
Formal Methods for Java
Lecture 9: Extended Static Checking

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

May 24, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 1 / 12



Runtime vs. Static Checking

Runtime Checking

finds bugs at run-time,

tests for violation during execution,

can check most of the JML,

is done by openjml.jar -rac.

Static Checking

finds bugs at compile-time,

proves that there is no violation,

can check only parts of the JML,

is done by openjml.jar -esc.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 2 / 12



openjml (esc)

Developed by the DEC Software Research Center (now HP Research),

Extended by David Cok and Joe Kiniry (Kind Software)

Rewritten in OpenJML by David Cok

Proves correctness of specification,

Is neither sound nor complete (but this will improve),

Is useful to find bugs.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 3 / 12



Example

Consider the following code:
Object[] a;
void m(int i) {
a[i] = "Hello";

}

Is a a null-pointer? (NullPointerException)

Is i nonnegative? (ArrayIndexOutOfBoundsException)

Is i smaller than the array length?
(ArrayIndexOutOfBoundsException)

Is a an array of Object or String?
(ArrayStoreException)

openjml (esc) warns about these issues. (Demo)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 4 / 12



ESC and run-time exceptions

ESC checks that no undeclared run-time exceptions occur.

NullPointerException

ClassCastException

ArrayIndexOutOfBoundsException

ArrayStoreException

ArithmeticException

NegativeArraySizeException

other run-time exception, e.g., when calling library functions.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 5 / 12



ESC and specification

ESC also checks the JML specification:

ensures in method contract,

requires in called methods,

assert statements,

signals clause,

invariant (loop invariant and class invariant).

ESC assumes that some formulae hold:

requires in method contract,

ensures in called methods,

assume statements,

invariant (loop invariant and class invariant).

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 6 / 12



NullPointerException

public void put(Object o) {
int hash = o.hashCode();
...

}

results in Possible null dereference.

Solutions:

Declare o as non_null.

Add o != null to precondition.

Add throws NullPointerException.
(Also add signals (NullPointerException) o == null)

Add Java code that handles null pointers.
int hash = (o == null ? 0 : o.hashCode());

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 7 / 12



ClassCastException

class Priority implements Comparable {
public int compareTo(Object other) {

Priority o = (Priority) other;
...

}
}

results in Possible type cast error.
Solutions:

Add throws ClassCastException.
(Also add
signals (ClassCastException) !(other instanceof Priority))

Add Java code that handles differently typed objects:
if (!(other instanceof Priority))

return -other.compareTo(this)
Priority o = ...

This results in a Possible null dereference.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 8 / 12



ArrayIndexOutOfBoundsException

void write(/*@non_null@*/ byte[] what, int offset, int len) {
for (int i = 0; i < len; i++) {
write(what[offset+i]);

}
}

results in Possible negative array index
Solution:

Add offset >= 0 to pre-condition,
this results in Array index possibly too large.

Add offset + len <= what.length.

Still results in possibly negative array index.

Add a loop invariant.

ESC does not complain but there is still a problem.
If offset and len are very large numbers, then offset + len can be
negative. The code would throw an
ArrayIndexOutOfBoundsException at run-time.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 9 / 12



Loop Invariants

/*@ requires offset >= 0 && offset + len <= what.length;
@*/

void write(/*@non_null@*/ byte[] what, int offset, int len) {
/*@ loop_invariant i >= 0;
for (int i = 0; i < len; i++) {
write(what[offset+i]);

}
}

i >= 0 and offset >= 0 proof that array index is not negative.

i >= 0 holds initially.

If i >= 0 holds before the loop, it holds after the loop.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 10 / 12



ArrayStoreException

public class Stack {
/*@non_null@*/ Object[] elems;
int top;
/*@invariant 0 <= top && top <= elems.length; @*/

/*@ requires top < elems.length;
@*/

void add(Object o) {
elems[top++] = o;

}

results in Type of right-hand side possibly not a subtype of array element
type (ArrayStore).
Solutions:

Add an invariant \typeof(elems) == \type(Object[]).

Add a precondition \typeof(o) <: \elemtype(\typeof(elems)).

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 11 / 12



Types in assertions

\typeof gets the run-time type of an expression
\typeof(obj) ∼ obj.getClass().

\elemtype gets the base type from an array type.
\elemtype(t1) ∼ t1.getComponentType().

\type gets the type representing the given Java type.
\type(Foo) ∼ Foo.class

<: means is sub-type of.
t1 <: t2 ∼ t2.isAssignableFrom(t1)

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 24, 2017 12 / 12


