Formal Methods for Java Lecture 12: Soundness of Sequent Calculus

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

June 12, 2017

Jochen Hoenicke (Software Engineering)

Formal Methods for Java

June 12, 2017 1 / 16

The Kry-Project

- Developed at University of Karlsruhe
- http://www.key-project.org/.
- Interactive Theorem Prover
- Theory specialized for Java(Card).
- Can generate proof-obligations from JML specification.
- Underlying theory: Sequent Calculus + Dynamic Logic
- Proofs are given manually.

Definition (Sequent)

A sequent is a formula

$$\phi_1,\ldots,\phi_n \Longrightarrow \psi_1,\ldots,\psi_m$$

where ϕ_i, ψ_i are formulae. The meaning of this formula is:

$$\phi_1 \wedge \ldots \wedge \phi_n \to \psi_1 \vee \ldots \vee \psi_m$$

Jochen Hoenicke (Software Engineering)

Sequent Calculus Logical Rules

$$\begin{array}{lll} \mbox{close: } \Gamma, \phi \Longrightarrow \Delta, \phi \\ \mbox{false: } \Gamma, \mbox{false} \Longrightarrow \Delta & \mbox{true: } \Gamma \Longrightarrow \Delta, \mbox{true} \\ \mbox{not-left: } & \frac{\Gamma \Longrightarrow \Delta, \phi}{\Gamma, \neg \phi \Longrightarrow \Delta} & \mbox{not-right: } & \frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta, \neg \phi} \\ \mbox{and-left: } & \frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta} & \mbox{and-right: } & \frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \land \psi} \\ \mbox{or-left: } & \frac{\Gamma, \phi \Longrightarrow \Delta \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \lor \psi \Longrightarrow \Delta} & \mbox{or-right: } & \frac{\Gamma \Longrightarrow \Delta, \phi \land \psi}{\Gamma \Longrightarrow \Delta, \phi \lor \psi} \\ \mbox{impl-left: } & \frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta} & \mbox{impl-right: } & \frac{\Gamma, \phi \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \to \psi} \\ \end{array}$$

Sequent Calculus Quantifier

The rules for the existential quantifier are dual:

Rules for equality

eq-close:
$$\Gamma \Longrightarrow \Delta, t = t$$

apply-eq: $\frac{s = t, \Gamma[t/s] \Longrightarrow \Delta[t/s]}{s = t, \Gamma \Longrightarrow \Delta}$

Theorem (Soundness and Completeness)

The sequent calculus with the rules presented on the previous three slides is sound and complete

- Soundness: Only true facts can be proven with the calculus.
- Completeness: Every true fact can be proven with the calculus.

Signature

A signature defines the constants, functions and predicates that can occur in a formula.

Definition (Signature)

A signature Sig = (Func, Pred) is a tuple of sets of function and predicate symbols, where

- $f/k \in Func$ if f is a function symbol with k parameters,
- $p/k \in Pred$ if p is a predicate symbol with k parameters.

A constant $c/0 \in Func$ is a function without parameters. We assume there are infinitely many constants.

Structures

A structure gives a meaning to the constants, functions and predicates.

Definition (Structure)

A structure M is a tuple (D, I). The domain D is an arbitrary non-empty set. The interpretation I assigns to

• each function symbol $f/k \in Func$ of arity k a function

 $\mathcal{I}(f):\mathcal{D}^k\to\mathcal{D}$

• and each predicate symbol $p/k \in Pred$ of arity k a function

 $\mathcal{I}(p): \mathcal{D}^k \to \{$ true, false $\}.$

The interpretation $\mathcal{I}(c)$ of a constant $c/0 \in Func$ is an element of \mathcal{D} .

Let $\mathcal{M} = (\mathcal{D}, \mathcal{I})$, *c* a constant and $d \in \mathcal{D}$. With $\mathcal{M}[c := d]$ we denote the structure $(\mathcal{D}, \mathcal{I}')$, where $\mathcal{I}'(c) = d$ and $\mathcal{I}'(f) = \mathcal{I}(f)$ for all other function symbols *f* and $\mathcal{I}'(p) = \mathcal{I}(p)$ for all predicate symbols *p*.

Jochen Hoenicke (Software Engineering)

Formal Methods for Java

Semantics of Terms and Formulas

Let $\mathcal{M} = (\mathcal{D}, \mathcal{I})$ be a structure. The semantics $\mathcal{M}[\![t]\!]$ of a term t is defined inductively by $\mathcal{M}[\![f(t_1, \ldots, t_k)]\!] = \mathcal{I}(f)(\mathcal{M}[\![t_1]\!], \ldots, \mathcal{M}[\![t_k]\!])$, in particular $\mathcal{M}[\![c]\!] = \mathcal{I}(c)$.

The semantics of formula ϕ , $\mathcal{M}[\![\phi]\!] \in \{\mathbf{true}, \mathbf{false}\}$, is defined by

- M[[p(t₁,...,t_k)]] = I(p)(M[[t₁]],...,M[[t_k]]).
 M[[s = t]] = true, iff M[[s]] = M[[t]].
 M[[φ ∧ ψ]] = {true if M[[φ]] = true and M[[ψ]] = true, false otherwise.
 M[[φ ∨ ψ]], M[[φ → ψ]], and M[[¬φ]], analogously.
 M[[∀X φ(X)]] = true, iff for all d ∈ D: M[x₀ := d][[φ(x₀)]] = true, where x₀ is a constant not occuring in φ.
 M[[∃X φ(X)]] = true, iff there is some d ∈ D with
 - $\mathcal{M}[x_0 := d][[\phi(x_0)]] =$ true, where x_0 is a constant not occuring in ϕ .

Jochen Hoenicke (Software Engineering)

Definition (Model)

A structure \mathcal{M} is a model of a sequent $\phi_1, \ldots, \phi_n \Longrightarrow \psi_1, \ldots, \psi_m$ if $\mathcal{M}\llbracket \phi_i \rrbracket =$ false for some $1 \le i \le n$, or if $\mathcal{M}\llbracket \psi_j \rrbracket =$ true for some $1 \le j \le m$. We say that the sequent holds in \mathcal{M} . A sequent $\phi_1, \ldots, \phi_n \Longrightarrow \psi_1, \ldots, \psi_m$ is a tautology, if all structures are models of this sequent.

Definition (Soundness)

A calculus is sound, iff every formula F for which a proof exists is a tautology.

- We write $\vdash F$ to indicate that a proof for F exists.
- We write $\models F$ to indicate that F is a tautology.

Definition (Soundness of a rule)

A rule $\frac{F_1 \cdots F_n}{G}$ is sound, iff

$$\models$$
 F_1 and ... and \models F_n imply \models G .

An axiom G is sound, iff G is a tautology, i.e., $\models G$.

Lemma

A calculus is sound, if all of its rules and axioms are sound.

Proof.

By structural induction over the proof.

Soundness of impl-left

The rule

$$\frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta}$$

is sound:

Assume $\Gamma \Longrightarrow \Delta, \phi$ and $\Gamma, \psi \Longrightarrow \Delta$ are tautologies and \mathcal{M} is an arbitrary structure. Prove that $F := (\Gamma, \phi \to \psi \Longrightarrow \Delta)$ holds in \mathcal{M} .

- If one of the formulas in Γ is **false** in \mathcal{M} , then F holds in \mathcal{M} .
- Otherwise, from $\Gamma \Longrightarrow \Delta, \phi$ it follows that ϕ or a formula in Δ is **true**.
- If $\mathcal{M}\llbracket\phi\rrbracket =$ true and $\mathcal{M}\llbracket\psi\rrbracket =$ false, then $\mathcal{M}\llbracket\phi \to \psi\rrbracket =$ false. Hence, F holds in \mathcal{M} .
- If $\mathcal{M}\llbracket \phi \rrbracket =$ true and $\mathcal{M}\llbracket \psi \rrbracket =$ true, then $\Gamma, \psi \Longrightarrow \Delta$ implies that a formula in Δ is true.
- If a formula in Δ is **true**, *F* holds in \mathcal{M} .

Soundness of exists-left

exists-left: $\frac{\Gamma, \phi(x_0) \Longrightarrow \Delta}{\Gamma, \exists X \ \phi(X) \Longrightarrow \Delta}$, where x_0 is a fresh identifier (constant).

Assume $\Gamma, \phi(x_0) \Longrightarrow \Delta$ is a tautology, where x_0 does not occur in Γ nor Δ . Given an arbitrary structure \mathcal{M} , prove that $F := (\Gamma, \exists X \ \phi(X) \Longrightarrow \Delta)$ holds in \mathcal{M} .

- If one of the formulas in Γ is **false** in \mathcal{M} , then F holds.
- If $\mathcal{M}[\![\exists X \ \phi(X)]\!] =$ **false**, then F holds in \mathcal{M} .
- Otherwise, there is a $d \in \mathcal{D}$ such that $\mathcal{M}[x_0 := d]\llbracket \phi(x_0) \rrbracket =$ true.
- Also in M[x₀ := d], all formulas in Γ are true. Since Γ, φ(x₀) ⇒ Δ is a tautology, some formula of Δ is true in M[x₀ := d].
- Since x₀ does not occur in Δ, the formula is also true in the structure M. Therefore F holds in M.

Theorem (Completeness)

If a sequent F is a tautology, it can be proven.

In this lecture we do not prove completeness.