
Formal Methods for Java
Lecture 9: How ESC works

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

May 29, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 1 / 12



openjml (esc)

Developed by the DEC Software Research Center (now HP Research),

Extended by David Cok and Joe Kiniry (Kind Software)

Rewritten in OpenJML by David Cok

Proves correctness of specification,

Is neither sound nor complete (but this will improve),

Is useful to find bugs.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 2 / 12



Assume and Assert

The basic specifications in ESC are assume and assert.

/*@ assume this.next != null; @*/
this.next.prev = this;
/*@ assert this.next.prev == this; @*/

ESCJava proves that if the assumption holds in the pre-state, the assertion holds in the
post-state.

This is a Hoare triple.

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 3 / 12



Assume is Considered Harmful

Never assume something wrong. This enables ESC to prove everything:

Object o = null;
/*@ assume o != null; @*/
Object[] a = new String[-5];
a[-3] = new Integer(2);

> escjava2 -q AssumeFalseTest.java

0 warnings

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 4 / 12



Requires and Ensures

The method specification is just translated into assume and assert:
/*@ requires n > 0;
@ ensures \result == (int) Math.sqrt(n);
@*/

int m() {
...
return x;

}

is treated as:
/*@ assume n > 0; @*/
...
/*@ assert x == (int) Math.sqrt(n); @*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 5 / 12



Calling Methods

And if m() is called the assumption and assertion is the other way round:
...
y = m(x);
...

is treated as
...
/*@ assert x > 0; @*/
y = m(x);
/*@ assume y == (int) Math.sqrt(x); @*/
...

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 6 / 12



Checking for Exceptions

To check for run-time exceptions ESC automatically inserts asserts:
a[x] = "Hello";

is treated as:
/*@ assert a != null && x >= 0 && x < a.length
@ && \typeof("Hello") <: \elemtype(\typeof(a));
@*/

a[x] = "Hello";

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 7 / 12



Loops in ESC

int a[] = new int[6];
for (int i = 0; i <= 6; i++) {

a[i] = i;
}

Test.java:5: warning: The prover cannot establish an assertion

(PossiblyNegativeIndex) in method test

a[i] = i;

^

Test.java:5: warning: The prover cannot establish an assertion

(PossiblyTooLargeIndex) in method test

a[i] = i;

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 8 / 12



Adding Loop Invariant

int a[] = new int[6];
/*@ loop_invariant i >= 0; @*/
for (int i = 0; i <= 6; i++) {

a[i] = i;
}

Test.java:5: warning: The prover cannot establish an assertion

(PossiblyTooLargeIndex) in method test

a[i] = i;

This is a bug in the code!

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 9 / 12



Checking Loop Invariant

int a[] = new int[6];
/*@ loop_invariant i >= 0; @*/
for (int i = 0; i <= 6; i++) {

a[i] = i;
}

Loop invariant holds initially:
int a[] = new int[6];
int i = 0;
/*@ assert i >= 0; @*/

Loop invariant preserved by loop body:
/*@ assume i >= 0; @*/
if (i <= 6) {
a[i] = i;
i++;
/*@ assert i >= 0; @*/

}

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 10 / 12



Checking Loop Invariant (2)

Internally, ESC checks this code.

/*@ assume precondition; @*/
int a[] = new int[6];
int i = 0;
/*@ assert i >= 0; @*/ // check loop invariant initially
i = * // assign random values to all
a[*] = * // variables written in the loop
/*@ assume i >= 0; @*/ // assume loop invariant
if (i <= 6) { // rewrite loop as if condition
/*@ assert a != null && i >= 0 && i < a.length @*/
a[i] = i;
i++;
/*@ assert i >= 0; @*/ // check loop invariant after loop
/*@ assume false; @*/ // don’t check anything after this point

}
/*@ assert postcondition; @*/

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 11 / 12



ESC is Not Complete

ESC can only do limited reasoning:
/*@ requires i == 5 && j== 3;
@ ensures \result == 15;
@*/

int m(int i, int j) {
return i*j;

}

An error while executing a proof script for m:

(error "line 376 column 268: logic does not support nonlinear arithmetic")

Jochen Hoenicke (Software Engineering) Formal Methods for Java May 29, 2017 12 / 12


