
What is static analysis
by abstract interpretation?
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Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}
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Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}
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Example of static analysis (safety){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n; n0 must be initially nonnegative

(otherwise the program does not
terminate properly)

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1  ̀ j < n0 so no upper overflow

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1  ̀ i > 0 so no lower overflow

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}
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Static analysis by abstract interpretation

Verification: define and prove automatically a property of
the possible behaviors of a complex computer pro-
gram;

Abstraction: the reasoning/calculus can be done on an ab-
straction of these behaviors dealing only with those
elements of the behaviors related to the considered
property;

Theory: abstract interpretation.
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Example of static analysis

Verification: absence of runtime errors;
Abstraction: polyhedral abstraction (affine inequalities);
Theory: abstract interpretation.
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Potential impact of runtime errors
– 50% of the security attacks on computer systems are
through buffer overruns 1!
– Embedded computer system crashes easily result from
overflows of various kinds.

1 See for example the Microsoft Security Bulletins MS02-065, MS04-011, etc.
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A very informal introduction
to the principles of
abstract interpretation
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Semantics

The concrete semantics of a program formalizes (is a
mathematical model of) the set of all its possible execu-
tions in all possible execution environments.
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Graphic example: Possible behaviors

x(t)

t

!"##$%&'(
)*+,'-)"*$'#
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Undecidability

– The concrete mathematical semantics of a program is
an “infinite” mathematical object, not computable;
– All non trivial questions on the concrete program se-
mantics are undecidable.
Example: Kurt Gödel argument on termination
– Assume termination(P) would always terminates and
returns true iff P always terminates on all input data;
– The following program yields a contradiction

P ” while termination(P) do skip od.
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Graphic example: Safety properties

The safety properties of a program express that no possi-
ble execution in any possible execution environment can
reach an erroneous state.
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Graphic example: Safety property

x(t)

t

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#
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Safety proofs

– A safety proof consists in proving that the intersection
of the program concrete semantics and the forbidden
zone is empty;
– Undecidable problem (the concrete semantics is not
computable);
– Impossible to provide completely automatic answers
with finite computer resources and neither human in-
teraction nor uncertainty on the answer 2.

2 e.g. probabilistic answer.

— 13 —



Test/debugging

– consists in considering a subset of the possible execu-
tions;
– not a correctness proof;
– absence of coverage is the main problem.
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Graphic example: Property test/simulation

x(t)

t

2'#)("3(+(3'4()*+,'-)"*$'#

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

5**"*(666
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Abstract interpretation

– consists in considering an abstract semantics, that is
to say a superset of the concrete semantics of the pro-
gram;
– hence the abstract semantics covers all possible con-
crete cases;
– correct: if the abstract semantics is safe (does not in-
tersect the forbidden zone) then so is the concrete se-
mantics.
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Graphic example: Abstract interpretation

x(t)

t
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)*+,'-)"*$'#

— 17 —



Formal methods

Formal methods are abstract interpretations, which dif-
fer in the way to obtain the abstract semantics:
– “model checking”:
- the abstract semantics is given manually by the user;
- in the form of a finitary model of the program exe-
cution;
- can be computed automatically, by techniques rele-
vant to static analysis.
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– “deductive methods”:
- the abstract semantics is specified by verification con-
ditions;
- the user must provide the abstract semantics in the
form of inductive arguments (e.g. invariants);
- can be computed automatically by methods relevant
to static analysis.

– “static analysis”: the abstract semantics is computed
automatically from the program text according to pre-
defined abstractions (that can sometimes be tailored
automatically/manually by the user).
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Required properties of the abstract semantics

– sound so that no possible error can be forgotten;
– precise enough (to avoid false alarms);
– as simple/abstract as possible (to avoid combinatorial
explosion phenomena).
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Graphic example: Erroneous abstraction — I

x(t)

t

5**"0'"9#()*+,'-)"*:(+%#)*+-)$"0

."*%$//'0(1"0'
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Graphic example: Erroneous abstraction — II

x(t)

t

5**"0'"9#()*+,'-)"*:(+%#)*+-)$"0

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

5**"*(666
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Graphic example: Imprecision ) false alarms

x(t)

t

;<=*'-$#'()*+,'-)"*:(+%#)*+-)$"0
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Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . . );

– can be parametrized to allow for manual adaptation
to the application domains.

— 24 —



Graphic example: Standard abstraction
by intervals

x(t)

t
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Graphic example: A more refined abstraction

x(t)

t
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A very informal introduction
to static analysis
algorithms
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Trace semantics
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Trace semantics

– Consider (possibly infinite) traces that is series of states
corresponding to executions described by discrete tran-
sitions;
– The collection of all such traces, starting from the ini-
tial states, is the trace semantics.
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Graphic example: Small-steps transition
semantics

x(t)

t
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Trace semantics, intuition
!"#$#%& '$%$('

)#"%& '$%$(' *+ $,(-
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Prefix trace semantics
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Prefixes of a finite trace
!"#$#%& '$%$( )#"%& '$%$(

!"$(.0(1#%$(-'$%$('

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9  -1#'/.($( $#0( --

<

!
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#
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"
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Prefixes of an infinite trace

!"#$#%& '$%$('
!"$(.0(1#%$(-'$%$('

="-#"+#"#$(-

$.%/(

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9  -: - ; - 1#'/.($( $#0( --

<

!

"

#

!

"

#

!$'-+#"#$(-

>.(+#?('
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Prefix trace semantics

Trace semantics: maximal finite and infinite behaviors
Prefix trace semantics: finite prefixes of the maximal be-

haviors
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Abstraction
This is an abstraction. For example:

Trace semantics: fanb j n – 0g
Prefix trace semantics: fan j n – 0g[fanb j n – 0g

Is there of possible behavior with infinitely many succes-
sive a?

– Trace semantics: no

– Prefix trace semantics: I don’t know
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Prefix trace semantics
in fixpoint form
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Least Fixpoint Prefix Trace Semantics

Prefixes = f› j › is an initial stateg

[ f›̀ `̀ : : :̀ `̀ ›̀ `̀ › j ›̀ `̀ : : :̀ `̀ › 2 Prefixes

& ›̀ `̀ › is a transition stepg

› In general, the equation Prefixes = F (Prefixes) may
have multiple solutions;
› Choose the least one for subset inclusion „.

› Abstractions of this equation lead to effective iterative
analysis algorithms.
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Collecting semantics
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Collecting semantics

– Collect all states that can appear on some trace at any
given discrete time:

@.%/(-

'(0%"$#/'

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9  -: - ; - 1#'/.($( $#0( --

<

!

"

#

!

"

#

A*&&(/$#"B-

'(0%"$#/'
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Collecting abstraction

– This is an abstraction. Does the red trace exists?
Trace semantics: no, collecting semantics: I don’t know.

@.%/(-

'(0%"$#/'
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!

"
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Graphic example: collecting semantics

x(t)

t
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Collecting semantics
in fixpoint form
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Graphic example: collecting semantics
in fixpoint form

x(t)

t
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Interval Abstraction
(in iterative fixpoint form)
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form
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Graphic example: traces of intervals
in fixpoint form
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Graphic example: traces of intervals
in fixpoint form
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Graphic example: traces of intervals
in fixpoint form
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Graphic example: traces of intervals
in fixpoint form
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Abstraction by Galois connections
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Abstracting sets (i.e. properties)

– Choose an abstract domain, replacing sets of objects
(states, traces, . . . ) S by their abstraction ¸(S)
– The abstraction function ¸ maps a set of concrete ob-
jects to its abstract interpretation;
– The inverse concretization function ‚ maps an abstract
set of objects to concrete ones;
– Forget no concrete objects: (abstraction from above)
S „ ‚(¸(S)).
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Interval abstraction ¸

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g
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Interval concretization ‚

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g
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The abstraction ¸ is monotone

!

"

!!"

#

%&

&!''

("

!)

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X „ Y ) ¸(X) v ¸(Y )
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The concretization ‚ is monotone

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X v Y ) ‚(X) „ ‚(Y )
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The ‚ ‹ ¸ composition is extensive

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g

X „ ‚ ‹ ¸(X)

— 53 —



The ¸ ‹ ‚ composition is reductive

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g
==v

fx : [1; 99]; y : [2; 77]g

¸ ‹ ‚(Y ) ==v Y
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Correspondance between concrete and
abstract properties

– The pair h¸; ‚i is a Galois connection:

h}(S); „i `̀ !̀ ̀`̀¸
‚
hD; vi

– h}(S); „i `̀`!̀! ̀`̀`
¸

‚
hD; vi when ¸ is onto (equivalently

¸ ‹ ‚ = 1 or ‚ is one-to-one).
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Galois connection

hD;„i `̀ !̀ ̀`̀¸
‚
hD;vi

iff 8x; y 2 D : x „ y =) ¸(x) v ¸(y)

^ 8x; y 2 D : x v y =) ‚(x) „ ‚(y)
^ 8x 2 D : x „ ‚(¸(x))

^ 8y 2 D : ¸(‚(y)) v x

iff 8x 2 D; y 2 D : ¸(x) v y () x „ ‚(y)
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Example: Set of traces to trace of intervals
abstraction

Set of traces:

¸1 #

Trace of sets:

¸2 #

Trace of intervals
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Example: Set of traces to reachable states
abstraction

Set of traces:

¸1 #

Trace of sets:

¸3 #

Reachable states
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Composition of Galois Connections

The composition of Galois connections:

hL; »i `̀ !̀ ̀ `̀
¸1

‚1 hM; vi

and:

hM; vi `̀ !̀ ̀ `̀
¸2

‚2 hN; —i

is a Galois connection:

hL; »i `̀`̀ `̀! ̀`̀ `̀`
¸2‹¸1

‚1‹‚2 hN; —i
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Convergence acceleration
by widening/narrowing
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Graphic example: upward iteration
with widening

x(t)

t

;0$)$+&(#)+)'#
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Graphic example: upward iteration
with widening

x(t)

t
;0)'*>+&()*+0#$)$"0
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Graphic example: upward iteration
with widening

x(t)

t
;0)'*>+&()*+0#$)$"0(4$)8(4$/'0$0@
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Graphic example: upward iteration
with widening

x(t)

t

;0)'*>+&()*+0#$)$"0(4$)8(4$/'0$0@
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Graphic example: stability of the
upward iteration

x(t)

t
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Interval widening
– L = f?g[f[‘; u] j ‘; u 2 Z[f`1g^u 2 Z[fg^‘ » ug
– The widening extrapolates unstable bounds to infinity:

?
!
X = X

X
!
? = X

[‘0; u0]
!
[‘1; u1] = [if ‘1 < ‘0 then `1 else ‘0;

if u1 > u0 then +1 else u0]

Not monotone. For example [0; 1] v [0; 2] but [0; 1]
!

[0; 2] = [0; +1] 6v [0; 2] = [0; 2]
!
[0; 2]
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Example: Interval analysis (1975)
Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]
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Example: Interval analysis (1975)
Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]
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Example: Interval analysis (1975)
Resolution by chaotic increasing iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = ;
X2 = ;
X3 = ;
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = ;
X3 = ;
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 1]
X3 = ;
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 1]
X3 = [2; 2]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 2]
X3 = [2; 2]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 2]
X3 = [2; 3]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 3]
X3 = [2; 3]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 3]
X3 = [2; 4]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 4]
X3 = [2; 4]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 4]
X3 = [2; 5]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 5]
X3 = [2; 5]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 5]
X3 = [2; 6]
X4 = ;
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Example: Interval analysis (1975)
Convergence speed-up by widening:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1;+1] ( widening
X3 = [2; 6]
X4 = ;
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Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1;+1]
X3 = [2;+1]
X4 = ;
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Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+1]
X4 = ;
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Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = ;
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Example: Interval analysis (1975)
Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]
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Example: Interval analysis (1975)
Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x 2 [1; 9999]}

x := x + 1
3: {x 2 [2;+10000]}

od;
4: {x = 10000}

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]
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Example: Interval analysis (1975)
Checking absence of runtime errors with interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x 2 [1; 9999]}

x := x + 1
3: {x 2 [2;+10000]}

od;
4: {x = 10000}

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

 ̀ no overflow
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]
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Refinement of abstractions
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Approximations of an [in]finite set of points:
from above

x

y

f: : : ; h19; 77i; : : : ;
h20; 03i; : : :g
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Approximations of an [in]finite set of points:
from above

x

y f: : : ; h19; 77i; : : : ;

h20; 03i; h?; ?i; : : :g

From Below: dual 3 + combinations.

3 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).
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Effective computable approximations of an
[in]finite set of points; Signs 4

x

y

x – 0
y – 0

4 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282,
1979.
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Effective computable approximations of an
[in]finite set of points; Intervals 5

x

y

x 2 [19; 77]
y 2 [20; 03]

5 P. Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2nd Int. Symp. on
Programming, Dunod, 1976.
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Effective computable approximations of an
[in]finite set of points; Octagons 6

x

y

8
>>><

>>>:

1 » x » 9
x+ y » 77
1 » y » 9
x` y » 99

6 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO ’2001.
LNCS 2053, pp. 155–172. Springer 2001. See the The Octagon Abstract Domain Library on
http://www.di.ens.fr/~mine/oct/

— 78 —



Effective computable approximations of an
[in]finite set of points; Polyhedra 7

x

y

19x+ 77y » 2004
20x+ 03y – 0

7 P. Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM
POPL, 1978, pp. 84–97.
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Effective computable approximations of an
[in]finite set of points; Simple

congruences 8

x

y

x = 19 mod 77
y = 20 mod 99

8 Ph. Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165–190.
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Effective computable approximations of an
[in]finite set of points; Linear

congruences 9

x

y

1x+ 9y = 7 mod 8
2x` 1y = 9 mod 9

9 Ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program.
TAPSOFT ’91, pp. 169–192. LNCS 493, Springer, 1991.
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Effective computable approximations of an
[in]finite set of points; Trapezoidal lin-

ear congruences 10

x

y


1x+ 9y 2 [0; 77] mod 10
2x` 1y 2 [0; 99] mod 11

10 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM
ICS ’92.
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Refinement of iterates
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Graphic example: Refinement required
by false alarms

x(t)

t

."*%$//'0(1"0'

.+&#'(+&+*<#
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Graphic example: Partitionning

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening
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Graphic example: partitionned upward itera-
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Graphic example: partitionned upward itera-
tion with widening
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Graphic example: partitionned upward itera-
tion with widening
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Graphic example: partitionned upward itera-
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Graphic example: partitionned upward itera-
tion with widening
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Graphic example: partitionned upward itera-
tion with widening
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Graphic example: partitionned upward itera-
tion with widening
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: safety verification

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

."*%$//'0(1"0'
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Interval widening with threshold set

– The threshold set T is a finite set of numbers (plus
+1 and `1),
– [a; b]

!
T [a
0; b0] = [if a0 < a then maxf‘ 2 T j ‘ » a0g

else a;
if b0 > b then minfh 2 T j h – b0g

else b] :
– Examples (intervals):
- sign analysis: T = f`1; 0;+1g;
- strict sign analysis: T = f`1;`1; 0;+1;+1g;

– T is a parameter of the analysis.
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Combinations of abstractions
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Forward/reachability analysis

II
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Backward/ancestry analysis

II
F
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Iterated forward/backward analysis

I
F

I
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Example of iterated forward/backward analysis
Arithmetical mean of two integers x and y:
{x>=y}

while (x <> y) do
{x>=y+2}

x := x - 1;
{x>=y+1}

y := y + 1
{x>=y}

od
{x=y}

Necessarily x – y for proper termination
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Example of iterated forward/backward analysis
Adding an auxiliary counter k decremented in the loop
body and asserted to be null on loop exit:
{x=y+2k,x>=y}

while (x <> y) do
{x=y+2k,x>=y+2}

k := k - 1;
{x=y+2k+2,x>=y+2}

x := x - 1;
{x=y+2k+1,x>=y+1}

y := y + 1
{x=y+2k,x>=y}

od
{x=y,k=0}

assume (k = 0)
{x=y,k=0}

Moreover the differ-
ence of x and y must
be even for proper ter-
mination
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Applications of
abstract interpretation
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Theoretical applications of abstract interpretation

– Static Program Analysis [POPL ’77,78,79] inluding Data-
flow Analysis [POPL ’79,00], Set-based Analysis [FPCA ’95],
etc
– Syntax Analysis [TCS 290(1) 2002]
– Hierarchies of Semantics (including Proofs) [POPL ’92, TCS
277(1–2) 2002]
– Typing [POPL ’97]
– Model Checking [POPL ’00]
– Program Transformation [POPL ’02]
– Software watermarking [POPL ’04]
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Industrial applications of abstract
interpretation

– Program analysis and manipulation: a small rate of false
alarms is acceptable
- AiT: worst case execution time 11

- StackAnalyzer: stack usage analysis 11

– Program verification: no false alarms is acceptable
- TVLA: A system for generating abstract interpreters
- Astrée: verification of absence of run-time errors 11

11 applied to the primary flight control software of the Airbus A340/600 and A380 fly-by-wire systems
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Anticipated Content of Course 16.399:
Abstract Interpretation

– Today : an informal overview of abstract interpreta-
tion;
– The software verification problem (undecidability, com-
plexity, test, simulation, specification, formal methods
(deductive methods, model-checking, static analysis)
and their limitations, intuitive notion of approxima-
tion, false alarms);
– Mathematical foundations (naive set theory, first order
classical logic, lattice theory, fixpoints);
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– Semantics of programming languages (abstract syntax,
operational semantics, inductive definitions, example
of a simple imperative language, grammar and inter-
pretor of the language, trace semantics);
– Program specification and manual proofs (safety prop-
erties, Hoare logic, predicate transformers, liveness prop-
erties, linear-time temporal logic (LTL));
– Order-theoretic approximation (abstraction, closures,
Galois connections, fixpoint abstraction, widening, nar-
rowing, reduced product, absence of best approxima-
tion, refinement);
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– Principle of static analysis by abstract interpretation
(reachability analysis of a transition system, finite ap-
proximation, model-checking, infinite approximation,
static analysis, program-based versus language-based
analysis, limitations of finite approximations);
– Design of a generic structural abstract interpreter (col-
lecting semantics, non-relational and relational analy-
sis, convergence acceleration by wideing/narrowing);
– Static analysis (forward reachability analysis, back-
ward analysis, iterated forward/backward analysis, in-
evitability analysis, termination)
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