Tutorial for Program Verification
 Exercise Sheet 6

Exercise 1: Loop invariants

1 Point
Consider the following program P.

$$
\begin{aligned}
& \text { \{true }\} \\
& x:=i \text {; } \\
& y:=j \text {; } \\
& \text { while } x \neq 0 \text { do }\{\theta\}\{ \\
& x:=x-1 \\
& y:=y-1 \\
& \text { \} } \\
& \{i=j \rightarrow y=0\}
\end{aligned}
$$

(a) Find a suitable loop invariant θ such that true $\models w p(P, i=j \rightarrow y=0)$ holds.
(b) Give two examples for a loop invariant θ such that true $\models w p(P, i=j \rightarrow y=0)$ does not hold.

Exercise 2: Guarded commands

2 Points
Consider the following modified version of Fact where we added the variable u.

$$
\begin{aligned}
& \{n \geq 0\} \\
& u:=1 ; \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{\theta\}\{ \\
& \quad f:=f \cdot i ; \\
& \quad i:=i+1 ; \\
& \quad u:=u+1 ; \\
& \} \quad \\
& \{f=\operatorname{fact}(n) \wedge u \geq 1\}
\end{aligned}
$$

(a) Transform the program (together with its pre-/postcondition) to a guarded command. Use the old θ from the previous exercise sheet:

$$
f=\operatorname{fact}(i-1) \wedge 1 \leq i \wedge i \leq n+1
$$

(b) Why will a correctness proof using $w p$ of your guarded command fail?
(c) Modify θ above such that it can be used to show correctness of this program.

Exercise 3: Properties of post

2 Points
We say that post distributes over the connective \odot w.r.t. the first argument if the following equation holds.

$$
\operatorname{post}\left(\phi_{1} \odot \phi_{2}, \rho\right)=\operatorname{post}\left(\phi_{1}, \rho\right) \odot \operatorname{post}\left(\phi_{2}, \rho\right)
$$

We say that post distributes over the connective \odot w.r.t. the second argument if the following equation holds.

$$
\operatorname{post}\left(\phi, \rho_{1} \odot \rho_{2}\right)=\operatorname{post}\left(\phi, \rho_{1}\right) \odot \operatorname{post}\left(\phi, \rho_{2}\right)
$$

- Determine for $\odot \in\{\wedge, \vee, \rightarrow\}$ if post distributes over \odot w.r.t. the first argument or w.r.t. the second argument.
- Determine if the equality $\operatorname{post}(\neg \phi, \rho)=\neg \operatorname{post}(\phi, \rho)$ holds.

Determine if the equality $\operatorname{post}(\phi, \neg \rho)=\neg \operatorname{post}(\phi, \rho)$ holds.
Give a proof for each positive answer, give a counterexample for each negative answer.
Exercise 4: Program representations
1 Point
Consider again the program from Exercise 1 where we encode the postcondition using an assert statement and omit the precondition and the loop invariant.

$$
\begin{aligned}
\ell_{0}: & x:=i ; \\
\ell_{1}: & y:=j ; \\
\ell_{2}: & \text { while } x \neq 0 \text { do }\{ \\
\ell_{3}: & x:=x-1 \\
\ell_{4}: & y:=y-1 \\
\ell_{5}: & \} \\
\ell_{6}: & \text { assert }(i=j \rightarrow y=0)
\end{aligned}
$$

(a) State a formal definition of this program in the notation that was introduced in the lecture on Wednesday, May 30, where a program is given as a tuple

$$
P=\left(V, p c, \varphi_{i n i t}, R, \varphi_{e r r}\right) .
$$

(b) Draw the corresponding control flow graph.

Exercise 5: Weakest precondition

2 Points
Let V be a tuple of program variables. Let ϕ be a set of states (i.e., ϕ is a formula whose free variables are in V). Let ρ be a binary relation over program states (i.e., ρ is a formula whose free variables are in $V \cup V^{\prime}$).
In the lecture we defined the formula $\operatorname{post}(\phi, \rho)$ as the image of the set ϕ under the relation ρ.
(a) Define a function $w p$ such that the formula $w p(\phi, \rho)$ denotes the largest set of states ψ such that $\operatorname{post}(\psi, \rho)$ is a subset of ϕ.
(b) Compute $w p\left(\phi_{i}, \rho_{i}\right)$ for the following pairs.

$$
\begin{array}{ll}
\phi_{1} \equiv y \geq 7 & \rho_{1} \equiv x<y \wedge x^{\prime}=x \wedge y^{\prime}=y \\
\phi_{2} \equiv y \geq 7 & \rho_{2} \equiv x^{\prime}=x+y+3 \wedge y^{\prime}=y \\
\phi_{3} \equiv y \geq 7 \wedge x=23 & \rho_{3} \equiv y^{\prime}=y
\end{array}
$$

