
Prof. Dr. Andreas Podelski
Dr. Matthias Heizmann
Christian Schilling

Preference deadline: May 28, 2017
Discussion: May 30, 2017

Tutorial for Program Verification
Exercise Sheet 5

Exercise 1: Weakest precondition for sequential composition 2 Points
In the lecture we discussed that the weakest precondition of the sequential composition
is independent of the way we add parentheses, i.e.,

wp((C1 ; C2) ; C3, φ) ≡ wp(C1 ; (C2 ; C3), φ)

Use the following program and postcondition to exemplarily show this fact, i.e., compute
wp for both interpretations step by step and compare the results.

C1 : if x > 0 then x := 1 else x := 2

C2 : y := 1 φ : x = 3

C3 : x := x+ y

Exercise 2: Recursive equation for loop invariants 2 Points
In this exercise we derive a recursive equation for the loop invariant of a while loop. This
equation might be useful to guess inductive loop invariants.

Consider the following equivalence of commands.

while b do C0 ≡ if b then C0 ; while b do C0 else skip

(a) Use the operational semantics of commands (“ ”) to show that the preceding
equivalence holds, i.e., show that the following equation is valid.

[[while b do C0]] = [[if b then C0 ; while b do C0 else skip]]

(b) Use the weakest precondition wp(·, ·) to state a recursive equation for a loop in-
variant θ of a while loop while b do C0.

Hint : Start computing wp for both sides. Finally, the right-hand side of the
equation should be a first-order logic formula that contains b, θ, and wp(C0, φ) for
some suitable first-order logic formula φ.

1



Exercise 3: Hoare logic derivation – Multiplication 2 Points

(a) Write down a partial correctness specification (i.e., precondition and postcondition)
for a program C that multiplies two integers m and n, where m is nonnegative, and
stores the result in r.

(b) Write down a program C as specified above that only uses addition (but not multi-
plication). Use the command language introduced in the lecture.

Hint : Using an auxiliary variable may be helpful for the next part of the exercise.

(c) Annotate the while loop of your program with a suitable loop invariant and con-
struct a Hoare logic derivation that proves that your program C fulfills your cor-
rectness specification.

Exercise 4: Hoare logic derivation – Factorial function 2 Points
Consider the annotated program Fact that was presented in the lecture.

{n ≥ 0}
f := 1;
i := 1;
while i ≤ n do {θ} {

f := f · i;
i := i+ 1;

}
{f = fact(n)}

Recall that fact(n) denotes the factorial function of n.

In Figure 1 you find a derivation of the given partial correctness specification in the Hoare
calculus and the following loop invariant.

θ := f = fact(i− 1) ∧ 1 ≤ i ∧ i ≤ n+ 1

Collect all side conditions from the strengthening/weakening rule applications (marked
with “s/w”) and show that they are valid (you can skip trivial proofs). Note that one of
the proofs requires a case split.

2



asgn
{1 = 1 ∧ n ≥ 0} f := 1 {f = 1 ∧ n ≥ 0}

s/w
{n ≥ 0} f := 1 {f = 1 ∧ n ≥ 0}

asgn
{f = 1 ∧ 1 = 1 ∧ n ≥ 0} i := 1 {f = 1 ∧ i = 1 ∧ n ≥ 0}

s/w
{f = 1 ∧ n ≥ 0} i := 1 {f = 1 ∧ i = 1 ∧ n ≥ 0}

seq
{n ≥ 0} f := 1 ; i := 1 {f = 1 ∧ i = 1 ∧ n ≥ 0} (1)

seq
{n ≥ 0} Fact {f = fact(n)}

Proof tree for (1):

(2)

asgn
{f = fact(i+ 1− 1) ∧ 1 ≤ i+ 1 ∧ i+ 1 ≤ n+ 1} i := i+ 1 {θ}

s/w
{f = fact(i) ∧ 1 ≤ i ∧ i ≤ n} i := i+ 1 {θ}

seq
{θ ∧ i ≤ n} f := f · i ; i := i+ 1; {θ}

whl{θ}while i ≤ n do {θ} {f := f · i ; i := i+ 1} {θ ∧ ¬(i ≤ n)}
s/w

{f = 1 ∧ i = 1 ∧ n ≥ 0}while i ≤ n do {θ} {f := f · i ; i := i+ 1} {f = fact(n)}

Proof tree for (2):

asgn
{f · i = fact(i− 1) · i ∧ 1 ≤ i ∧ i ≤ n} f := f · i {f = fact(i− 1) · i ∧ 1 ≤ i ∧ i ≤ n}

s/w
{θ ∧ i ≤ n} f := f · i {f = fact(i) ∧ 1 ≤ i ∧ i ≤ n}

Figure 1: Hoare derivation for Fact function and θ ≡ f = fact(i− 1)∧ 1 ≤ i∧ i ≤ n+ 1. Due to space constraints the proof tree is
split into three subtrees and we have not substituted θ. On the web page you can find a full picture of the proof tree.

3


