
Formal Methods for Java
Lecture 22: Java Pathfinder and Design By Contract

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

July 17, 2017

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 1 / 13

Testing Programs with Java Pathfinder

Java Pathfinder on an example

http://babelfish.arc.nasa.gov/trac/jpf/wiki

Java Pathfinder is extendable

There are several extensions already:
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start

We take a closer look into jpf-aprop.

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 3 / 13

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/start

What is jpf-aprop?

The jpf-aprop project contains Java annotation based program property
specifications, together with corresponding listeners to check them.

Uses Java annotations, see JDK 1.5.

Property Specification similar to JML

JSR-305 and JSR-308 proposals

To check them, listeners need to be added to jpf config.

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 4 / 13

Annotations

Annotations in Java use prefix @
They can be added as modifier to class, field, and method definitions.

@Nonnull – check for null values

@Const – check for object modifications

@SandBox – check for modifications

@GuardedBy – lock policy specifications

@NonShared – check for concurrent use

@Requires, @Ensures and @Invariant – Design by Contract

@Sequence,@SequenceEvent,@SequenceMethod,@SequenceObject –
automatic UML sequence diagram creation

@Test – in-source method test specifications

@Confined, @Region – check that references do not leave regions.

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 5 / 13

Design By Contract

Contract ::= Contract LogicOp Contract | Term RelOp Term

| Term instanceof ID | Term matches String

| Term isEmpty | Term notEmpty

| Term within Term +- Term | Term within Term , Term

| Term satisfies Property

Term ::= Term BinOp Term | Function(Term∗) | old(Term)

| String | Number | Var | null | EPS | return
LogicOp ::= && | ||
RelOp ::= == | != | < | <= | > | >=
BinOp ::= + | - | * | / | ^

Predicate ::= ID | ID(Term∗)

Function ::= ID | log | log10
Var ::= ID

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 6 / 13

Example

@Invariant({"numElems > 0",
"elems satisfies Heap$IsSorted(numElems)"})

public class Heap implements PriorityQueue {
private @Nonnull Comparable[] elems;
private int numElems;

static class IsSorted implements Predicate {
@SandBox
public String evaluate (Object testObj, Object[] args) {

Comparable[] elems = (Comparable[]) testObj;
int numElems = (Integer) args[0];
for (int i = 0; i < numElems; i++) {

if (2*i+1 < numElems
&& elems[i].compareTo(elems[2*i+1]) > 0)
return "not sorted";

if (2*i+2 < numElems
&& elems[i].compareTo(elems[2*i+2]) > 0)
return "not sorted";

}
return null;

}
}

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 7 / 13

Limitations of jpf-aprop

The syntax for predicates is very restricted.

The syntax feels adhoc, e.g. a within b +- 2.

Syntax check is done at run-time.

Cannot express numElems <= elems.length (yet).

No check for typos in identifiers.

Surprising results: true == false holds.

Many things not implemented, e.g. functions (but no warning).

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 8 / 13

Demo

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 9 / 13

Combining JML and Java Pathfinder

Pathfinder:

+ Exhaustive model-checking.

+ Exact simulation of VM.

+ Can run any Java code.

− No good Design By Contract specifications.

JML Runtime Assertion Checker:

+ Good Design by Contract Syntax.

+ Many features checkable at run time.

− Can only find bugs at runtime.

− Test cases have to be explicitly written.

Can we combine both programs?

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 10 / 13

Can we combine both programs? Yes!

Compiling:

Set classpath to include Java Pathfinder runtime.

Compile classes with jmlc.

One can change compiler in ant script.

Running:

Set classpath to include JML runtime and JML model classes.

Classpath can be changed in Java Pathfinder script.

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 11 / 13

Demo

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 12 / 13

Conclusion

Design by Contract with jpf-aprop is a good idea
... but it does not work.

JML can be run inside of Java Pathfinder
... and it works!

Jochen Hoenicke (Software Engineering) FM4J July 17, 2017 13 / 13

	Testing Programs with Java Pathfinder

