Formal Methods for Java
Lecture 4: Semantics of JML

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

May 8, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017

1/11

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where

@ @ is a set of states,

@ Act a set of actions,

o —C @ x Act x @ the transition relation.

o @ reflects the current dynamic state (heap and local variables).

@ Act is the executed code or expressions.

e g—=Y% ¢’ means that in
state g the expression e is evaluated to v and the side-effects change
the state to q’.

o g5 ¢’ means that in state g the statement st is executable and

changes the state to ¢'.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 2/11

Creating Objects

Creating an Object is always combined with the call of a constructor:

heap; = heap U {na — (Type, (0,...,0))
(heaps, Icl) na.<init>(er,.en)ov (heap’, Icl")

(heap, Icl) new Type(ei,....en)>na (heap', Icl")

, where na ¢ dom heap

Here <init> stands for the internal name of the constructor.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 3/11

Exceptions and Control Flow

To handle exceptions a few changes are necessary:

@ We extend the state by a flow component:
Q = Flow x Heap x Local

@ Flow ::= Norm|Ret|Exc{{Address))

We use the identifiers flow € Flow, heap € Heap and Icl € Local in the
rules. Also g € Q stands for an arbitrary state.

The following axioms state that in an abnormal state statements are not
executed:

(flow, heap, Icl) 2% (flow, heap, Icl), where flow # Norm

(flow, heap, Icl) = (flow, heap, Icl), where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 4/11

Expressions With Exceptions

The previously defined rules are valid only if the left-hand-state is not an
exception state.

e1bvy D>Vvo /

q q q

61*62I>(V1-V2) mod 232 q/

(Norm, heap, Icl)

(Norm, heap, Icl)

(Norm, heap, Icl) =%+ q q -2+ ¢’

(Norm, heap, Icl) 2252 o/
(Norm, heap, Icl) =% q g -+ q'

(Norm, heap, lcl) ~(e)sielsesz , o

, where v # 0

Note that exceptions are propagated using the axiom from the last slide.

(flow, heap, Icl) —==% (flow, heap, Icl), where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 5/11

Throwing Exceptions

(Norm, heap, Icl) =% (Norm, heap', Icl’)

(Norm, heap, lcl) W ety (Exc(v), heap!, Icl’)

What happens if in a field access the object is null?

(Norm, heap, Icl) <22 ¢
s throw new NullPointerException() .

o ,Where v is some arbitrary value
(Norm, heap, Icl) =Y g

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 6 /11

Complete Rules for throw

(Norm, heap, Icl) —=% (Norm, heap', Icl’)

throw e;

, where v # 0
(Norm, heap, lcl) == (Exc(v), heap’, Icl")

el>0

(Norm, heap, Icl) === ¢

; throw new NullPointerException() q//

7

(Norm, heap, lcl) —throwe:, o

(Norm, heap, lcl) =25 (flow’, heap', Icl”)

(Norm, heap, Icl) ey (flow!, heap', Icl’)

, where flow’ # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017

7/11

Catching Exceptions

Catching an exception:

(Norm, heap, Icl) =15 (Exc(v), heap', Icl")
(Norm, heap', Icl" U {ex — v}) -2 q"
(Norm, heap, /C/) try sicatch(Type ex)s, q//

, where v is an instance of Type

No exception caught:

where flow' is not
(Norm, h, 1) =% (flow’, h', I") Exc(v) or v is

(Norm, h, [) —rysicateh(Type e)s2, o,/ v /) * not an instance of

Type

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 8 /11

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, Icl) —=% (Norm, heap', Icl’)
(Norm, heap, Icl) ™€ (Ret, heap', I’ ® {\result — v})

But evaluating e can also throw exception:

(Norm, heap, Icl) —=% (flow, heap’, Icl")
(Norm, heap, Icl) "™ (flow, heap', Icl")

, where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 9/11

Method Call (Normal Case)

(Norm, hy, i) =% @»

>

en>
qn+1 —nﬁ% (fn+27 hn+2a /n+2)

(fas2, Bngo, ml) 22 (Ret, hpis, ml')

(Norm, hy, /1) e.m(ey,...,en)>ml’(\result) (Norm, heapp3, /n+2)

)

where paramy, ..., param, are the names of the parameters and body is
the body of the method m in the object heap,i2(v), and
ml = {this — v, paramy — vi, ..., param, — v, }

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 10 / 11

Method Call With Exception

(Norm, hy, i) =% @»

>

en>
qn+1 —nﬁ% (fn+27 hn+2a /n+2)

(frs2, hnso, ml) =229 (Exc(ve), hnis, ml')

(Norm, h]_, ll) e.m(e1,4..,en)l>ml’(\result) (EXC(Ve), heapn+3, /n+2)’

where paramy, ..., param, are the names of the parameters and body is
the body of the method m in the object heap,i2(v), and
ml = {this — v, paramy — vi, ..., param, — v, }

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 8, 2017 1 /11

