Formal Methods for Java
Lecture 5: Semantics of JML

Jochen Hoenicke

Software Engineering
— Albert-Ludwigs-University Freiburg

UNI
FREIBURG

May 10, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017

1/16

Operational Semantics for Java

Idea: define transition system for Java

Definition (Transition System)

A transition system (TS) is a structure TS = (Q, Act, —), where
@ @ is a set of states,
@ Act a set of actions,
o —C @ x Act x Q the transition relation.

o Q reflects the current dynamic state (flow, heap and local variables).
@ Act is the executed code or expressions.
o g% ¢’ means that in
state g the expression e is evaluated to v and the side-effects change the state to ¢'.
o g ¢’ means that in state g the statement st is executable and changes the state to ¢'.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 2/16

Exceptions and Control Flow

@ @ = Flow x Heap x Local
@ Flow ::= Norm|Ret|Exc({Address))

The following axioms state that in an abnormal state statements are not executed:
(flow, heap, Icl) =% (flow, heap, Icl), where flow # Norm

(flow, heap, Icl) = (flow, heap, Icl), where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 3/16

Return Statement

Return statement stores the value and signals the Ret in flow component:

(Norm, heap, Icl) —% (Norm, heap', Icl’)
(Norm, heap, Icl) €M™ (Ret, heap', Icl’ @ {\result — v})

But evaluating e can also throw exception:

(Norm, heap, Icl) —2% (flow, heap’, Icl")
(Norm, heap, Icl) €M™ € (flow, heap', Icl’)

, where flow # Norm

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017

4/16

Method Call (Normal Case)

(Norm, hy,) == q»

e1bv;
G g3

en>vn

dny1—— (fn+27 hnyo, /n+2)

(a2, hnt2, ml) 222 (Ret, by 3, ml')

(Norm, hl, /1) e.m(eq,...,en)>ml’(\result) (Norm, heap,,+3, In+2)

where paramy, ..., param, are the names of the parameters and body is the body of the
method m in the object heap,i2(v), and ml/ = {this — v, param; — vi, ..., param, — v,}

I

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 5/16

Method Call With Exception

(Norm, hy,) == q»

e1bv;
G g3

en>vn

dny1—— (fn+27 hnyo, /n+2)

(fos2, Bnso, ml) =225 (Exc(ve), hnys, ml')

(Norm7 h17 I]_) e.m(e1,...,en)l>ml’(\result) (EXC(Ve)’ heapn+3, In+2)’

where paramy, ..., param, are the names of the parameters and body is the body of the
method m in the object heap,i2(v), and ml/ = {this — v, param; — vi, ..., param, — v,}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 6 /16

Example: Method Call

public class C
public int factorial(int n) {

if (n == 0)
return 1;
else

return n * this. factorial(n-1);

3

Start state: (Norm, h, 1), where [(this) is an object of class C

We show ' '
(Norm, h, /) this.factorial(0)>1 (Norm, h, /)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 7/16

Example: Method Call

Let m/ = {this — I(this),n+— 0}. Then,

(N, h, ml) =% (N, h, ml)
(N, h,ml) 2% (N, h, ml) (N, h, ml) 2215 (N, h, ml)
(N, h,ml) ==L (N h.oml) (N, h,ml) 1 (Ret h, ml @ {\result — 1})

(N, h, ml) T {n==0) return Lielse-.., \pey h mi & {\result 1})

(N7 h, /) fhisbl(this) (N, h, /)
(N, b, 1) =22+ (N, h, 1)
if (n==0) return 1;else...
(N, h,ml) (Ret, h, ml)

(N, h, /) this.factorial(0)>1 (N, h, /)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017

8/ 16

Example: Method Call (general proof)
We can even show by induction that for m/(n) > 0

(N, h, ml) if (1==0) .., (Ret, h, ml & {\result — (ml(n)! mod 2%2)})

Proof by induction over m/(n). Base case m/(n) = 0 was already shown.
Assume n > 0. Induction hypothesis: if m/’(n) = ml(n) — 1, then

(N, h,ml") =29 -\ (Ret b ml' @& {\result — ((mI(n) — 1)! mod 232)})
We first show that
(N, h, ITI/) this.factorial(n—1)>(mi(n)—1)! mod 232 , (N, h, m/)

Proof tree:
(N h, /)"”’"—’”%(N h, ml)
o o (N, h, m/)%(N, h, ml)
(N, h, m/) this.factorial(n—1)>(ml(n)—1)! mod 232 (N, h, m/) (*)
Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017

(IH)

9/16

Example: Method Call (general proof, cont.)

Now we can prove the return statement correct.

(N, h,ml) =) (N b oml) (%)
(N, h, ml) nxthis.factorial(n—1)>(ml(n)! mod 232) (N, h, ml)

(N, h, ml) L& nxthis.factorial(n—1): (Ret, h, ml @ {\result — (ml(n)! mod 232}) (xx)

Finally, prove the whole method body.

(N, h, ml) =) (N homl) (N, b, ml) 225 (N, h, ml)
(N, h, ml) ==29, (N h, ml)

(N, b, ml) 220==9) -\ (Ret h ml & {\result — 1})

(%)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 10 / 16

Semantics of Specification

/*@ requires = >= 0;
@ ensures \result <= Math.sqrt(z) &5 Math.sqrt(z) < \result + 1;
ex/

public static int <sqrt(int z) {
body

}

Whenever the method is called with values that satisfy the requires-formula
and the method terminates normally
then the ensures-formula holds.

For all heap, heap', Icl, Icl" if Icl(x) > 0
and (Norm, heap, Icl) —2°% (Ret, heap', Icl’),
then /cl'(\result) < Math.sqrt(lcl(x)) < lcl'(\result) + 1 holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java

May 10, 2017

11/ 16

Hoare Triples

/*@ requires z >= 0;
@ ensures \result <= Math.sqrt(z) &4 Math.sqrt(z) < \result + I1;
ox/

public static int 4sqrt(int z) {
body

¥

The JML code above states partial correctness of the Hoare triple

{x =0}
body
{\result < Math.sqrt(x) < \result + 1}

It also states total correctness, as we will see later.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017

12/ 16

Post condition and input parameters

Is the following implementation correct?

/*@ requires = >= 0;
@ ensures \result <= Math.sqrt(z) €& Math.sqrt(z) < \result + 1;
o*/
public static int <sgrt(int z) {
z = 0;
return O;

}

No, because JML always evaluates input parameters always in the pre-state!

For all heap, heap', Icl, Icl" if Icl(x) > 0
and (Norm, heap, Icl) _body , (Ret, heap', Icl"),
then lel’(\result) < Math.sqrt(lcl(x)) < lcl'(\result) + 1 holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java

May 10, 2017

13/ 16

What About Exceptions?

/*@ requires true;
@ ensures \result <= Math.sqrt(z) €& Math.sqrt(z) < \result + 1;
@ signals (IllegalArgumentExzception) = < 0;
@ signals_only IllegalArgumentException;
ox/
public static int <sqrt(int z) {
body
}

The signals_only specification denotes that for all transitions

(Norm, heap, Icl) 229 (Exc(v), heap', Icl')

where [c/ satisfies the precondition and v is an Exception, v must be of type
[llegal ArgumentException.
The signals specification denotes that in that case /c/ must satisfy x < 0.

The code is still allowed to throw an Error like a OutOfMemoryError or a ClassNotFoundError.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 14 / 16

Side-Effects

A method can change the heap in an unpredictable way.
The assignable clause restricts changes:

/*@ requires = >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(z) €& Math.sqrt(z) < \result + 1;
ex/
public static int <sqrt(int z) {
body
}

For all executions of the method,
(Norm, heap, Icl) 2% (Ret, heap', Icl'),
if lc/(x) >= 0 then the formula

Icl'(\result) <= Math.sqrt(lcl(x)) < lcl'(\result + 1)

holds and heap C heap'.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 15 /16

What is the meaning of a formula

A formula like z >= 0 is a Boolean Java expression. It can be evaluated with the operational
semantics.
x >= 0 holds in state (heap, Icl), iff

(Norm, heap, Icl) =2=22L; (Norm, heap', Icl')

An assertion may not have side-effects; it may create new objects, though, i.e., heap C heap’
and /cl = lcl'.

For the ensures formula both the pre-state and the post-state are necessary to evaluate the
formula.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 10, 2017 16 / 16

