

Prof. Dr. Andreas Podelski Dr. Matthias Heizmann Christian Schilling Preference deadline: June 18, 2017 Discussion: June 20, 2017

## Tutorial for Program Verification Exercise Sheet 7

#### Exercise 1: Havoc

1 Point

We define the transition relation for the guarded command **havoc** x as follows.

$$\rho_{\mathbf{havoc}(x)} :\equiv skip(V \setminus \{x\}) \equiv \bigwedge_{y \in V, \, y \neq x} y' = y.$$

- (a) Show that  $wp(\varphi \wedge x = 0, \rho_{\mathbf{havoc}(x)}) \equiv false$  for any formula  $\varphi$ .
- (b) Let  $\varphi_{x=0}$  be a formula that contains x = 0 as a subformula. Show that  $wp(\varphi_{x=0}, \rho_{\mathbf{havoc}(x)}) \equiv false$  does not hold in general.

Recall that  $wp(\varphi, \rho) \equiv \forall V'. \rho \rightarrow \varphi[V'/V].$ 

# **Exercise 2: Weakest precondition and strongest postcondition** 1 Point Let $\varphi$ and $\psi$ be arbitrary predicates and $\rho$ be a transition relation.

Give a counterexample for each of the following statements if it does not hold.

(a) 
$$\varphi = wp(\psi, \rho) \iff post(\varphi, \rho) = \psi$$

(b) 
$$\varphi \subseteq wp(\psi, \rho) \iff post(\varphi, \rho) \subseteq \psi$$

(c) 
$$\varphi \supseteq wp(\psi, \rho) \iff post(\varphi, \rho) \supseteq \psi$$

#### Exercise 3: Reachable states

### Compute the set of reachable states for the program below. Note that we changed $\varphi_{init}$ .



2 Points

#### **Exercise 4: Inductive invariants**

2 Points

Consider the following program from the lecture

$$P = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$$

where the tuple of program variables V is (pc, x, y, z), the initial condition  $\varphi_{init}$  is  $pc = \ell_1$ , the error condition  $\varphi_{err}$  is  $pc = \ell_5$ , and the set of transition relations  $\mathcal{R}$  contains the following transitions.



- (a) Is the complement of  $\varphi_{err}$  an inductive invariant? If not, give a counterexample.
- (b) What is the weakest<sup>1</sup> inductive invariant that is contained in the complement of  $\varphi_{err}$  (i.e., disjoint from  $\varphi_{err}$ )?
- (c) Describe a (possibly non-terminating) algorithm to construct the weakest inductive invariant that is contained in the complement of  $\varphi_{err}$  (for any program that is safe). *Hint*: Eliminate states that can reach an error state.

<sup>&</sup>lt;sup>1</sup>A formula  $\varphi$  is weaker than a formula  $\psi$  if  $\psi$  implies  $\varphi$ . An inductive invariant  $\varphi$  is the weakest inductive invariant if  $\varphi$  is implied by all other inductive invariants.