
Formal Methods for Java
Lecture 5: Semantics of JML

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

May 10, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 1 / 16

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q,Act,→), where

Q is a set of states,

Act a set of actions,

→⊆ Q × Act × Q the transition relation.

Q reflects the current dynamic state (flow, heap and local variables).

Act is the executed code or expressions.

q e.v−−−→ q′ means that in
state q the expression e is evaluated to v and the side-effects change the state to q′.

q st−−→ q′ means that in state q the statement st is executable and changes the state to q′.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 2 / 16

Exceptions and Control Flow

Q = Flow × Heap × Local

Flow ::= Norm|Ret|Exc〈〈Address〉〉

The following axioms state that in an abnormal state statements are not executed:

(flow , heap, lcl) e.v−−−→ (flow , heap, lcl), where flow 6= Norm

(flow , heap, lcl) s−→ (flow , heap, lcl), where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 3 / 16

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, lcl) e.v−−−→ (Norm, heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (Ret, heap′, lcl ′ ⊕ {\result 7→ v})

But evaluating e can also throw exception:

(Norm, heap, lcl) e.v−−−→ (flow , heap′, lcl ′)

(Norm, heap, lcl) return e−−−−−→ (flow , heap′, lcl ′)
, where flow 6= Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 4 / 16

Method Call (Normal Case)

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Ret, hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Norm, heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is the body of the
method m in the object heapn+2(v), and ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 5 / 16

Method Call With Exception

(Norm, h1, l1) e.v−−−→ q2

q2
e1.v1−−−−→ q3

...
qn+1

en.vn−−−−→ (fn+2, hn+2, ln+2)

(fn+2, hn+2,ml) body−−−−→ (Exc(ve), hn+3,ml ′)

(Norm, h1, l1)
e.m(e1,...,en).ml ′(\result)−−−−−−−−−−−−−−−−→ (Exc(ve), heapn+3, ln+2)

,

where param1, . . . , paramn are the names of the parameters and body is the body of the
method m in the object heapn+2(v), and ml = {this 7→ v , param1 7→ v1, . . . , paramn 7→ vn}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 6 / 16

Example: Method Call

public class C
public int factorial(int n) {
if (n == 0)

return 1;
else

return n * this.factorial(n-1);
} }

Start state: (Norm, h, l), where l(this) is an object of class C

We show
(Norm, h, l)

this.factorial(0).1−−−−−−−−−−−→ (Norm, h, l)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 7 / 16

Example: Method Call

Let ml = {this 7→ l(this), n 7→ 0}. Then,

(N, h,ml) n.0−−−→ (N, h,ml)

(N, h,ml) 0.0−−−→ (N, h,ml)

(N, h,ml) n==0.1−−−−−−→ (N, h,ml)

(N, h,ml) 1.1−−−→ (N, h,ml)

(N, h,ml) return 1;−−−−−−→ (Ret, h,ml ⊕ {\result 7→ 1})
(N, h,ml)

if (n==0) return 1;else...−−−−−−−−−−−−−−−−→ (Ret, h,ml ⊕ {\result 7→ 1})

(N, h, l)
this.l(this)−−−−−−−→ (N, h, l)

(N, h, l) 0.0−−−→ (N, h, l)

(N, h,ml)
if (n==0) return 1;else...−−−−−−−−−−−−−−−−→ (Ret, h,ml)

(N, h, l)
this.factorial(0).1−−−−−−−−−−−→ (N, h, l)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 8 / 16

Example: Method Call (general proof)

We can even show by induction that for ml(n) ≥ 0

(N, h,ml)
if (n==0) ...−−−−−−−−−→ (Ret, h,ml ⊕ {\result 7→ (ml(n)! mod 232)})

Proof by induction over ml(n). Base case ml(n) = 0 was already shown.
Assume n > 0. Induction hypothesis: if ml ′(n) = ml(n)− 1, then

(N, h,ml ′)
if (n==0) ...−−−−−−−−−→ (Ret, h,ml ′ ⊕ {\result 7→ ((ml(n)− 1)! mod 232)}) (IH)

We first show that

(N, h,ml)
this.factorial(n−1).(ml(n)−1)! mod 232−−−−−−−−−−−−−−−−−−−−−−−−→ (N, h,ml)

Proof tree:

(N, h,ml)
this.ml(this)−−−−−−−−→ (N, h,ml)

(N, h,ml)
n.ml(n)−−−−−−→ (N, h,ml)

(N, h,ml) 1.1−−−→ (N, h,ml)

(N, h,ml)
n−1.ml(n)−1−−−−−−−−−→ (N, h,ml)

(IH)

(N, h,ml)
this.factorial(n−1).(ml(n)−1)! mod 232−−−−−−−−−−−−−−−−−−−−−−−−→ (N, h,ml) (∗)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 9 / 16

Example: Method Call (general proof, cont.)

Now we can prove the return statement correct.

(N, h,ml)
n.ml(n)−−−−−−→ (N, h,ml) (∗)

(N, h,ml)
n∗this.factorial(n−1).(ml(n)! mod 232)−−−−−−−−−−−−−−−−−−−−−−−−→ (N, h,ml)

(N, h,ml)
return n∗this.factorial(n−1);−−−−−−−−−−−−−−−−−−→ (Ret, h,ml ⊕ {\result 7→ (ml(n)! mod 232}) (∗∗)

Finally, prove the whole method body.

(N, h,ml)
n.ml(n)−−−−−−→ (N, h,ml) (N, h,ml) 0.0−−−→ (N, h,ml)

(N, h,ml) n==0.0−−−−−−→ (N, h,ml)
(∗∗)

(N, h,ml)
if (n==0) ...−−−−−−−−−→ (Ret, h,ml ⊕ {\result 7→ 1})

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 10 / 16

Semantics of Specification

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

Whenever the method is called with values that satisfy the requires-formula
and the method terminates normally
then the ensures-formula holds.

For all heap, heap′, lcl , lcl ′ if lcl(x) ≥ 0

and (Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),
then lcl ′(\result) ≤ Math.sqrt(lcl(x)) < lcl ′(\result) + 1 holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 11 / 16

Hoare Triples

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

The JML code above states partial correctness of the Hoare triple

{x ≥ 0}
body

{\result ≤ Math.sqrt(x) < \result + 1}

It also states total correctness, as we will see later.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 12 / 16

Post condition and input parameters

Is the following implementation correct?

/*@ requires x >= 0;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
x = 0;
return 0;

}

No, because JML always evaluates input parameters always in the pre-state!

For all heap, heap′, lcl , lcl ′ if lcl(x) ≥ 0

and (Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),
then lcl ′(\result) ≤ Math.sqrt(lcl(x)) < lcl ′(\result) + 1 holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 13 / 16

What About Exceptions?

/*@ requires true;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ signals (IllegalArgumentException) x < 0;
@ signals_only IllegalArgumentException;
@*/

public static int isqrt(int x) {
body

}

The signals_only specification denotes that for all transitions

(Norm, heap, lcl) body−−−−→ (Exc(v), heap′, lcl ′)

where lcl satisfies the precondition and v is an Exception, v must be of type
IllegalArgumentException.
The signals specification denotes that in that case lcl must satisfy x < 0.

The code is still allowed to throw an Error like a OutOfMemoryError or a ClassNotFoundError.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 14 / 16

Side-Effects

A method can change the heap in an unpredictable way.
The assignable clause restricts changes:

/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@*/

public static int isqrt(int x) {
body

}

For all executions of the method,

(Norm, heap, lcl) body−−−−→ (Ret, heap′, lcl ′),

if lcl(x) >= 0 then the formula

lcl ′(\result) <= Math.sqrt(lcl(x)) < lcl ′(\result + 1)

holds and heap ⊆ heap′.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 15 / 16

What is the meaning of a formula

A formula like x >= 0 is a Boolean Java expression. It can be evaluated with the operational
semantics.
x >= 0 holds in state (heap, lcl), iff

(Norm, heap, lcl) x >= 0.1−−−−−−→ (Norm, heap′, lcl ′)

An assertion may not have side-effects; it may create new objects, though, i.e., heap ⊆ heap′

and lcl = lcl ′.
For the ensures formula both the pre-state and the post-state are necessary to evaluate the
formula.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 16 / 16

