
Formal Methods for Java
Lecture 3: Operational Semantics (Part 2)

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

May 3, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 1 / 12



Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (heap and local variables).

Act is the executed code.

Idea from: D. v. Oheimb, T. Nipkow, Machine-checking the Java
specification: Proving type-safety, 1999

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 2 / 12



State of a Java Program

The state of a Java program gives valuations local and global (heap)
variables.

Q = Heap × Local

Heap = Address → Class × seq Value

Local = Identifier → Value

Value = Z,Address ⊆ Z
A state is denoted as (heap, lcl), where heap : Heap and lcl : Local .

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 3 / 12



Actions of a Java Program

An action of a Java Program is either

the evaluation of an expression e to a value v , denoted as e . v , or

a Java statement, or

a Java code block.

Note that expressions with side-effects can modify the current state

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 4 / 12



Rules

Definition (Inference Rules)

A rule of inference
F1 . . .Fn

G
, where . . .

is a decidable relation between formulae. The formulae F1, . . . ,Fn are
called the premises of the rule and G is called the conclusion.
If n = 0 the rule is called an axiom schema. In this case the bar may be
omitted.

The intuition of a rule is that if all premises hold, the conclusion also holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 5 / 12



Rules for Java Expressions

axiom for evaluating local variables:

(heap, lcl)
x.lcl(x)−−−−−→ (heap, lcl)

axiom for evaluating constants:

(heap, lcl) c.c−−−→ (heap, lcl)

rule for field access:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl)
e.fld.heap′(v)(idx)−−−−−−−−−−−−→ (heap′, lcl ′)

,
where idx is the index
of the field fld in the
object heap′(v)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 6 / 12



Rules for Assignment Expressions

rule for assignment to local:

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) x=e.v−−−−−→ (heap′, lcl ′ ⊕ {x 7→ v})

rule for assignment to field:

(heap1, lcl1) e1.v1−−−−→ (heap2, lcl2)
(heap2, lcl2) e2.v2−−−−→ (heap3, lcl3)

(heap1, lcl1) e1.fld=e2.v2−−−−−−−−→ (heap4, lcl3)
,

where heap4 = heap3 ⊕ {(v1, idx) 7→ v2} and idx is the index of the field
fld in the object at heap3(v1).

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 7 / 12



Rules for Java Statements

expression statement (assignment or method call):

(heap, lcl) e.v−−−→ (heap′, lcl ′)

(heap, lcl) e;−−→ (heap′, lcl ′)

sequence of statements:

(heap1, lcl1) s1−−→ (heap2, lcl2) (heap2, lcl2) s2−−→ (heap3, lcl3)

(heap1, lcl1) s1 s2−−−→ (heap3, lcl3)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 8 / 12



Rules for Java Statements

if statement:

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) s1−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) s1elses2−−−−−−−−→ (heap3, lcl3)

,where v 6= 0

(heap1, lcl1) e.v−−−→ (heap2, lcl2) (heap2, lcl2) s2−−→ (heap3, lcl3)

(heap1, lcl1)
if(e) s1elses2−−−−−−−−→ (heap3, lcl3)

,where v = 0

while statement:

(heap1, lcl1)
if(e){s while(e) s}−−−−−−−−−−−−→ (heap2, lcl2)

(heap1, lcl1)
while(e) s−−−−−−→ (heap2, lcl2)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 9 / 12



Rule for Java Method Call

(heap1, lcl1) e.v−−−→ (heap2, lcl2)
(heap2, lcl2) e1.v1−−−−→ (heap3, lcl3)

...
(heapn+1, lcln+1) en.vn−−−−→ (heapn+2, lcln+2)

(heapn+2,mlcl) body−−−−→ (heapn+3,mlcl ′)

(heap1, lcl1)
e.m(e1,...,en).mlcl ′(\result)−−−−−−−−−−−−−−−−−→ (heapn+3, lcln+2)

,

where body is the body of the method m in the object heapn+2(v), and
mlcl = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn} where
param1, . . . , paramn are the names of the parameters of m

The value \result is written by the return statement using the rule

(heap1, lcl1) e.v−−−→ (heap2, lcl2)

(heap1, lcl1) return e−−−−−→ (heap2, lcl2 ⊕ {\result 7→ v})

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 10 / 12



Example: Method Call

public class C
public int factorial(int n) {
if (n == 0)

return 1;
else

return n * this.factorial(n-1);
} }

Start state: (h, l), where l(this) is an object of class C

We show
(h, l)

this.factorial(0).1−−−−−−−−−−−→ (h, l)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 11 / 12



Example: Method Call

Let ml = {this 7→ l(this), n 7→ 0}. Then,

(h,ml) n.0−−−→ (h,ml)

(h,ml) 0.0−−−→ (h,ml)

(h,ml) n==0.1−−−−−−→ (h,ml)

(h,ml) 1.1−−−→ (h,ml)

(h,ml) return 1;−−−−−−→ (h,ml ⊕ {\result 7→ 1})
(h,ml)

if (n==0) return 1;else...−−−−−−−−−−−−−−−−→ (h,ml ⊕ {\result 7→ 1})

(h, l)
this.l(this)−−−−−−−→ (h, l)

(h, l) 0.0−−−→ (h, l)

(h,ml)
if (n==0) return 1;else...−−−−−−−−−−−−−−−−→ (h,ml)

(h, l)
this.factorial(0).1−−−−−−−−−−−→ (h, l)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 3, 2017 12 / 12


