

Prof. Dr. Andreas Podelski Christian Schilling

Tutorial for Cyber-Physical Systems - Hybrid Models Exercise Sheet 10

Exercise 1: Backward reachability analysis of linear hybrid automata Consider the following linear hybrid automaton (LHA) \mathcal{H} :

- (a) Apply the backward analysis from $(\ell_0, x = 8 \land y = 10)$.
- (b) How can you interpret your result?

Exercise 2: Convex hull approximation

We consider *convex hull reachability analysis*, i.e., forward analysis with convex hull approximation.

- (a) Provide an LHA \mathcal{H}_1 where convex hull reachability analysis is exact.
- (b) Provide an LHA \mathcal{H}_2 where convex hull reachability analysis is too approximative.

Hint: You need to add a specification which holds for \mathcal{H}_2 but which cannot be shown using the convex hull approximation.

For instance, introduce an error location $\ell_{\rm err}$ such that $(\ell_{\rm err}, \nu)$ is unreachable for any ν . The (safety) specification is then the unreachability of $(\ell_{\rm err}, \nu)$.

- (c) Provide an LHA \mathcal{H}_3 where standard forward reachability analysis does not terminate but convex hull reachability analysis does.
- (d) Provide an LHA \mathcal{H}_4 where convex hull reachability analysis does not terminate.

Whenever you provide an example, give a short argument why it works. Note: Not all of these exercises are simple.