If the set of entailed transition predicates is empty then the result of applying
transition predicate abstraction is

∧
∅, which is equivalent to true.

Example 14. For example, we consider a set of predicates TransPreds =

{at `1, . . . , at `5, at ′ `1, . . . , at ′ `5, x ≥ 0, x′ ≥ x + 1, x′ ≥ x, y′ ≥ y, y′ ≥
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y+ 1}. We will apply transition predicate abstraction on the transition ρ2 in

the program shown in Figure 1.1. We compute α̈(goto(`2, `2)∧x+1 ≤ y∧x′ =

x + 1 ∧ unchanged(y, z)) as follows. First, we check the logical consequence

between the argument to the abstraction function and each of the predicates

and obtain the following set of entailed predicates:

{at `2, at ′ `2, x ≥ 0, x′ ≥ x+ 1, x′ ≥ x, y′ ≥ y} .

Then, we take the conjunction of the entailed predicates as the result of the

abstraction. ∧
{at `2, at ′ `2, x ≥ 0, x′ ≥ x+ 1, x′ ≥ x, y′ ≥ y}

= at `2 ∧ at ′ `2 ∧ x ≥ 0 ∧ x′ ≥ x+ 1 ∧ y′ ≥ y

�

The transition predicate abstraction function in Equation (1.21) approx-
imates ψ using a conjunction of transition predicates, which requires n en-
tailment checks where n is the number of given transition predicates.

Example 15. We use transition predicate abstraction to compute ψ#
ti for our

example program from Figure 1.1 following the iterative scheme presented

in Equation (1.20). Since we are interested in proving termination we will

ignore the assertion statement occuring in the program. As a consequence,

in this example will not take transitions ρ4 and ρ5 into account.

For simplicity, we use ϕ#
reach = true, which states that the set of reach-

able states is contained in the set of all possible program states represented

by true. Let TransPreds = {false, at `1, . . . , at `3, at ′ `1, . . . , at ′ `3, x ≤
y, y′ − x′ ≤ y − x− 1}.

First, we compute the first step of the over-approximation comp#(ϕ#
reach ∧

V ′ = V ):

comp#(ϕ#
reach ∧ V

′ = V ) = α̈((ϕ#
reach ∧ V ′ = V ) ◦ ρP )

= α̈((ϕ#
reach ∧ V ′ = V ) ◦ (ρ1 ∨ ρ2 ∨ ρ3))

= α̈(ρ1 ∨ ρ2 ∨ ρ3)

We obtain the following abstractions for each of the transitions:

ψ1 = α̈(ρ1) = goto(`1, `2)

ψ2 = α̈(ρ2) = (goto(`2, `2) ∧ x ≤ y ∧ y′ − x′ ≤ y − x− 1)

ψ3 = α̈(ρ3) = goto(`2, `3)
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ψ1 :

goto(`1, `2)
ρ2

ψ2 :

goto(`2, `2) ∧
x ≤ y ∧ y′ − x′ ≥ y − x− 1

ψ3 :

goto(`2, `3)

ρ1
ρ2 ρ3

ψ5 :

goto(`1, `3)

ρ3

ρ2

ρ3

Fig. 1.4 Abstract transitions computed in Example 15. Solid edges connecting the nodes

represent how nodes were computed. Dotted edges denote entailment relation.

We apply comp# on ψ1, . . . , ψ3 and obtain the following non-empty abstrac-

tions.

ψ4 = α̈(ψ1 ◦ ρ2) = goto(`1, `2)

ψ5 = α̈(ψ1 ◦ ρ3) = goto(`1, `3)

ψ6 = α̈(ψ2 ◦ ρ2) = (goto(`2, `2) ∧ x ≤ y ∧ y′ − x′ ≥ y − x− 1)

ψ7 = α̈(ψ2 ◦ ρ3) = (goto(`2, `3) ∧ x ≤ y ∧ y′ − x′ ≥ y − x− 1)

We observe that ψ4 |= ψ1, ψ6 |= ψ2, and ψ7 |= ψ3, hence, ψ4, ψ6, and ψ7 can

be ignored. We apply comp# on ψ5 and ψ7 and observe that the resulting

abstractions are empty. Hence, we finish the iterative computation and obtain

ψ#
ti = ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ5 .

The computed transition invariant ψ#
ti is disjunctively well-founded. Each

disjunct in ψ#
ti whose start and finish locations are not equal, e.g., ψ1 with

the start location `1 and finish location `2, is well-founded. The remaining

disjunct ψ2 is well-founded since the value of y − x is greater than zero

whenever ψ2 makes a step and decreases during each step of ψ2. Hence, we

conclude that ψ#
ti is contained in a finite union of well-founded relations.

Thus, the program terminates.

We represent the above computation pictorially in Figure 1.4. �

Algorithm TransAbstReach We combine the characterization of ab-
stract transition invariants using Equation (1.20) with the transition predi-
cate abstraction function given in Equation (1.21) and obtain an algorithm
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function TransAbstReach

input

ReachStates# - reachable abstract states

TransPreds - transition predicates

begin

α̈ := λϕ̈ .
∧
{p̈ ∈ TransPreds | ϕ̈ |= p̈}

ReachTrans# := ∅
TransParent := ∅
Worklist := {ϕ ∧ unchanged(V ) | ϕ ∈ ReachStates#}
while Worklist 6= ∅ do
ϕ̈ := choose from Worklist

Worklist := Worklist \ {ϕ̈}
for each ρ ∈ T do

ϕ̈′ := α̈(ϕ̈ ◦ ρ)

if ¬(∃ψ̈ ∈ ReachTrans# : ϕ̈′ |= ψ̈) then

ReachTrans# := {ϕ̈} ∪ ReachTrans#

TransParent := {(ϕ̈, ρ, ϕ̈′)} ∪ TransParent

Worklist := {ϕ̈′} ∪Worklist

return (ReachTrans#,TransParent)

end

Fig. 1.5 Abstract transitive closure computation.

TransAbstReach for computing ReachTrans#. The algorithm is shown in
Figure 1.5.

TransAbstReach takes as input a finite set of transition predicates
TransPreds and computes a set of formulas ReachTrans# that represents an
over-approximation ψ#

ti . Furthermore, TransAbstReach records its inter-
mediate computation steps in a labeled tree TransParent . In the next section
we will show how this tree can be used to discover new transition predicates
when a refined abstraction is needed.

The initialization steps of TransAbstReach are shown in lines 1–4 in
Figure 1.5. First, we construct the abstraction function α̈ according to Equa-
tion (1.21), and then use it to construct an over-approximation of the rela-
tional composition with program transitions. ReachTrans# is initially empty,
which corresponds to the fact that we are interested in the irreflexive transi-
tive closure following Equation (1.20). Since the initial relations do not have
any predecessors, TransParent is initially empty. Finally, we initialize the
worklist Worklist with a set of identity relations over program states that
are restricted to the sets of states represented by elements of ReachStates#.
Such initalization together with the first iteration of the while loop corre-
spond to the first disjunct in Equation (1.20).

The main part of AbstReach in lines 5–13 implements the iterative appli-
cation of comp# in Equation (1.20) using a while loop. Since we are interested
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in applying individual program transitions one by one, we rely on a direct ap-
plication of relational composition ◦ and transition predicate abstraction α̈.
The loop termination condition checks if Worklist has any items to process.
In case the worklist is not empty, we choose such an item, say ϕ̈, and remove
it from the worklist. For brevity, we leave the selection procedure unspeci-
fied, but note that various strategies are possible, e.g., breadth- or depth-first
search. Then, we apply ◦ and α̈ wrt. each program transition, say ρ, on ϕ̈.
Let ϕ̈′ be the result of such an application. We add ϕ̈′ to ReachTrans# if ϕ̈′

contains some pairs of program states that are not already contained in one
of the formulas in ReachTrans#. We formulate the above test as an entail-
ment check between ϕ̈′ and the disjunction of all formulas in ReachTrans#.
Often, there is a formula ψ̈ in ReachStates# such that ϕ̈′ |= ψ̈. Otherwise,
ϕ̈ is added to ReachTrans#, we record that ϕ̈′ was computed by applying ρ
on ϕ̈ by adding a tuple (ϕ̈, ρ, ϕ̈′) to TransParent . Finally, ϕ̈′ is put on the
worklist.

The loop execution terminates after a finite number of steps, since the
range of α̈ is finite (and is of size 2n where n is the size of TransPreds). The

disjunction of formulas in ReachTrans# is logically equivalent to ψ#
ti .

Example 16. We illustrate TransAbstReach by showing how it auto-

mates the computation presented in Example 15. We again consider our

example program from Figure 1.1 together with a set of transition predi-

cates TransPreds = {false, at `1, . . . , at `3, at ′ `1, . . . , at ′ `3} and an over-

approximation of reachable states ReachStates# = {true}. After executing

the initialization steps in TransAbstReach we obtain ReachTrans# = ∅,
TransParent = ∅, and Worklist = {true ∧ unchanged(x, y, z)}.

The first iteration of the while loop chooses ϕ̈ = (true∧unchanged(x, y, z))

and removes it from Worklist . Now TransAbstReach iterates through the

transitions of the program. First, we consider ρ = ρ1 and obtain

ϕ̈′ = α̈((true ∧ unchanged(x, y, z)) ◦ ρ1) = goto(`1, `2) .

Since ReachTrans# = ∅, we obtain

ReachTrans# = {goto(`1, `2)}

TransParent = {(true ∧ unchanged(x, y, z), ρ1, goto(`1, `2))}

Worklist = {goto(`1, `2)}

and proceed with the remaing program transitions. For ρ = ρ2 we obtain

ϕ̈′ = goto(`2, `2). Since ϕ̈′ does not entail the transition relation already con-

tained in ReachTrans#, we obtain (in this example, “. . . ” denotes previously

assigned value)
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ReachTrans# = {goto(`2, `2), . . . }

TransParent = {(true ∧ unchanged(x, y, z), ρ2, goto(`2, `2), . . . }

Worklist = {goto(`2, `2), goto(`1, `2)}

After applying ρ = ρ3 we obtain ϕ̈′ = goto(`2, `3) that leads to

ReachTrans# = {goto(`2, `3), . . . }

TransParent = {(true ∧ unchanged(x, y, z), ρ3, goto(`2, `3)), . . . }

Worklist = {goto(`2, `3), goto(`2, `2), goto(`1, `2)}

Now, we proceed with the second iteration of the while loop. We choose

ϕ̈ = goto(`1, `2) and proceed with applying program transitions. Applying ρ1

yields ϕ̈′ = false. For ρ = ρ2 we obtain ϕ̈ = goto(`1, `2). Since there exists

an element of ReachTrans# that is entailed by ϕ̈′, namely goto(`1, `2), the

computed ϕ̈′ is discarded. Applying ρ3 yields ϕ̈′ = goto(`1, `3) and leads to

ReachTrans# = {goto(`1, `3), . . . }

TransParent = {(goto(`1, `2), ρ3, goto(`1, `3)), . . . }

Worklist = {goto(`1, `3), goto(`2, `3), goto(`2, `2)}

Subsequent iterations of the while loop proceed similarly and modify nei-

ther ReachTrans# nor TransParent . Finally, Worklist becomes empty and

TransAbstReach terminates. We obtain the following output:

ReachTrans# = {goto(`1, `3), goto(`2, `3), goto(`2, `2), goto(`1, `2)}

TransParent = {(goto(`1, `2), ρ3, goto(`1, `3)),

(true ∧ unchanged(x, y, z), ρ3, goto(`2, `3)),

(true ∧ unchanged(x, y, z), ρ2, goto(`2, `2)),

(true ∧ unchanged(x, y, z), ρ1, goto(`1, `2))}

�

1.6 Abstraction refinement

The algorithm AbstReach requires a set of predicates in order to compute
an over-approximation of the set of reachable program states. Similarly, the
algorithm TransAbstReach requires a set of transition predicates in order
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ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z

ϕ4 : at `4 ∧ y ≥ z ϕ5 : at `5 ∧ y ≥ z

ρ1

ρ2

ρ3

ρ4 ρ5

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

ϕ5 = post#(ϕ3, ρ5)

Fig. 1.6 Abstract reachability computation with Preds = {false, at `1, . . . , at `5, y ≥ z}.

to compute an over-approximation of the set of reachable pairs of program
states. Finding the right set of predicates (or of transition predicates) that
yields a sufficiently precise over-approximation is a difficult task.

1.6.1 Refinement of predicate abstraction

The procedure for refining predicate abstraction considers certain program
paths as the main source of information. By exploring such paths we can
obtain an adequate set of predicates to prove the program correct.

Analysis of counterexample paths We start with an example that
illustrates the impact of over-approximatioo and how it can be eliminated.

Example 17. In Example 13, the provided set of predicates was adequate

for proving program safety. Omitting just one predicate, e.g., provide the

predicates Preds = {false, at `1, . . . , at `5, y ≥ z} without x ≥ y leads to

an over-approximation ϕ#
reach that has a non-empty intersection with the

error states. As shown in Figure 1.6, we have ϕ5 ∧ ϕerr 6|= false. That is,

AbstReach fails to prove the property without the predicate x ≥ y.

We analyse the reason for the excessive over-approximation. Figure 1.6

shows that the Parent relation records a sequence of three steps leading to

the computation of ϕ5. First, we apply ρ1 to ϕ1 and compute ϕ2. Then, ϕ3

is obtained by applying ρ3 to ϕ2. Finally, ρ5 is applied to ϕ3 and results

in ϕ5. Thus, we note that the sequence of program transitions ρ1, ρ3, and ρ5

determined ϕ5. We refer to this sequence as a counterexample path. Using

this path and the functions α and post# corresponding to the current set of

predicates we obtain
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ϕ5 = post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) .

That is, ϕ5 is equal to the over-approximation of the post-condition computed

along the counterexample path.

Now we check if the counterexample path also leads to the error states

when no over-approximation is applied. First we compute

post(post(post(ϕinit , ρ1), ρ3), ρ5) = post(post(at `2 ∧ y ≥ z, ρ3), ρ5)

= post(at `3 ∧ y ≥ z ∧ x ≥ y, ρ5)

= false .

Hence, by executing the program transitions ρ1, ρ3, and ρ5 it is not possible

to reach any error state. We conclude that the over-approximation is too

coarse, at least when dealing with the above path.

We need a more precise over-approximation that will prevent post# from

including states that lead to error states along the path ρ1, ρ3, and ρ5. Con-

cretely, we need a refined abstraction function α and a corresponding post#

such that the execution of AbstReach along the counterexample path does

not compute a set of states that contains some error states:

post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) ∧ ϕerr |= false .

We consider the intermediate steps of the above condition and define sets

of states ψ1, . . . , ψ4 that provide an adequate over-approximation along the

path as follows.

ϕinit |= ψ1

post(ψ1, ρ1) |= ψ2

post(ψ2, ρ3) |= ψ3

post(ψ3, ρ5) |= ψ4

ψ4 ∧ ϕerr |= false

The over-approximation given by ψ1, . . . , ψ4 is adequate since it guarantees

that no error state is reached, while still allowing additional states to be

reachable. For example, we consider the following solution to the above con-

dition.

ψ1 ψ2 ψ3 ψ4

at `1 at `2 ∧ y ≥ z at `3 ∧ x ≥ z false
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function MakePath

input

ψ - reachable abstract state

Parent - predecessor relation

begin

path := empty sequence

ϕ′ := ψ

while exist ϕ and ρ such that (ϕ, ρ, ϕ′) ∈ Parent do

path := ρ . path

ϕ′ := ϕ

return path

end

Fig. 1.7 Path computation.

We can use the obtained solution to refine α in the following way. By

adding ψ1, . . . , ψ4 to the set of predicates Preds we guarantee that the re-

sulting α and post# are sufficiently precise to show that no error state is

reachable along the path ρ1, ρ3, and ρ5. Formally, we obtain

α(ϕinit) |= ψ1

post#(ψ1, ρ1) |= ψ2

post#(ψ2, ρ3) |= ψ3

post#(ψ3, ρ5) |= ψ4

ψ4 ∧ ϕerr |= false

�

We put the above approach for analyzing counterexample compute by Ab-
stReach into algorithms MakePath, FeasiblePath, and RefinePath.

The algorithm MakePath is shown in Figure 1.7. It takes as input a
reachable abstract state ψ together with a Parent relation. We view Parent
as a tree where ψ occurs as a node. MakePath outputs a sequence of program
transitions that labels the tree edges connecting ψ with the root of the tree.
The sequence is constructed iteratively by a backward traversal starting from
the input node. The variable path keep track of the construction.

Example 18. For our example tree in Figure 1.6 we construct the path by

making a call MakePath(ϕ5,Parent). Then, path is extended with the tran-

sitions ρ5, ρ3, and ρ1 by considering the edges (ϕ3, ρ5, ϕ5), (ϕ2, ρ3, ϕ3), and

(ϕ1, ρ1, ϕ2), respectively. Finally, path = ρ1ρ3ρ5 is returned as output. �
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function FeasiblePath

input

ρ1 . . . ρn - path

begin

ϕ := post(ϕinit , ρ1 ◦ . . . ◦ ρn)

if ϕ ∧ ϕerr 6|= false then

return true

else

return false

end

Fig. 1.8 Feasibility of a path.

1

2

3

4

5

function RefinePath

input

ρ1 . . . ρn - path

begin

ϕ0, . . . , ϕn := compute such that

(ϕinit |= ϕ0) ∧

(post(ϕ0, ρ1) |= ϕ1) ∧ . . . ∧ (post(ϕn−1, ρn) |= ϕn) ∧

(ϕn ∧ ϕerr |= false)

return {ϕ0, . . . , ϕn}
end

Fig. 1.9 Counterexample guided discovery of predicates.

The algorithm FeasiblePath is shown in Figure 1.8. It takes as input a
sequence of program transitions ρ1 . . . ρn and checks if there is a computation
that is produced by this sequence. The check uses the post-condition function
and the relational composition of transitions.

Example 19. When applying FeasiblePath on our example path ρ1ρ3ρ5 we

obtain the following intermediate results. First, the relational composition of

transitions yields

ρ1 ◦ ρ3 ◦ ρ5 = false .

Hence, FeasiblePath sets ϕ to false and then returns false. �

The algorithm RefinePath is shown in Figure 1.9. It takes as input
a sequence of program transitions ρ1 . . . ρn and computes sets of states
ϕ0, . . . , ϕn satisfying the following conditions. First, we have ϕinit |= ϕ0 and
ϕn ∧ ϕerr |= false. Then, for each i ∈ 1..n we obtain post(ϕi−1, ρi) |= ϕi.
Thus, ϕ0, . . . , ϕn computed by RefinePath can be used for refining predi-
cate abstraction. If ϕ0, . . . , ϕn are added to Preds then the resulting α and
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function AbstRefineLoop

begin

Preds := ∅
repeat

(ReachStates#,Parent) := AbstReach(Preds)

if exists ψ ∈ ReachStates# such that ψ ∧ ϕerr 6|= false then

path := MakePath(ψ,Parent)

if FeasiblePath(path) then

return “counterexample path: path ”

else

Preds := RefinePath(path) ∪ Preds

else

return “program is correct”

end.

Fig. 1.10 Predicate abstraction and refinement loop.

post# guarantee that the following conditions hold.

α(ϕinit) |= ϕ0

post#(ϕ0, ρ1) |= ϕ1

. . .

post#(ϕn−1, ρn) |= ϕn

ϕn ∧ ϕerr |= false

Here, we omit details of a particular algorithm for finding ϕ0, . . . , ϕn that
satisfy the above conditions. We discuss possible alternatives in Section 1.7.

Example 20. As discussed in Example 17, the application of RefinePath on

ρ1ρ3ρ5 yields a sequence of sets of states that can refine the abstraction to

become sufficiently precise at least for dealing with the considered path. �

In our high-level presentation of the algorithm, we leave open many issues
for optimization. In particular, line 3 of AbstRefineLoop is often improved
by an incremental procedure called lazy abstraction [27, 39].

Algorithm for counterexample guided abstraction refinement
We put together the building blocks described in the previous section into

an algorithm AbstRefineLoop that verifies reachability properties using
predicate abstraction and its counterexample guided refinement. See Fig-
ure 1.10.

Given a program, AbstRefineLoop discovers a proof or a counterexam-
ple by repeatedly applying the following steps. First, we compute an over-
approximation ϕ#

reach of the set of reachable states using an abstraction func-
tion defined wrt. the set of predicates Preds, which is empty initially. The
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ϕ1 : at `1

ϕ2 : at `2

ϕ3 : at `3

ϕ4 : at `4 ϕ5 : at `5

ρ1

ρ2

ρ3

ρ4 ρ5

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

ϕ5 = post#(ϕ3, ρ5)

Fig. 1.11 Abstract reachability computation with Preds = {false, at `1, . . . , at `5}.

over-approximation ϕ#
reach is represented by a set of formulas ReachStates#,

where each formula represents a set of states. If the set of error states is dis-
joint from the computed over-approximation, then AbstRefineLoop stops
the iteration process and reports that the program is correct. Otherwise, we
consider a formula ψ in ReachStates# that witnesses the intersection with
the error states and use ψ in an attempt to refine the abstraction. Refine-
ment is only possible if the discovered intersection is caused by the impre-
cision of the currently applied abstraction function. We clarify this question
by first constructing a sequence of program transitions that was traversed
during the computation of ψ. This sequence, called path, is analyzed using
FeasiblePath. If there is a program computation that follows path, then
AbstRefineLoop stops the iteration and reports that path is a counterex-
ample. In case path is not feasible, we compute a set of predicates that refines
the abstraction function by applying an algorithm RefinePath on path.

We observe that AbstRefineLoop never analyzes the same counterexam-
ple twice, i.e., the abstraction refinement process using RefinePath makes
progress at each iteration.

Example 21. We illustrate AbstRefineLoop using our example program

from Figure 1.1. To make the illustration more vivid, we assume that

Preds = {false, at `1, . . . , at `5} is the initial set of predicates, i.e., we an-

ticipate that for proving our example correct we need to keep track of the

program counter.

We start the first iteration by applying ReachStates#. The result is the

set of formulas ReachStates# connected by the relation Parent as shown in

Figure 1.11. In this figure, Parent is denoted by solid arrows that connect the

formulas. We observe that ϕ5 has a non-empty intersection with ϕerr , hence

we proceed by setting ψ to ϕ5. By applying MakePath we obtain path =

ρ1ρ3ρ5. At the next step, FeasiblePath reports that this path is not feasible,

hence we proceed with the abstraction refinement. RefinePath discovers
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ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z ∧ x ≥ z

ϕ4 : at `4 ∧ y ≥ z ∧ x ≥ z

ρ1

ρ2

ρ3

ρ4

ϕ1 = α(ϕinit )

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

Fig. 1.12 Applying AbstReach on the program in Figure 1.1 and the set of predi-

cates Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ z}.

that the predicates y ≥ z and x ≥ z are sufficient to refine the abstraction

such that path no longer leads to an error state even under abstraction.

We start the second iteration of AbstRefineLoop with the new set of

predicates Preds = {false, at `1, . . . , at `5, y ≥ z, x ≥ z}, which contains the

predicates that were discovered during the first iteration. See Figure 1.12 for

the obtained set ReachStates# and relation Parent . We observe that each

formula in ReachStates# has an empty intersection with ϕerr , hence Ab-

stRefineLoop reports that the program is correct. �

1.6.2 Refinement of transition predicate abstraction

The algorithm TransAbstReach requires a set of transition predicates in
order to compute an over-approximation of the transition invariant. Finding
the right set of transition predicates that yields a sufficiently precise over-
approximation is a difficult task.

Analysis of counterexample lassos We present a notion of lasso-shaped
counterexample that is suitable for refining transition predicate abstraction.
Such counterexamples consist of a stem and a loop. The step part represents
a sequence of program transitions that leads to a loop in the program, while
the loop part is a sequence of program transitions that represents a possible
execution through such a loop.

First, we illustrate counterexample lassos using an example.

Example 22. We consider the transition invariant computed in Example 16

by applying TransAbstReach. We assume that ReachStates# = {true}
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function MakeLasso

input

ψ̈ - reachable abstract transition

Parent - predecessor relation for abstract states

TransParent - predecessor relation for abstract transitions

begin

loop := empty sequence

ϕ̈′ := ψ̈

while exist ϕ̈ and ρ such that (ϕ̈, ρ, ϕ̈′) ∈ TransParent do

loop := ρ . loop

ϕ̈′ := ϕ̈

(ϕ ∧ unchanged(V )) := ϕ̈

stem := MakePath(ϕ,Parent)

return (stem, loop)

end

Fig. 1.13 Lasso computation.

used for this computation was obtained by applying AbstReach and that

Parent = {(true, ρ1, true)} was obtained as a result.

We observe that ReachTrans# is not disjunctively well-founded, since it

contains goto(`2, `2) that is not well-founded. Similarly to the treatment of

counterexamples in predicate abstraction-based invariant computation, we

use TransParent to determine a sequence of program transitions that led to

the computation of goto(`2, `2), which we call loop. We observe that (true ∧
unchanged(x, y, z), ρ1, goto(`1, `2)) ∈ TransParent , hence the last element of

the loop is the transition ρ2. Furthermore, since true ∧ unchanged(x, y, z)

does not appear in the third position of some element of TransParent , we

conclude that no more elements appear in the loop. Now we determine the

stem part by applying MakePath on true, which is obtained from true ∧
unchanged(x, y, z) by omitting equalities unchanged(x, y, z), and Parent . The

result is a stem that consists only of ρ1, which finishes the computation of

the counterexample lasso. �

The algorithm MakeLasso shown in Figure 1.13 implements the lasso
construction as described in the above example. MakeLasso proceeds simi-
larly to MakePath and calls it as a sub-routine in line 7 after the loop part
is constructed. We detect that the loop construction is finished when there is
no predecessor according to TransParent . The stem part is constructed us-
ing the information collected during abstract reachability computation and
provided as Parent . The starting point for the stem computation is obtained
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function FeasibleLasso

input

ρ1 . . . ρn - stem transitions

ρ′1 . . . ρ
′
m - loop transitions

begin

ϕ := post(ϕinit , ρ1 ◦ . . . ◦ ρn)

ϕ̈ := (ϕ ∧ unchanged(V )) ◦ ρ′1 ◦ . . . ◦ ρ′m
if ¬well-founded(ϕ̈) then

return true

else

return false

end

Fig. 1.14 Feasibility of a lasso.

using pattern matching in line 6. Here, we exploit how Worklist is initialized
by TransAbstReach in line 4, see Figure 1.5.

Once the lasso counterexample is constructed, we analyse whether the
transition predicate abstraction can be refined in order to rule out the dis-
covered counterexample. First, we illustrate this step by using an example.

Example 23. We consider the lasso computed in Example 22 that consists

of the stem ρ1 and the loop ρ2. We compute the set of states ϕ that are

reachable by applying the stem and obtain

ϕ = post(ϕinit , ρ1) = (at `1 ∧ y ≥ z) .

We use this set of states when initializing the relational composition of pro-

gram transitions along the loop part with

at `2 ∧ y ≥ z ∧ unchanged(x, y, z) .

The result of the composition – this time without applying transition predi-

cate abstraction – is

ϕ̈ = (at `2 ∧ y ≥ z ∧ unchanged(x, y, z)) ◦ ρ2
= (goto(`2, `2) ∧ y ≥ z ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ unchanged(y, z)) .

The obtained relation ϕ̈ is well-founded, which can be easily checked since it

is represented by a simple program loop without further nesting or branching

statements. A ranking function that witnesses the termination of ϕ̈ is y − x.

Every time the relation is applied, the value of y−x decreases. Furthermore,
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ϕ̈ can be applied only if y − x ≥ 0. We conclude that the discovered coun-

terexample lasso is spurious, i.e., there is no infinite program computation

that follow the stem and then repeats the loop part forever. �

The algorithm FeasibleLasso shown in Figure 1.14 automates the steps
executed in the above example. FeasibleLasso takes as input a lasso ob-
tained by applying MakeLasso and performs a check in the given lasso
can yield an infinite computation. The implementation of the predicate
well -founded is out of scope of this chapter. There exist efficient algorithms
for this task that exploit the lasso shape, e.g., [51].

Finally, we show how transition predicates can be discovered from a spu-
rious counterexample lasso.

Example 24. We consider the feasibility check presented in Example 23. We

observe that the following implications were established.

post(ϕinit , ρ1) |= (at `1 ∧ y ≥ z)

(at `2 ∧ y ≥ z ∧ unchanged(x, y, z)) ◦ ρ2 |= y − x ≥ 0 ∧ y′ − x′ ≤ y − x− 1

Hence, to eliminate the spurious counterexample we can use the assertions

true and y − x ≥ 0 ∧ y′ − x′ ≤ y − x − 1. When y − x ≥ 0 and y′ − x′ ≤
y − x − 1 are included in the set of transition predicates TransPreds used

by the abstraction function α̈ the algorithm TransAbstReach will not

discover the spurious lasso consisting of ρ1 and relLoop again. Example 14

shows the outcome of applying TransAbstReach when using a refined set

of transition predicates TransPreds. �

We present an algorithm RefineLasso in Figure 1.15 that discovers tran-
sition predicates from a spurious counterexample lasso. The algorithm is pre-
sented in a declarative way and we omit details of a particular implementa-
tion of line 1. There exist efficient implementations for this task that rely on
similar techniques as presented in Section 1.7, e.g., [32].

Algorithm for counterexample guided transition predicate abstrac-
tion refinement We put together the algorithms for the construction
and analysis of lasso shaped counterexamples presented above together with
the algorithm for transition predicate abstraction. The resulting algorithm
TransAbstRefineLoop can find a disjunctively well-founded transition
invariant automatically by automatically discovering an adequate set of tran-
sition predicates. See Figure 1.16.

TransAbstRefineLoop proceeds in similar steps as AbstRefineLoop
presented in Section 1.6. In fact, we use AbstRefineLoop to compute an
over-approximation of reachable program states. We start with the empty
set of predicates and transition predicates and extend them every time a
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function RefineLasso

input

ρ1 . . . ρn - stem transitions

ρ′1 . . . ρ
′
m - loop transitions

begin

ϕ0, . . . , ϕn, ϕ̈1, . . . , ϕ̈m := compute such that

(ϕinit |= ϕ0) ∧

(post(ϕ0, ρ1) |= ϕ1) ∧ . . . ∧ (post(ϕn−1, ρn) |= ϕn) ∧

((ϕn ∧ unchanged(V )) ◦ ρ′1 |= ϕ̈1) ∧ . . . ∧ (ϕ̈m−1 ◦ ρ′m |= ϕ̈m) ∧

well-founded(ϕ̈m)

return ({ϕ0, . . . , ϕn}, {ϕ̈1, . . . , ϕ̈m})
end

Fig. 1.15 Abstraction refinement guided by a lasso.
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function TransAbstRefineLoop

begin

Preds := ∅
TransPreds := ∅
repeat

(ReachStates#,Parent) := AbstReach(Preds)

(ReachTrans#,TransParent) := TransAbstReach(TransPreds)

if exists ψ̈ ∈ ReachTrans# such that ¬well-founded(ψ̈) then

(stem, loop) := MakeLasso(ψ̈,Parent ,TransParent)

if FeasibleLasso(stem, loop) then

return “counterexample lasso: stem, loop ”

else

(NewPreds,NewTransPreds) := RefineLasso(stem, loop)

Preds := NewPreds ∪ Preds

TransPreds := NewTransPreds ∪ TransPreds

else

return “program terminates”

end.

Fig. 1.16 Transition predicate abstraction and refinement loop.

counterexample lasso is discovered. The counterexample discovery takes place
during the computation of a transition invariant using TransAbstReach.
If a counterexample lasso is found, its stem part is used to refine the set of
predicates Preds. The set of additional transition predicates is determined by
considering both the stem and the loop parts.

Similarly to abstraction refinement for safey, we observe that TransAb-
stRefineLoop never analyzes the same counterexample twice, i.e., the ab-
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straction refinement process using RefineLasso makes progress at each it-
eration.

1.7 Solving refinement constraints for predicate

abstraction

The algorithm RefinePath in Figure 1.9 takes as input an infeasible se-
quence of program transitions ρ1 . . . ρn and computes sets of states ϕ0, . . . , ϕn
satisfying the following conditions.

ϕinit |= ϕ0

post(ϕ0, ρ1) |= ϕ1

. . .

post(ϕn−1, ρn) |= ϕn

ϕn ∧ ϕerr |= false .

Since ρ1 . . . ρn is infeasible, the above conditions are satisfiable. In general,
several solutions may exist. We describe how the least, the greatest, and an
intermediate solution can be computed.

1.7.1 Least solution

We obtain the least solution by applying the post-condition function in the
following way.

ϕ0 = ϕinit

ϕ1 = post(ϕ0, ρ1)

. . .

ϕn = post(ϕn−1, ρn)

(1.22)

Note that since the least solution ensures that for each 1 ≤ i ≤ n we have

ϕi = post(ϕinit , ρ1 ◦ . . . ◦ ρi) ,

and guarantee that ϕn ∧ ϕerr |= false.
Sometimes the least solution is not useful for refining the abstraction, since

the resulting abstraction is too precise. As a result, the iteration in AbstRe-
fineLoop may not terminate as the abstract reachability computation is
almost equivalent to the reachability computation without abstraction.
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Example 25. We illustrate how a least solution is computed using an example

program shown in Figure 1.1.

Let ρ1ρ3ρ5 be a counterexample path discovered by AbstRefineLoop.

For this path, we obtain the following least solution of the constraints defined

by RefinePath.

ϕ0 = ϕinit = at `1

ϕ1 = post(ϕ0, ρ1) = (at `2 ∧ y ≥ z)

ϕ2 = post(ϕ1, ρ3) = (at `3 ∧ y ≥ z ∧ x ≥ y)

ϕ3 = post(ϕ2, ρ5) = false

The obtained refinement will ensure that the path ρ2ρ3ρ5 will not be consid-

ered a counterexample during subsequent iterations of the refinement loop

in AbstRefineLoop. �

1.7.2 Greatest solution

First, we define an auxiliary weakest pre-condition function wp as follows.
Let ϕ be a formula over V and let ρ be a formula over V and V ′. Then, we
define:

wp(ϕ, ρ) = ∀V ′ : ρ→ ϕ[V ′/V ]. (1.23)

For example, a transition ρ2 from Figure 1.1 results in the following weakest
precondition.

wp(at `2 ∧ x ≥ z, ρ2)

= ∀V ′ : pc = `2 ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z ∧ pc′ = `2

→ pc′ = `2 ∧ x′ ≥ z
= ¬(∃V ′ : pc = `2 ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ y′ = y ∧ z′ = z ∧ pc′ = `2 ∧

¬(pc′ = `2 ∧ x′ ≥ z))
= ¬(∃V ′ : pc = `2 ∧ x+ 1 ≤ y ∧ ¬(`2 = `2 ∧ x+ 1 ≥ z))
= (pc = `2 ∧ x+ 1 ≤ y → `2 = `2 ∧ x+ 1 ≥ z)
= (at `2 ∧ x+ 1 ≤ y → x+ 1 ≥ z)

We obtain the greatest solution of the refinement constraints for a given
counterexample path as follows.
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ϕn = ¬ϕerr

ϕn−1 = wp(ϕn, ρn)

. . .

ϕ0 = wp(ϕ1, ρ1)

(1.24)

That is, the greatest solution is computed incrementally by traversing the
counterexample path backwards.

Similarly to the least solution, sometimes the greatest solution is not useful
for refining the abstraction, since the resulting abstraction is too coarse. As a
result, the iteration in AbstRefineLoop may not terminate as the abstract
reachability computation is almost equivalent to the backward reachability
computation without abstraction that expands the set of states definitely
leading to an error state.

Example 26. We illustrate how a greatest solution is computed using an ex-

ample program shown in Figure 1.1.

Let ρ1ρ3ρ5 be a counterexample path discovered by AbstRefineLoop.

For this path, we obtain the following greatest solution of the constraints

in RefinePath.

ϕ3 = ¬ϕerr = ¬at `5

ϕ2 = wp(ϕ3, ρ5) = (at `3 → x ≥ z)

ϕ1 = wp(ϕ2, ρ3) = (at `2 ∧ x ≥ y → x ≥ z)

ϕ0 = wp(ϕ1, ρ1) = true

Again, the obtained refinement will result in the discovery of the counterex-

ample path ρ2ρ3ρ5 during the next iteration in AbstRefineLoop, as wit-

nessed by the following validities.

ϕinit |= ϕ0

post(ϕ0, ρ1) = (at `2 ∧ y ≥ z) |= ϕ1

post(ϕ1, ρ3) = (at `3 ∧ x ≥ y ∧ x ≥ z) |= ϕ2

post(ϕ2, ρ5) = false |= ϕ3

We observe that the reachability computation using refined abstraction does

not reach any error states along the path ρ1ρ3ρ5. �
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1.7.3 Intermediate solution using interpolation

We illustrate how an intermediate solution can be computed by a technique
called interpolation [25,38]. Interpolation takes as input two mutually unsat-
isfiable formulas ϕ1 and ϕ2, i.e., ϕ1 ∧ ϕ2 |= false, and returns a formula ϕ
such that i) ϕ is expressed over common symbols of ϕ1 and ϕ2, ii) ϕ1 |= ϕ,
and iii) ϕ ∧ ϕ2 |= false. Let inter be an interpolation function such that
inter(ϕ1, ϕ2) is an interpolant for ϕ1 and ϕ2.

The following sequence of interpolation computations can be used to find
a solution for constraints defined by RefinePath.

ϕ0 = inter(ϕinit , (ρ1 ◦ . . . ◦ ρn) ∧ ϕerr [V ′/V ])

ϕ1 = inter(post(ϕ0, ρ1), (ρ2 ◦ . . . ◦ ρn) ∧ ϕerr [V ′/V ])

. . .

ϕn−1 = inter(post(ϕn−2, ρn−1), ρn ∧ ϕerr [V ′/V ])

ϕn = inter(post(ϕn−1, ρn), ϕerr [V ′/V ])

(1.25)

Intermediate solutions can avoid the deficiencies of least and greatest solu-
tions described above, although they still do not guarantee convergence of
the abstraction refinement loop.

Example 27. We illustrate how an intermediate solution is computed using

an example program shown in Figure 1.1.

Let ρ1ρ3ρ5 be a counterexample path discovered by AbstRefineLoop.

For this path, we obtain the following intermediate solution of the constraints

in RefinePath.

ϕ0 = inter(ϕinit , (ρ1 ◦ ρ3 ◦ ρ5) ∧ ϕerr [V ′/V ]) = true

ϕ1 = inter(post(ϕ0, ρ1), (ρ3 ◦ ρ5) ∧ ϕerr [V ′/V ]) = y ≥ z

ϕ2 = inter(post(ϕ1, ρ3), ρ5 ∧ ϕerr [V ′/V ]) = x ≥ z

ϕ3 = inter(post(ϕ2, ρ5), ϕerr [V ′/V ]) = false

The following validities show that ρ1ρ3ρ5 will not be considered a counterex-

ample during subsequent refinement iterations.

ϕinit |= ϕ0

post(ϕ0, ρ1) = (at `2 ∧ y ≥ z) |= ϕ1

post(ϕ1, ρ3) = (at `3 ∧ x ≥ y ∧ y ≥ z) |= ϕ2

post(ϕ2, ρ5) = false |= ϕ3

�
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1.8 Tools

We have presented the base algorithm for predicate abstraction and transition
predicate abstraction. Practical tools introduce a variety of optimizations of
the base algorithm.

Predicate abstraction SLAM [4], BLAST [38, 39], Magic [14], Murphi [26],
and SatAbs [17] implement different levels of precision, ranging from Carte-
sian and full boolean predicate abstraction [3]. CPAChecker [9], F-Soft [41],
and UFO [1] integrate predicate abstraction with data flow analysis and
abstract interpretation. Synergy [33] and Yogi [50] integrate predicate ab-
straction with underapproximation based on dynamic execution. ARMC [54]
implements Cartesian predicate abstraction and uses constraint based inter-
polation to discover predicates. SLAB [28] implements the refinement of an
abstract transition system in a top-down way. Impact [49] and Wolverine [45]
resort to a particular form of predicate abstraction where each refinement
steps adds a single predicate. Ultimate Automizer [36] uses predicates to
construct a proof in the form of a finite automaton that approximates the
language of program traces.

Arrays and heaps BLAST [43], Indexed Predicate Abstraction [46], and
universally quantified Horn solver [11] compute universally quantified array
invariants with predicate abstraction in order to deal with the ranges of
array indices and properties of values stored in arrays. Bohne [56,57] verifies
complex data structures that are implemented on the heap (modeled as a
graph) by inferring node predicates in the style of TVLA [59].

Beyong procedural programs HSF [32] relies on predicate abstraction to
solve recursive Horn constraints, which serves as a backend solver for proving
termporal properties of programs with procedures, multi-threaded programs
and higher order funcitonal programs. Threader [34, 35] relies on predicate
abstraction to compute rely/guarantee and Owicki/Gries proofs for multi-
threaded programs. Liquid Types [58] uses a form of predicate abstraction in
the style of Houdini [29] to infer refinement types for proving safety of higher
order functional programs.

Beyond safety ARMC [54] uses transition predicate abstraction as de-
scribed in [53] to prove termination and other liveness properties. Termina-
tor [19, 20] reduces transition predicate abstraction to predicate abstraction
via a syntactic transformation of the program in order to prove termination of
systems code. T2 [12,22] computes transition invariants using techniques as in
Impact [49]. LoopFrog computes transition invariants to analyze termination
of programs at a bitlevel semantics. LTA [48] uses algorithmic learning-based
techniques for the generation of transition predicates. CTA [44] computes
‘compositional’ transition invariants. Ultimate Automizer [36] uses transi-
tion predicates to construct a proof in the form of a finite Bü chi automaton
that approximates the language of infinite program traces. Several tools in-
cluding AProVe [13] and ACL2 [15] use the size-change principle [47], whose

44



formal connection to transition predicate abstraction (without refinement) is
studied in [37]. An explanation why transition predicate abstraction works
for termination analysis is given in the abstract interpretation framework
in [24]. HSF [32] relies on transition predicate abstraction in combination
with abstract inference to find well-founded models for Horn constraints.

Beyond verification Existentially quantified Horn solver [7] uses predicate
abstraction to discover witness existential quantification in Horn constraints
and to synthesize winning strategies for LTL games [6].

1.9 Conclusion and discussion

We presented an over-approximation technique called predicate abstraction
and showed how it can be applied for proving reachability and termination
properties of programs. We automate predicate abstraction by relying on a
decision procedure for computing entailments. An adequate set of predicates
can be discovered automatically by exploring spurious counterexamples.

Our presentation aimed at basic principles of predicate abstraction and
left uncovered the many variations of predicate abstraction studied in the
literature and implemented in tools. Chapter 16 shows how the process of
computing over-approximating transition relations using predicates can be
decoupled from the fixpoint computation. Chapter 18 shows how predicate
abstraction can be combined with data flow analysis, thus only requiring
decision procedure calls for intricate reasoning that is difficult to support in
classical data flow domains.

The presented approach to combine predicates when computing an over-
approximation only considers conjunction. This approach is called Cartesian
abstraction in the literature, since each predicate is treated in isolation. Alter-
natively, over-approximation using Boolean combinations of predicates can
be used, at a higher cost of computing the abstraction function. We refer
to [42] for a survey of this and related techniques and variations. In this
regards, we point out that so-called large block encoding techniques that op-
erate on compound program transitions with rich Boolean structure can be
effectively leverage the advances in state-of-the-art decision procedures and
thus can offer both precision and efficiency [8, 10] .
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28. K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. SLAB: A certifying

model checker for infinite-state concurrent systems. In TACAS, pages 271–274, 2010.

29. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java. In
J. N. Oliveira and P. Zave, editors, FME, volume 2021 of Lecture Notes in Computer

Science, pages 500–517. Springer, 2001.

30. R. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer
Science, pages 19–32. American Mathematical Society, 1967.
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