
Formal Methods for Java
Lecture 7: JML and Abstract Data Types

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

May 17, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 1 / 28

The Java Modelling Language (JML)

JML is a behavioral interface specification language (BISL) for Java

Proposed by G. Leavens, A. Baker, C. Ruby:
JML: A Notation for Detailed Design, 1999

It combines ideas from two approaches:

Eiffel with it’s built-in language for Design by Contract (DBC)
Larch/C++ a BISL for C++

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 2 / 28

The Roots of JML

Ideas from Eiffel:

Executable pre- and post-condition (for runtime checking)
Uses Java syntax (with a few extensions).
Operator \old to refer to the pre-state in the post-condition.

Ideas from Larch:

Describe the state transformation behavior of a method
Model Abstract Data Types (ADT)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 3 / 28

JML and Abstract Data Types

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 4 / 28

Running Example: A priority queue

Timer Priority queue

Subsystem

Subsystem

Subsystem

1st

Subsystems request timer events and queue them.

First timer event is passed to the timer.

Priority queue maintains events in its internal data structure.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 5 / 28

Interface for Priority Queue

public interface PriorityQueue {

public void enqueue(Comparable o);

public Comparable removeFirst();

public boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 6 / 28

Adding (Incomplete) Specification

public interface PriorityQueue {

/*@ public normal_behavior
@ ensures !isEmpty();
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@*/

public Comparable removeFirst();

public /*@pure@*/ boolean isEmpty();

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 7 / 28

Why is Specification Incomplete?

The specification allows undesired things.

After removeFirst() new value of isEmpty() is undefined.

In a correct implementation, after two enqueue() and one
removeFirst() list is not empty.
Specification does not say so.

Problem: the internal state is not visible in spec.

There is no internal state in an interface!

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 8 / 28

Why is Specification Incomplete?

The specification allows undesired things.

After removeFirst() new value of isEmpty() is undefined.

In a correct implementation, after two enqueue() and one
removeFirst() list is not empty.
Specification does not say so.

Problem: the internal state is not visible in spec.

There is no internal state in an interface!

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 8 / 28

Why is Specification Incomplete?

The specification allows undesired things.

After removeFirst() new value of isEmpty() is undefined.

In a correct implementation, after two enqueue() and one
removeFirst() list is not empty.
Specification does not say so.

Problem: the internal state is not visible in spec.

There is no internal state in an interface!

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 8 / 28

Why is Specification Incomplete?

The specification allows undesired things.

After removeFirst() new value of isEmpty() is undefined.

In a correct implementation, after two enqueue() and one
removeFirst() list is not empty.
Specification does not say so.

Problem: the internal state is not visible in spec.

There is no internal state in an interface!

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 8 / 28

Adding Model Variables

Solution: add a model variable that records the size.

public interface PriorityQueue {
//@ public instance model int size;

//@ public invariant size >= 0;

/*@ public normal_behavior
@ ensures size == \old(size) + 1;
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures size == \old(size) - 1;
@*/

public Comparable removeFirst();

/*@ public normal_behavior
@ ensures \result == (size == 0);
@*/

public /*@pure@*/ boolean isEmpty();
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 9 / 28

Model Variables

//@ public instance model int size;

The keyword instance is the opposite of static.

The keyword model denotes a variable that only exists in the
specification.

Public model variables can be accessed by other classes.

Only specification can access model variables (read-only).

If a model variable is accessed in code, the compiler complains.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 10 / 28

Model Variables

//@ public instance model int size;

The keyword instance is the opposite of static.

The keyword model denotes a variable that only exists in the
specification.

Public model variables can be accessed by other classes.

Only specification can access model variables (read-only).

If a model variable is accessed in code, the compiler complains.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 10 / 28

Model Variables

//@ public instance model int size;

The keyword instance is the opposite of static.

The keyword model denotes a variable that only exists in the
specification.

Public model variables can be accessed by other classes.

Only specification can access model variables (read-only).

If a model variable is accessed in code, the compiler complains.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 10 / 28

Model Variables

//@ public instance model int size;

The keyword instance is the opposite of static.

The keyword model denotes a variable that only exists in the
specification.

Public model variables can be accessed by other classes.

Only specification can access model variables (read-only).

If a model variable is accessed in code, the compiler complains.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 10 / 28

Visibility in JML

//@ public instance model int size;
...
/*@ public normal_behavior
@ ensures \result == (size == 0);
@*/

public /*@pure@*/ boolean isEmpty();

Why is size public?

The external interface must be public.

The specification is part of the interface.

To understand the specification one needs to know about size.

Therefore, size is public.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 11 / 28

Visibility in JML

//@ public instance model int size;
...
/*@ public normal_behavior
@ ensures \result == (size == 0);
@*/

public /*@pure@*/ boolean isEmpty();

Why is size public?

The external interface must be public.

The specification is part of the interface.

To understand the specification one needs to know about size.

Therefore, size is public.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 11 / 28

Visibility in JML

//@ public instance model int size;
...
/*@ public normal_behavior
@ ensures \result == (size == 0);
@*/

public /*@pure@*/ boolean isEmpty();

Why is size public?

The external interface must be public.

The specification is part of the interface.

To understand the specification one needs to know about size.

Therefore, size is public.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 11 / 28

Visibility in JML

//@ public instance model int size;
...
/*@ public normal_behavior
@ ensures \result == (size == 0);
@*/

public /*@pure@*/ boolean isEmpty();

Why is size public?

The external interface must be public.

The specification is part of the interface.

To understand the specification one needs to know about size.

Therefore, size is public.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 11 / 28

Implementing the Specification

public class Heap implements PriorityQueue {
private Comparable[] elems;
private int numElems;

public void enqueue(Comparable o) {
elems[numElems++] = o;
...

}

public Comparable removeFirst() {
...
return elems[--numElems];

}

public isEmpty() {
return numElems == 0;

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 12 / 28

Implementing the Specification

public class Heap implements PriorityQueue {
private Comparable[] elems;
private int numElems;

//@ private represents size <- numElems;

public void enqueue(Comparable o) {
elems[numElems++] = o;
...

}

public Comparable removeFirst() {
...
return elems[--numElems];

}

public isEmpty() {
return numElems == 0;

}
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 12 / 28

Representing Model variables

Every model variable in a concrete class must be represented:
//@ private represents size <- numElems;

The expression can also call pure functions:
//@ private represents size <- computeSize();

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 13 / 28

Representing Model variables

Every model variable in a concrete class must be represented:
//@ private represents size <- numElems;

The expression can also call pure functions:
//@ private represents size <- computeSize();

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 13 / 28

How to Model Internal Structure?

Specification is still incomplete.

Which values are returned by removeFirst()?

We need a model variable representing the queue.

JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 14 / 28

How to Model Internal Structure?

Specification is still incomplete.

Which values are returned by removeFirst()?

We need a model variable representing the queue.

JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 14 / 28

How to Model Internal Structure?

Specification is still incomplete.

Which values are returned by removeFirst()?

We need a model variable representing the queue.

JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 14 / 28

How to Model Internal Structure?

Specification is still incomplete.

Which values are returned by removeFirst()?

We need a model variable representing the queue.

JML defines useful types to model complex data structures.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 14 / 28

The JML Collection Classes

JML defines its own collection classes for several reasons

They were introduced before Java had its own collection classes.

They are functional and have no side-effects.

They are pure and can be used in specifications.

They distinguish more cleanly between objects and values.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 15 / 28

org.jmlspecs.models.JMLCollection

The base interface is org.jmlspecs.models.JMLCollection.

Similar to java.util.Collection.

Method size() returns the size of the collection.

Method iterator() returns an iterator.

Containment check is implemented by has().

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 16 / 28

The Collection Classes

http://www.cs.iastate.edu/~leavens/JML-release/javadocs/

org/jmlspecs/models/package-summary.html

The collection classes are

JMLxxxBag: corresponds to java.util.Collection.

JMLxxxSet: corresponds to java.util.Set.

JMLxxxSequence: corresponds to java.util.List.

JMLxxxToxxxRelation: corresponds to java.util.Map.

The xxx is one of

Object to denote that elements are compared with ==.

Equals to denote that elements are compared with equals().

Value to denote that elements are compared with equals() and are
cloned before they are stored.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 17 / 28

http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html
http://www.cs.iastate.edu/~leavens/JML-release/javadocs/org/jmlspecs/models/package-summary.html

Running Example: Model for Internal Structure

//@ model import org.jmlspecs.models.JMLObjectBag;
public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ public normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ modifies queue;
@*/

public void enqueue(Comparable o);

/*@ public normal_behavior
@ requires !isEmpty();
@ ensures \old(queue).has(\result)
@ && queue.equals(\old(queue).remove(\result))
@ && (\forall java.lang.Comparable o;
@ queue.has(o); \result.compareTo(o) <= 0);
@ modifies queue;
@*/

public Comparable removeFirst();

/*@ public normal_behavior
@ ensures \result == (queue.isEmpty());
@*/

public /*@pure@*/ boolean isEmpty();
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 18 / 28

How Does It Work?

For objects, e.g., \old(this) == this, since \old(this) is the old pointer
not the old content of the object.

Why does it work as expected with \old(queue)?

JMLObjectBag is immutable

The insert method is declared as
public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem)

Compare this to the add method of List:
public void add(/*@nullable@*/ Object elem)

insert returns a reference to a new larger list.

The content of \old(queue) never changes, but queue changes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 19 / 28

How Does It Work?

For objects, e.g., \old(this) == this, since \old(this) is the old pointer
not the old content of the object.

Why does it work as expected with \old(queue)?

JMLObjectBag is immutable

The insert method is declared as
public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem)

Compare this to the add method of List:
public void add(/*@nullable@*/ Object elem)

insert returns a reference to a new larger list.

The content of \old(queue) never changes, but queue changes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 19 / 28

How Does It Work?

For objects, e.g., \old(this) == this, since \old(this) is the old pointer
not the old content of the object.

Why does it work as expected with \old(queue)?

JMLObjectBag is immutable

The insert method is declared as
public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem)

Compare this to the add method of List:
public void add(/*@nullable@*/ Object elem)

insert returns a reference to a new larger list.

The content of \old(queue) never changes, but queue changes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 19 / 28

How Does It Work?

For objects, e.g., \old(this) == this, since \old(this) is the old pointer
not the old content of the object.

Why does it work as expected with \old(queue)?

JMLObjectBag is immutable

The insert method is declared as
public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem)

Compare this to the add method of List:
public void add(/*@nullable@*/ Object elem)

insert returns a reference to a new larger list.

The content of \old(queue) never changes, but queue changes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 19 / 28

How Does It Work?

For objects, e.g., \old(this) == this, since \old(this) is the old pointer
not the old content of the object.

Why does it work as expected with \old(queue)?

JMLObjectBag is immutable

The insert method is declared as
public /*@pure@*/ JMLObjectBag insert(/*@nullable@*/ Object elem)

Compare this to the add method of List:
public void add(/*@nullable@*/ Object elem)

insert returns a reference to a new larger list.

The content of \old(queue) never changes, but queue changes.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 19 / 28

Representing by a Pure Function

import org.jmlspecs.models.JMLObjectBag;
public class Heap implements PriorityQueue {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

//@ private represents queue <- computeQueue();

private /*@pure@*/ JMLObjectBag computeQueue() {
JMLObjectBag bag = new JMLObjectBag();
for (int i = 0; i < numElems; i++) {
bag = bag.insert(elems[i]);

}
return bag;

}

...
}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 20 / 28

Representing by a Ghost Variable

import org.jmlspecs.models.JMLObjectBag;
public class Heap implements PriorityQueue {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

//@ private ghost JMLObjectBag ghostQueue; in queue;
//@ private represents queue <- ghostQueue;

public void enqueue(Comparable o) {
//@ set ghostQueue = ghostQueue.insert(o);
...

}

public Comparable removeFirst() {
...
//@set ghostQueue = ghostQueue.remove(first);
return first;

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 21 / 28

The assignable Problem

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@*/

public void enqueue(/*@non_null@*/ Comparable o);
...

When compiling it, it produced a warning:

>jmlc -Q PriorityQueue.java

File "PriorityQueue.java", line 7, character 24 caution:

A heavyweight specification case for a non-pure method

has no assignable clause [JML]

Lets add a assignable clause.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 22 / 28

The assignable Problem

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@*/

public void enqueue(/*@non_null@*/ Comparable o);
...

When compiling it, it produced a warning:

>jmlc -Q PriorityQueue.java

File "PriorityQueue.java", line 7, character 24 caution:

A heavyweight specification case for a non-pure method

has no assignable clause [JML]

Lets add a assignable clause.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 22 / 28

Adding assignable.

What does the function enqueue change?

It changes the model variable queue and nothing else.

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ assignable queue;
@*/

public void enqueue(/*@non_null@*/ Comparable o);
...

However, when compiling Heap.java:

File "Heap.java", line 50, character 29 error: Field "numElems"

is not assignable by method "Heap.enqueue(java.lang.Comparable)";

only fields and fields of data groups in set "{queue}" are

assignable [JML]

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 23 / 28

Adding assignable.

What does the function enqueue change?
It changes the model variable queue and nothing else.

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ assignable queue;
@*/

public void enqueue(/*@non_null@*/ Comparable o);
...

However, when compiling Heap.java:

File "Heap.java", line 50, character 29 error: Field "numElems"

is not assignable by method "Heap.enqueue(java.lang.Comparable)";

only fields and fields of data groups in set "{queue}" are

assignable [JML]

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 23 / 28

Adding assignable.

What does the function enqueue change?
It changes the model variable queue and nothing else.

//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue;

/*@ normal_behavior
@ ensures queue.equals(\old(queue).insert(o));
@ assignable queue;
@*/

public void enqueue(/*@non_null@*/ Comparable o);
...

However, when compiling Heap.java:

File "Heap.java", line 50, character 29 error: Field "numElems"

is not assignable by method "Heap.enqueue(java.lang.Comparable)";

only fields and fields of data groups in set "{queue}" are

assignable [JML]

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 23 / 28

Mapping Variables To Model Variables.

We have to tell JML that elem and numElems are the implementation of the
model variable queue.
There is a special JML syntax:
import org.jmlspecs.models.JMLObjectBag;

public class Heap implements PriorityQueue {
private Comparable[] elems; //@ in queue;
private int numElems; //@ in queue;

/*@ private represents queue <- computeQueue(); @*/
...

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 24 / 28

Datagroups

Every model variable forms a data group.

Other variables in the class or in sub-classes can be associated with
this data group.

Functions with specification assignable queue, where queue is a
datagroup, may modify any variable in this group.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 25 / 28

More About Datagroups

There is a special data group objectState, which should represent the
object state.

All variables should be added to this group (but they are rarely).

Adding a datagroup to another datagroup works recursively:
//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue; //@ in objectState;

After this change numElems and elems are also automatically contained
in objectState.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 26 / 28

More About Datagroups

There is a special data group objectState, which should represent the
object state.

All variables should be added to this group (but they are rarely).

Adding a datagroup to another datagroup works recursively:
//@ model import org.jmlspecs.models.JMLObjectBag;

public interface PriorityQueue {
//@ public instance model JMLObjectBag queue; //@ in objectState;

After this change numElems and elems are also automatically contained
in objectState.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 26 / 28

Datagroups Group Data

Datagroups are useful to group variables.
class Calendar {
//@ model JMLDataGroup datetime; in objectState;
//@ model JMLDataGroup time, date; in datetime;
int day,month,year; //@ in date;
int hour,min,sec; //@ in time;
int timezone; //@ in objectState;
Locale locale; //@ in objectState;

...
//@ assignable datetime;
void setDate(Date date);

//@ assignable timezone;
void setTimeZone();

This avoids listing the variables again.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 27 / 28

Datagroups and Visibility

Datagroups and model variables are useful for visibility issues:
class Tree {
//@ public model JMLDataGroup content; in objectState

private Node rootNode; //@ in content

//@ assignable content;
public void insert(Object o);

Using assignable rootNode would produce an error.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 17, 2017 28 / 28

