Formal Methods for Java
Lecture 13: Dynamic Logic

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

June 14, 2017

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017

1/19

The KEY—Project

Theorem Prover

Developed at University of Karlsruhe

http://www.key-project.org/.

Theory specialized for Java(Card).

Can generate proof-obligations from JML specification.

Underlying theory: Sequent Calculus + Dynamic Logic

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 2 /19

http://www.key-project.org/

Dynamic Logic

Dynamic logic extends predicate logic by
° [a]p
° ()¢

where « is a program and ¢ a sub-formula.

The meaning is as follows:

o [a]¢: after all terminating runs of program « formula ¢ holds.

o (a)¢: after some terminating run of program « formula ¢ holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017

3/19

Comparison with Hoare Logic

The sequent ¢ = [«]y) corresponds to partial correctness of the Hoare
formula:

{pre{y}

If « is deterministic, ¢ = (a1 corresponds to total correctness.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 4 /19

Examples

o [{}lo = o
o ({No=0

o [while(true){}]¢ = true

o (while(true){})¢ = false

o [x=x+1]x>4=x+1>4
o [x=t]¢ = o[t/x]

o [a102]¢ = [ou][e]

How can we use equivalences in Sequent Calculus?
My/¢l = Aly/d]
r— A

This is similar to applyEq.

Add the rule

, Where ¢ = 1.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017

5/19

Dynamic Logic is Modal Logic

° (a)¢ = —[a]-¢
° [a]¢ = ~(a)=¢

Furthermore:
e if ¢ is a tautology, so is [a]¢

o [a](¢ =) = ([a]é — [a]y)
Remark: For deterministic programs also the reverse holds

([a]¢ = [a]) = [al(¢ —)

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 6 /19

Termination and Deterministic Programs

How can we express that program « must terminate?

(ar)true

This can be used to relate [a] and («a):

(a)p = [a]p A (a)true

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 7 /19

Updates in KeY

The formula (i = t; a)¢ is rewritten to

Formula {i := t}¢ is true, iff

¢ holds in a state, where the program variable i has the value denoted by
the term t.

Here:

@ i is a program variable (non-rigid function).
@ tis a term (may contain logical variables).

@ ¢ a formula

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 8 /19

Simplifying Updates

If ¢ contains no modalities, then {x := t}¢ is the substitution ¢[t/x]
(every occurence of x is changed to t).

A double update {x1 := t1,x2 := tr}{x1 := t], x3 := t§}¢ is automatically
rewritten to

X1 = 1101 X]_7) X2,X2:: 2,X3:: 3 1 X17 2/ X2
{ th[t1/x1, ta/x2] t t3[t1/x1, t2/x2] }¢

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 9 /19

Example: ({i=j;j=1+1})i=j

((i=33=1+1}i=]
={i:=jHj=i*1}i=}

={i=j,j=j+1}i=7j
=j=j+1

=false

or alternatively

{i=5j=i+1}i=]j
={i=3H{i=i+1}i =73
={i=jli=1i+1

=false
Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017

10 / 19

Rules for Java Dynamic Logic

o ({i=j;..})¢ is rewritten to:
{i=31{. e
o ({i=j+k;..})o is rewritten to:
[i =+ KL Do,
o ({i=j++;..})¢ is rewritten to:
({int j0,j0=3,j=3+1,1=3j-0;..})¢.
o ({int k;...})¢ is rewritten to:
({...})¢ and k is added as new program variable.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 1/19

Proving Programs with Loops

Given a simple loop:

({while(n > 0)n--; })n =10

How can we prove that the loop terminates for alln > 0 and thatn =0
holds in the final state?

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 12 /19

Method (1): Induction

To prove a property ¢(x) for all x > 0 we can use induction:
@ Show ¢(0).
@ Show ¢(x) = ¢(x + 1) for all x > 0.

This proves that Vx (x > 0 — ¢(x)) holds.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 13 /19

The rule int_induction

The KeY-System has the rule int_induction

= A,¢(0) T = AVX(X>0AdX)— d(X+1))
MVYX(X>0—¢(X) = A
r— A

The three goals are:
o Base Case: = ¢(0)
o Step Case: = VX(X > 0A ¢(X) = ¢(X +1))
@ Use Case: VX(X >0 — ¢(X)) =

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 14 /19

Method(2): Loop Invariants with Variants

Induction proofs are very difficult to perform for a loop
({while(COND) BODY;...})¢

The KeY-system supports special rules for while loops using invariants and
variants.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 15 /19

The rule while_invariant_with _variant_dec

The rule while_invariant_with_variant_dec takes an invariant inv, a modifies
set {my,...,mx} and a variant v. The following cases must be proven.
o Initially Valid: = inv Av >0
@ Body Preserves Invariant:
= {my :=x1|| ... ||mk := xx}(inv A [{b = COND; }]b = true
— (BODY)inv

o Use Case:
= {m1 :=x1||...||mk := xx}(inv A [{b = COND; }|b = false
= (...)¢

@ Termination:
= {m1 :=x1||...||mk := xk}(inv Av > 0A [{b= COND; }|b = true
— {old :== v}(BODY)v < old ANv>0

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 16 / 19

Rigid vs.Non-Rigid Functions vs. Variables

KeY distinguishes the following symbols:
@ Rigid Functions: These are functions that do not depend on the
current state of the program.

e +,—, % : integer x integers — integer (mathematical operations)
e 0,1,...: integer, TRUE, FALSE : boolean (mathematical constants)

@ Non-Rigid Functions: These are functions that depend on current
state.

o :[]: T xint — T (array access)
e .next: T — T if next is a field of a class.
e i,j: T if i,j are program variables.
@ Variables: These are logical variables that can be quantified.
Variables may not appear in programs.
o X,y,z

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 17 /19

Example

Vx.i=x— ({while(i >0){i=1-1;}})i=0

e 0,1,— are rigid functions.
@ > is a rigid relation.
@ i is a non-rigid function.

@ x is a logical variable.

Quantification over i is not allowed and x must not appear in a program.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 18 /19

Builtin Rigid Functions

+,—,%,/,%,jdiv,jmod: operations on integer.
...,—1,0,1,..., TRUE FALSE, null: constants.
(A) for any type A: cast function.

A .. get gives the n-th object of type A.

Jochen Hoenicke (Software Engineering) Formal Methods for Java June 14, 2017 19 /19

