

Tutorial for Cyber-Physical Systems - Hybrid Models Exercise Sheet 8

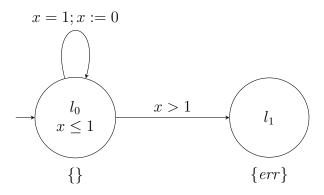


Figure 1: A timed automaton.

Exercise 1: Timed automata and programs 1

Consider the timed automaton \mathcal{T}_1 from Figure 1 with clock variable x, i.e., $\mathcal{C} = \{x\}$.

- (a) Translate \mathcal{T}_1 to an equivalent program \mathcal{P}_1 , i.e., with the same executions/paths.
- (b) Compute the reachable states φ_{reach} of \mathcal{P}_1 by iteration of post.

Exercise 2: Timed automata and programs 2

Consider the timed automaton \mathcal{T}_2 which is obtained from \mathcal{T}_1 (see Figure 1) by adding another clock variable y, i.e., $\mathcal{C} = \{x, y\}$. Note that y is never read in any guard or invariant. Still, the state space changes (recall that a state is a pair (ℓ, ν) with $\nu : \mathcal{C} \to \mathbb{R}$).

You may wonder why adding an unused clock should affect the reachability of a state. In fact, it does not (in some sense). However, the algorithms behave differently.

- (a) Translate \mathcal{T}_2 to an equivalent program \mathcal{P}_2 .
- (b) What are the reachable states φ_{reach} of \mathcal{P}_2 ? Solve this exercise intuitively, i.e., do not apply a formal algorithm. Alternatively, you may reason about the reachable states Reach of \mathcal{T}_2 .
- (c) What happens when you try to compute the reachable states φ_{reach} of \mathcal{P}_2 by iteration of post?
- (d) Find a suitable set of predicates Preds such that the predicate abstraction (iteration of $post^{\#}$) can prove safety (specified by the TCTL formula $\mathbf{A}\mathcal{G}\neg err$) of \mathcal{P}_2 . Provide the abstract reachability graph that you obtain.

Hint: Consider some of the predicates which are used to define the regions for the region transition system (RTS) construction.