Formal Methods for Java Lecture 11: Sequent Calculus

Jochen Hoenicke

Software Engineering Albert-Ludwigs-University Freiburg

May 31, 2017

Runtime vs. Static Checking

Runtime Checking

- finds bugs at run-time,
- tests for violation during execution,
- can check most of the JML,
- is done by jmlrac.

Static Checking

- finds bugs at compile-time,
- proves that there is no violation,
- can check only parts of the JML,
- is done by ESC/Java or Jahob.

The Kry-Project

- Developed at University of Karlsruhe
- http://www.key-project.org/.
- Interactive Theorem Prover
- Theory specialized for Java(Card).
- Can generate proof-obligations from JML specification.
- Underlying theory: Sequent Calculus + Dynamic Logic
- Proofs are given manually.

Sequent Calculus

Definition (Sequent)

A sequent is a formula

$$\phi_1,\ldots,\phi_n \Longrightarrow \psi_1,\ldots,\psi_m$$

where ϕ_i, ψ_i are formulae. The meaning of this formula is:

$$\phi_1 \wedge \ldots \wedge \phi_n \to \psi_1 \vee \ldots \vee \psi_m$$

Why are sequents useful?

Simple syntax and nice calculus

Example for Sequents

$$q = y/x, r = y\%x \Longrightarrow x = 0, y = q * x + r$$

It is logically equivalent to the formula:

$$q = y/x \land r = y\%x \rightarrow x = 0 \lor y = q * x + r$$

This is equivalent to the sequent

$$\implies q = y/x \land r = y\%x \rightarrow x = 0 \lor y = q * x + r$$

Another equivalent sequent is:

$$x \neq 0, q = y/x, r = y\% x \Longrightarrow y = q * x + r$$

What is the meaning of the following sequent?

This is equivalent to

 $\mathsf{true} \Longrightarrow \mathsf{false}$

 \Longrightarrow

which is false.

Sequent Calculus

To prove a goal (a formula) with sequent calculus:

- Start with the goal at the bottom
- Use rules to derive formulas, s.t. formulas are sufficient to prove the goal, formulas are simpler.
- A proof node can be closed if it holds trivially.

A Rule of Sequent Calculus

Rule impl-right:
$$\Gamma, \phi \Longrightarrow \Delta, \psi$$

 $\Gamma \Longrightarrow \Delta, \phi \to \psi$

where $\Gamma = \phi_1, \ldots, \phi_n$ and $\Delta = \psi_1, \ldots, \psi_n$ are lists of formulas, and ϕ , ψ are formulas.

This rule is sound:

 $\mathsf{\Gamma} \land \phi \to \Delta \lor \psi$

implies

$$\Gamma \to \Delta \lor (\phi \to \psi)$$

Here Δ and Γ stand for an arbitrary set of formulae. We abstract from order: rule is also applicable if $\phi \rightarrow \psi$ occur in the middle of the right-hand side, e.g.:

$$\frac{\chi_1, \phi \Longrightarrow \chi_2, \psi, \chi_3}{\chi_1 \Longrightarrow \chi_2, \phi \to \psi, \chi_3}$$

Jochen Hoenicke (Software Engineering)

Formal Methods for Java

Example: impl-right

Given the proof goal:

$$p \rightarrow q, q \rightarrow s \Longrightarrow p \rightarrow r, s$$

Applying the rule

Rule impl-right:
$$\Gamma, \phi \Longrightarrow \Delta, \psi$$

 $\Gamma \Longrightarrow \Delta, \phi \to \psi$

yields a new proof goal:

$$p \rightarrow q, q \rightarrow s, p \Longrightarrow r, s$$

If we can prove this, we know that the first goal is true.

Another Rule of Sequent Calculus

Rule impl-left:
$$\frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta}$$

where $\Gamma = \phi_1, \ldots, \phi_n$ and $\Delta = \psi_1, \ldots, \psi_n$ are lists of formulas, and ϕ , ψ are formulas.

This rule is sound:

$$\mathsf{\Gamma} \land \phi \to \Delta \lor \psi$$

implies

$$\Gamma \to \Delta \lor (\phi \to \psi)$$

We abstract from order: rule is also applicable if $\phi \rightarrow \psi$ occur in the middle of the right-hand side, e.g.:

$$\frac{\chi_1, \phi \Longrightarrow \chi_2, \psi, \chi_3}{\chi_1 \Longrightarrow \chi_2, \phi \to \psi, \chi_3}$$

Jochen Hoenicke (Software Engineering)

Formal Methods for Java

Example: impl-left

Given the proof goal:

$$p \rightarrow q, q \rightarrow s, p \Longrightarrow r, s$$

Applying the rule

Rule impl-left:
$$\frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta}$$

yields two new proof goal:

 $q \rightarrow s, p \Longrightarrow p, r, s$ and $q, q \rightarrow s, p \Longrightarrow r, s$

We need to prove both goals to know that the first proof goal is true.

Sequent Calculus Logical Rules

$$\begin{array}{ll} \text{close: } \Gamma, \phi \Longrightarrow \Delta, \phi \\ \text{false: } \Gamma, \text{false} \Longrightarrow \Delta & \text{true: } \Gamma \Longrightarrow \Delta, \text{true} \\ \text{not-left: } & \frac{\Gamma \Longrightarrow \Delta, \phi}{\Gamma, \neg \phi \Longrightarrow \Delta} & \text{not-right: } & \frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta, \neg \phi} \\ \text{and-left: } & \frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta} & \text{and-right: } & \frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \land \psi} \\ \text{or-left: } & \frac{\Gamma, \phi \Longrightarrow \Delta \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \lor \psi \Longrightarrow \Delta} & \text{or-right: } & \frac{\Gamma \Longrightarrow \Delta, \phi \land \psi}{\Gamma \Longrightarrow \Delta, \phi \lor \psi} \\ \text{impl-left: } & \frac{\Gamma \Longrightarrow \Delta, \phi \quad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \rightarrow \psi \Longrightarrow \Delta} & \text{impl-right: } & \frac{\Gamma, \phi \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \rightarrow \psi} \end{array}$$

A Sequent Calculus Proof

Axiom close:
$$\Gamma, \phi \Longrightarrow \Delta, \phi$$
Rule impl-right: $\frac{\Gamma, \phi \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \to \psi}$ Rule and-left: $\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$ Rule and-right: $\frac{\Gamma \Longrightarrow \Delta, \phi \land \Gamma \Longrightarrow \Delta, \psi}{\Gamma \Longrightarrow \Delta, \phi \land \psi}$

Let's prove that \land commutes: $\phi \land \psi \rightarrow \psi \land \phi$.

$$\begin{array}{c} \overline{\phi,\psi \Longrightarrow \psi} \text{ close } & \overline{\phi,\psi \Longrightarrow \phi} \text{ close } \\ \hline \phi,\psi \Longrightarrow \psi \land \phi \\ \hline \phi \land \psi \Longrightarrow \psi \land \phi \\ \hline \hline \phi \land \psi \Longrightarrow \psi \land \phi \\ \hline \end{array} \text{ and-right } \\ \hline \begin{array}{c} \phi,\psi \Longrightarrow \psi \land \phi \\ \hline \phi \land \psi \Longrightarrow \psi \land \phi \\ \hline \end{array} \text{ impl-right } \end{array}$$

Sequent Calculus All-Quantifier

all-left:
$$\frac{\Gamma, \forall X \ \phi(X), \phi(t) \Longrightarrow \Delta}{\Gamma, \forall X \ \phi(X) \Longrightarrow \Delta}$$
, where *t* is some arbitrary term.

This is sound because $\forall X \ \phi(X)$ implies $\phi(t)$.

all-right:
$$\frac{\Gamma \Longrightarrow \Delta, \phi(x_0)}{\Gamma \Longrightarrow \Delta, \forall X \ \phi(X)}$$
, where x_0 is a fresh identifier.

 x_0 is called a Skolem constant.

Sequent Calculus Quantifier

The rules for the existential quantifier are dual:

$$\begin{array}{l} \text{all-left:} & \frac{\Gamma, \forall X \ \phi(X), \phi(t) \Longrightarrow \Delta}{\Gamma, \forall X \ \phi(X) \Longrightarrow \Delta}, \text{ where } t \text{ is some arbitrary term.} \\ \text{all-right:} & \frac{\Gamma \Longrightarrow \Delta, \phi(x_0)}{\Gamma \Longrightarrow \Delta, \forall X \ \phi(X)}, \text{ where } x_0 \text{ is a fresh identifier.} \\ \text{exists-left:} & \frac{\Gamma, \phi(x_0) \Longrightarrow \Delta}{\Gamma, \exists X \ \phi(X) \Longrightarrow \Delta}, \text{ where } x_0 \text{ is a fresh identifier.} \\ \text{exists-right:} & \frac{\Gamma \Longrightarrow \Delta, \exists X \ \phi(X), \phi(t)}{\Gamma \Longrightarrow \Delta, \exists X \ \phi(X)}, \text{ where } t \text{ is some arbitrary term.} \end{array}$$

Example: $(\forall XP(X)) \lor (\exists X \neg P(X))$

close:
$$\Gamma, \phi \Longrightarrow \Delta, \phi$$
 not-right: $\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta, \neg \phi}$ or-right: $\frac{\Gamma \Longrightarrow \Delta, \phi, \psi}{\Gamma \Longrightarrow \Delta, \phi \lor \psi}$
all-right: $\frac{\Gamma \Longrightarrow \Delta, \phi(x_0)}{\Gamma \Longrightarrow \Delta, \forall X \phi(X)}$, where x_0 is a fresh identifier.
exists-right: $\frac{\Gamma \Longrightarrow \Delta, \exists X \phi(X), \phi(t)}{\Gamma \Longrightarrow \Delta, \exists X \phi(X)}$, where t is some arbitrary term.
Let's prove $(\forall XP(X)) \lor (\exists X \neg P(X))$.

$$\frac{\overline{P(x_0) \Longrightarrow P(x_0), \exists X \neg P(X)}}{\Longrightarrow P(x_0), \exists X \neg P(X), \neg P(x_0)} \operatorname{close}_{\operatorname{not-right}} \\
\xrightarrow{p(x_0), \exists X \neg P(X), \neg P(x_0)}_{\operatorname{exists-right}} \\
\xrightarrow{p(x_0), \exists X \neg P(X)}_{\operatorname{exists-right}} \\
\xrightarrow{p(XP(X), \exists X \neg P(X), \neg P(X)}_{\operatorname{or-right}} \\
\xrightarrow{p(XP(X) \lor \exists X \neg P(X), \neg P(X), \neg P(X)}_{\operatorname{or-right}} \\
\xrightarrow{p(XP(X) \lor \exists X \neg P(X), \neg P(X), \neg P(X), \neg P(X)}_{\operatorname{or-right}} \\
\xrightarrow{p(XP(X) \lor \exists X \neg P(X), \neg P(X), \neg P(X), \neg P(X), \neg P(X), \neg P(X)}_{\operatorname{or-right}} \\
\xrightarrow{p(XP(X) \lor P(X) \lor P(X), \neg P(X), \neg$$

Rules for equality

eq-close:
$$\Gamma \Longrightarrow \Delta, t = t$$

apply-eq: $\frac{s = t, \Gamma[t/s] \Longrightarrow \Delta[t/s]}{s = t, \Gamma \Longrightarrow \Delta}$

These rules suffice to prove $x = y \Longrightarrow y = x$ and $x = y, y = z \Longrightarrow x = z$.

$$\frac{x = y \Longrightarrow x = x}{x = y \Longrightarrow y = x}$$
 eq-close
apply-eq

$$\frac{\overline{x = y, y = z \Longrightarrow y = z}}{\overline{x = y, y = z \Longrightarrow x = z}}$$
 close apply-eq

Jochen Hoenicke (Software Engineering)

Formal Methods for Java