

Prof. Dr. Andreas Podelski Dr. Matthias Heizmann Christian Schilling

Tutorial for Program Verification Exercise Sheet 11

Exercise 1: Regular traces

Consider the program whose set of control flow traces is given by the following regular expression.

 $(assume(x is prime)))((x--)^*(assume(x = 0)))$

- (a) Consider the pre-/postcondition pair (*true*, *true*).
 - (i) Is the set of correct control flow traces a regular language?
 - (ii) Is the set of feasible correct control flow traces a regular language?
 - (iii) Is the set of infeasible correct control flow traces a regular language?
- (b) Consider the pre-/postcondition pair (true, false). Answer the same questions as above.

Exercise 2: Transitive closure

Let R be a binary relation over a set Σ . Consider the following two relations.

- Let R_{tcl1} be the smallest set such that the following properties hold.
 - (a) $R \subseteq R_{tcl1}$ and
 - (b) for all $s, s', s'' \in \Sigma$ if $(s, s') \in R_{tcl1}$ and $(s', s'') \in R_{tcl1}$ then $(s, s'') \in R_{tcl1}$
- Let R_{tcl2} be the smallest set such that the following properties hold.
 - (a) $R \subseteq R_{tcl2}$ and
 - (b) for all $s, s', s'' \in \Sigma$ if $(s, s') \in R_{tcl2}$ and $(s', s'') \in R$ then $(s, s'') \in R_{tcl2}$

Prove that the equality $R_{tcl1} = R_{tcl2}$ holds.

Exercise 3: Transitive closure, abstract version

- We consider the same setting as in Exercise 2.
 - (a) Lift the definitions of R_{tcl1} and R_{tcl2} to an abstract domain (call the new relations $R_{tcl1}^{\#}$ and $R_{tcl2}^{\#}$, respectively).
 - (b) Does $R_{tcl1}^{\#} = R_{tcl2}^{\#}$ still hold?

1 Point

1 Point

1 Point

Exercise 4: Transition invariants

Consider the program $P = (\Sigma, \mathcal{T}, \rho)$, where

- $\Sigma = \mathbb{Z} \times \mathbb{Z}$,
- $\mathcal{T} = \{\tau_1, \tau_2, \tau_3, \tau_4\},\$
- $\rho_{\tau_1} \equiv x \ge 0 \land y \ge 0 \land y \le x \land y' = y 1,$
- $\rho_{\tau_2} \equiv x \ge 0 \land y \ge 0 \land y \le x \land x' = y 1,$
- $\rho_{\tau_3} \equiv x \ge 0 \land y \ge 0 \land x < y \land y' = x 1$, and
- $\rho_{\tau_4} \equiv x \ge 0 \land y \ge 0 \land x < y \land x' = x 1.$
- (a) Find a ranking function f for the program P. Prove that f is a ranking function.
- (b) Use transition predicate abstraction to prove that the program is terminating.
 - Find a suitable set of transition predicates *Preds*.
 - Compute the corresponding set of abstract transitions $P^{\#} = \{T_1, \dots, T_n\}$.
 - Argue that each abstract transition T_i is well-founded.
- (c) Find a disjunctive well-founded transition invariant $T_1 \cup T_2$ such that
 - T_1 and T_2 are well-founded relations and
 - both T_1 and T_2 are formulas that contain only primed and unprimed variables, logical connectives, and (function/relation/constant) symbols from the set $\{>, +, -, 1, 0\}$.