
What is static analysis
by abstract interpretation?

— 2 —

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

— 3 —

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

— 3 —

Example of static analysis (safety){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n; n0 must be initially nonnegative

(otherwise the program does not
terminate properly)

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1 ̀ j < n0 so no upper overflow

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1 ̀ i > 0 so no lower overflow

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

— 3 —

Static analysis by abstract interpretation

Verification: define and prove automatically a property of
the possible behaviors of a complex computer pro-
gram;

Abstraction: the reasoning/calculus can be done on an ab-
straction of these behaviors dealing only with those
elements of the behaviors related to the considered
property;

Theory: abstract interpretation.

— 4 —

Example of static analysis

Verification: absence of runtime errors;
Abstraction: polyhedral abstraction (affine inequalities);
Theory: abstract interpretation.

— 5 —

Potential impact of runtime errors
– 50% of the security attacks on computer systems are
through buffer overruns 1!
– Embedded computer system crashes easily result from
overflows of various kinds.

1 See for example the Microsoft Security Bulletins MS02-065, MS04-011, etc.

— 6 —

A very informal introduction
to the principles of
abstract interpretation

— 7 —

Semantics

The concrete semantics of a program formalizes (is a
mathematical model of) the set of all its possible execu-
tions in all possible execution environments.

— 8 —

Graphic example: Possible behaviors

x(t)

t

!"##$%&'(
)*+,'-)"*$'#

— 9 —

Undecidability

– The concrete mathematical semantics of a program is
an “infinite” mathematical object, not computable;
– All non trivial questions on the concrete program se-
mantics are undecidable.
Example: Kurt Gödel argument on termination
– Assume termination(P) would always terminates and
returns true iff P always terminates on all input data;
– The following program yields a contradiction

P ” while termination(P) do skip od.

— 10 —

Graphic example: Safety properties

The safety properties of a program express that no possi-
ble execution in any possible execution environment can
reach an erroneous state.

— 11 —

Graphic example: Safety property

x(t)

t

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

— 12 —

Safety proofs

– A safety proof consists in proving that the intersection
of the program concrete semantics and the forbidden
zone is empty;
– Undecidable problem (the concrete semantics is not
computable);
– Impossible to provide completely automatic answers
with finite computer resources and neither human in-
teraction nor uncertainty on the answer 2.

2 e.g. probabilistic answer.

— 13 —

Test/debugging

– consists in considering a subset of the possible execu-
tions;
– not a correctness proof;
– absence of coverage is the main problem.

— 14 —

Graphic example: Property test/simulation

x(t)

t

2'#)("3(+(3'4()*+,'-)"*$'#

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

5**"*(666

— 15 —

Abstract interpretation

– consists in considering an abstract semantics, that is
to say a superset of the concrete semantics of the pro-
gram;
– hence the abstract semantics covers all possible con-
crete cases;
– correct: if the abstract semantics is safe (does not in-
tersect the forbidden zone) then so is the concrete se-
mantics.

— 16 —

Graphic example: Abstract interpretation

x(t)

t

7%#)*+-)$"0("3()8'()*+,'-)"*$'#

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

— 17 —

Formal methods

Formal methods are abstract interpretations, which dif-
fer in the way to obtain the abstract semantics:
– “model checking”:
- the abstract semantics is given manually by the user;
- in the form of a finitary model of the program exe-
cution;
- can be computed automatically, by techniques rele-
vant to static analysis.

— 18 —

– “deductive methods”:
- the abstract semantics is specified by verification con-
ditions;
- the user must provide the abstract semantics in the
form of inductive arguments (e.g. invariants);
- can be computed automatically by methods relevant
to static analysis.

– “static analysis”: the abstract semantics is computed
automatically from the program text according to pre-
defined abstractions (that can sometimes be tailored
automatically/manually by the user).

— 19 —

Required properties of the abstract semantics

– sound so that no possible error can be forgotten;
– precise enough (to avoid false alarms);
– as simple/abstract as possible (to avoid combinatorial
explosion phenomena).

— 20 —

Graphic example: Erroneous abstraction — I

x(t)

t

5**"0'"9#()*+,'-)"*:(+%#)*+-)$"0

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

5**"*(666

— 21 —

Graphic example: Erroneous abstraction — II

x(t)

t

5**"0'"9#()*+,'-)"*:(+%#)*+-)$"0

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

5**"*(666

— 22 —

Graphic example: Imprecision) false alarms

x(t)

t

;<=*'-$#'()*+,'-)"*:(+%#)*+-)$"0

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

.+&#'(+&+*<

— 23 —

Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . .);

– can be parametrized to allow for manual adaptation
to the application domains.

— 24 —

Graphic example: Standard abstraction
by intervals

x(t)

t

;<=*'-$#'()*+,'-)"*:(+%#)*+-)$"0(%:($0)'*>+&#

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

.+&#'(+&+*<#

— 25 —

Graphic example: A more refined abstraction

x(t)

t

?'3$0'<'0)("3($0)'*>+&#

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

— 26 —

A very informal introduction
to static analysis
algorithms

— 27 —

Trace semantics

— 28 —

Trace semantics

– Consider (possibly infinite) traces that is series of states
corresponding to executions described by discrete tran-
sitions;
– The collection of all such traces, starting from the ini-
tial states, is the trace semantics.

— 29 —

Graphic example: Small-steps transition
semantics

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 30 —

Trace semantics, intuition
!"#$#%& '$%$('

)#"%& '$%$(' *+ $,(-

 +#"#$($.%/('!"$(.0(1#%$(-'$%$('

!"+#"#$(-

$.%/('

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -: - ; - 1#'/.($($#0(--

<

!

"

#

!

"

#

— 31 —

Prefix trace semantics

— 32 —

Prefixes of a finite trace
!"#$#%& '$%$()#"%& '$%$(

!"$(.0(1#%$(-'$%$('

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -1#'/.($($#0(--

<

!

"

#

!

"

#

=-+#"#$(-$.%/(

!$'-+#"#$(->.(+#?('

— 33 —

Prefixes of an infinite trace

!"#$#%& '$%$('
!"$(.0(1#%$(-'$%$('

="-#"+#"#$(-

$.%/(

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -: - ; - 1#'/.($($#0(--

<

!

"

#

!

"

#

!$'-+#"#$(-

>.(+#?('

— 34 —

Prefix trace semantics

Trace semantics: maximal finite and infinite behaviors
Prefix trace semantics: finite prefixes of the maximal be-

haviors

— 35 —

Abstraction
This is an abstraction. For example:

Trace semantics: fanb j n – 0g
Prefix trace semantics: fan j n – 0g[fanb j n – 0g

Is there of possible behavior with infinitely many succes-
sive a?

– Trace semantics: no

– Prefix trace semantics: I don’t know

— 36 —

Prefix trace semantics
in fixpoint form

— 37 —

Least Fixpoint Prefix Trace Semantics

Prefixes = f› j › is an initial stateg

[f›̀ `̀ : : :̀ `̀ ›̀ `̀ › j ›̀ `̀ : : :̀ `̀ › 2 Prefixes

& ›̀ `̀ › is a transition stepg

› In general, the equation Prefixes = F (Prefixes) may
have multiple solutions;
› Choose the least one for subset inclusion „.

› Abstractions of this equation lead to effective iterative
analysis algorithms.

— 38 —

Collecting semantics

— 39 —

Collecting semantics

– Collect all states that can appear on some trace at any
given discrete time:

@.%/(-

'(0%"$#/'

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -: - ; - 1#'/.($($#0(--

<

!

"

#

!

"

#

A*&&(/$#"B-

'(0%"$#/'

— 40 —

Collecting abstraction

– This is an abstraction. Does the red trace exists?
Trace semantics: no, collecting semantics: I don’t know.

@.%/(-

'(0%"$#/'

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -: - ; - 1#'/.($($#0(--

<

!

"

#

!

"

#

A*&&(/$#"B-

'(0%"$#/'

C>D.#*D'-$.%/(

— 41 —

Graphic example: collecting semantics

x(t)

t

— 42 —

Collecting semantics
in fixpoint form

— 43 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Graphic example: collecting semantics
in fixpoint form

x(t)

t

— 44 —

Interval Abstraction
(in iterative fixpoint form)

— 45 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Graphic example: traces of intervals
in fixpoint form

x(t)

t

— 46 —

Abstraction by Galois connections

— 47 —

Abstracting sets (i.e. properties)

– Choose an abstract domain, replacing sets of objects
(states, traces, . . .) S by their abstraction ¸(S)
– The abstraction function ¸ maps a set of concrete ob-
jects to its abstract interpretation;
– The inverse concretization function ‚ maps an abstract
set of objects to concrete ones;
– Forget no concrete objects: (abstraction from above)
S „ ‚(¸(S)).

— 48 —

Interval abstraction ¸

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g

— 49 —

Interval concretization ‚

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g

— 50 —

The abstraction ¸ is monotone

!

"

!!"

#

%&

&!''

("

!)

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X „ Y) ¸(X) v ¸(Y)

— 51 —

The concretization ‚ is monotone

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X v Y) ‚(X) „ ‚(Y)

— 52 —

The ‚ ‹ ¸ composition is extensive

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g

X „ ‚ ‹ ¸(X)

— 53 —

The ¸ ‹ ‚ composition is reductive

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g
==v

fx : [1; 99]; y : [2; 77]g

¸ ‹ ‚(Y) ==v Y

— 54 —

Correspondance between concrete and
abstract properties

– The pair h¸; ‚i is a Galois connection:

h}(S); „i `̀ !̀ ̀`̀¸
‚
hD; vi

– h}(S); „i `̀`!̀! ̀`̀`
¸

‚
hD; vi when ¸ is onto (equivalently

¸ ‹ ‚ = 1 or ‚ is one-to-one).

— 55 —

Galois connection

hD;„i `̀ !̀ ̀`̀¸
‚
hD;vi

iff 8x; y 2 D : x „ y =) ¸(x) v ¸(y)

^ 8x; y 2 D : x v y =) ‚(x) „ ‚(y)
^ 8x 2 D : x „ ‚(¸(x))

^ 8y 2 D : ¸(‚(y)) v x

iff 8x 2 D; y 2 D : ¸(x) v y () x „ ‚(y)

— 56 —

Example: Set of traces to trace of intervals
abstraction

Set of traces:

¸1 #

Trace of sets:

¸2 #

Trace of intervals

— 57 —

Example: Set of traces to reachable states
abstraction

Set of traces:

¸1 #

Trace of sets:

¸3 #

Reachable states

— 58 —

Composition of Galois Connections

The composition of Galois connections:

hL; »i `̀ !̀ ̀ `̀
¸1

‚1 hM; vi

and:

hM; vi `̀ !̀ ̀ `̀
¸2

‚2 hN; —i

is a Galois connection:

hL; »i `̀`̀ `̀! ̀`̀ `̀`
¸2‹¸1

‚1‹‚2 hN; —i

— 59 —

Convergence acceleration
by widening/narrowing

— 60 —

Graphic example: upward iteration
with widening

x(t)

t

;0$)$+&(#)+)'#

— 61 —

Graphic example: upward iteration
with widening

x(t)

t
;0)'*>+&()*+0#$)$"0

— 61 —

Graphic example: upward iteration
with widening

x(t)

t
;0)'*>+&()*+0#$)$"0(4$)8(4$/'0$0@

— 61 —

Graphic example: upward iteration
with widening

x(t)

t

;0)'*>+&()*+0#$)$"0(4$)8(4$/'0$0@

— 61 —

Graphic example: stability of the
upward iteration

x(t)

t

— 62 —

Interval widening
– L = f?g[f[‘; u] j ‘; u 2 Z[f`1g^u 2 Z[fg^‘ » ug
– The widening extrapolates unstable bounds to infinity:

?
!
X = X

X
!
? = X

[‘0; u0]
!
[‘1; u1] = [if ‘1 < ‘0 then `1 else ‘0;

if u1 > u0 then +1 else u0]

Not monotone. For example [0; 1] v [0; 2] but [0; 1]
!

[0; 2] = [0; +1] 6v [0; 2] = [0; 2]
!
[0; 2]

— 63 —

Example: Interval analysis (1975)
Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

— 64 —

Example: Interval analysis (1975)
Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

— 65 —

Example: Interval analysis (1975)
Resolution by chaotic increasing iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = ;
X2 = ;
X3 = ;
X4 = ;

— 66 —

Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = ;
X3 = ;
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 1]
X3 = ;
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 1]
X3 = [2; 2]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 2]
X3 = [2; 2]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 2]
X3 = [2; 3]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 3]
X3 = [2; 3]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 3]
X3 = [2; 4]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 4]
X3 = [2; 4]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 4]
X3 = [2; 5]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 5]
X3 = [2; 5]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 5]
X3 = [2; 6]
X4 = ;

— 67 —

Example: Interval analysis (1975)
Convergence speed-up by widening:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1;+1] (widening
X3 = [2; 6]
X4 = ;

— 68 —

Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1;+1]
X3 = [2;+1]
X4 = ;

— 69 —

Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+1]
X4 = ;

— 69 —

Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = ;

— 69 —

Example: Interval analysis (1975)
Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]

— 70 —

Example: Interval analysis (1975)
Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x 2 [1; 9999]}

x := x + 1
3: {x 2 [2;+10000]}

od;
4: {x = 10000}

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]

— 71 —

Example: Interval analysis (1975)
Checking absence of runtime errors with interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x 2 [1; 9999]}

x := x + 1
3: {x 2 [2;+10000]}

od;
4: {x = 10000}

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

 ̀ no overflow
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]

— 72 —

Refinement of abstractions

— 73 —

Approximations of an [in]finite set of points:
from above

x

y

f: : : ; h19; 77i; : : : ;
h20; 03i; : : :g

— 74 —

Approximations of an [in]finite set of points:
from above

x

y f: : : ; h19; 77i; : : : ;

h20; 03i; h?; ?i; : : :g

From Below: dual 3 + combinations.

3 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).

— 75 —

Effective computable approximations of an
[in]finite set of points; Signs 4

x

y

x – 0
y – 0

4 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282,
1979.

— 76 —

Effective computable approximations of an
[in]finite set of points; Intervals 5

x

y

x 2 [19; 77]
y 2 [20; 03]

5 P. Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2nd Int. Symp. on
Programming, Dunod, 1976.

— 77 —

Effective computable approximations of an
[in]finite set of points; Octagons 6

x

y

8
>>><

>>>:

1 » x » 9
x+ y » 77
1 » y » 9
x` y » 99

6 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO ’2001.
LNCS 2053, pp. 155–172. Springer 2001. See the The Octagon Abstract Domain Library on
http://www.di.ens.fr/~mine/oct/

— 78 —

Effective computable approximations of an
[in]finite set of points; Polyhedra 7

x

y

19x+ 77y » 2004
20x+ 03y – 0

7 P. Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM
POPL, 1978, pp. 84–97.

— 79 —

Effective computable approximations of an
[in]finite set of points; Simple

congruences 8

x

y

x = 19 mod 77
y = 20 mod 99

8 Ph. Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165–190.

— 80 —

Effective computable approximations of an
[in]finite set of points; Linear

congruences 9

x

y

1x+ 9y = 7 mod 8
2x` 1y = 9 mod 9

9 Ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program.
TAPSOFT ’91, pp. 169–192. LNCS 493, Springer, 1991.

— 81 —

Effective computable approximations of an
[in]finite set of points; Trapezoidal lin-

ear congruences 10

x

y


1x+ 9y 2 [0; 77] mod 10
2x` 1y 2 [0; 99] mod 11

10 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM
ICS ’92.

— 82 —

Refinement of iterates

— 83 —

Graphic example: Refinement required
by false alarms

x(t)

t

."*%$//'0(1"0'

.+&#'(+&+*<#

— 84 —

Graphic example: Partitionning

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 85 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

— 86 —

Graphic example: safety verification

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

."*%$//'0(1"0'

— 87 —

Interval widening with threshold set

– The threshold set T is a finite set of numbers (plus
+1 and `1),
– [a; b]

!
T [a
0; b0] = [if a0 < a then maxf‘ 2 T j ‘ » a0g

else a;
if b0 > b then minfh 2 T j h – b0g

else b] :
– Examples (intervals):
- sign analysis: T = f`1; 0;+1g;
- strict sign analysis: T = f`1;`1; 0;+1;+1g;

– T is a parameter of the analysis.

— 88 —

Combinations of abstractions

— 89 —

Forward/reachability analysis

II

— 90 —

Backward/ancestry analysis

II
F

— 91 —

Iterated forward/backward analysis

I
F

I

— 92 —

Example of iterated forward/backward analysis
Arithmetical mean of two integers x and y:
{x>=y}

while (x <> y) do
{x>=y+2}

x := x - 1;
{x>=y+1}

y := y + 1
{x>=y}

od
{x=y}

Necessarily x – y for proper termination

— 93 —

Example of iterated forward/backward analysis
Adding an auxiliary counter k decremented in the loop
body and asserted to be null on loop exit:
{x=y+2k,x>=y}

while (x <> y) do
{x=y+2k,x>=y+2}

k := k - 1;
{x=y+2k+2,x>=y+2}

x := x - 1;
{x=y+2k+1,x>=y+1}

y := y + 1
{x=y+2k,x>=y}

od
{x=y,k=0}

assume (k = 0)
{x=y,k=0}

Moreover the differ-
ence of x and y must
be even for proper ter-
mination

— 94 —

Applications of
abstract interpretation

— 95 —

Theoretical applications of abstract interpretation

– Static Program Analysis [POPL ’77,78,79] inluding Data-
flow Analysis [POPL ’79,00], Set-based Analysis [FPCA ’95],
etc
– Syntax Analysis [TCS 290(1) 2002]
– Hierarchies of Semantics (including Proofs) [POPL ’92, TCS
277(1–2) 2002]
– Typing [POPL ’97]
– Model Checking [POPL ’00]
– Program Transformation [POPL ’02]
– Software watermarking [POPL ’04]

— 96 —

Industrial applications of abstract
interpretation

– Program analysis and manipulation: a small rate of false
alarms is acceptable
- AiT: worst case execution time 11

- StackAnalyzer: stack usage analysis 11

– Program verification: no false alarms is acceptable
- TVLA: A system for generating abstract interpreters
- Astrée: verification of absence of run-time errors 11

11 applied to the primary flight control software of the Airbus A340/600 and A380 fly-by-wire systems

— 97 —

Bibliography

— 98 —

Seminal papers
– Patrick Cousot & Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In 4th Symp. on Prin-
ciples of Programming Languages, pages 238—252. ACM Press,
1977.
– Patrick Cousot & Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In 5th Symp.
on Principles of Programming Languages, pages 84—97. ACM
Press, 1978.
– Patrick Cousot & Radhia Cousot. Systematic design of pro-
gram analysis frameworks. In 6th Symp. on Principles of Pro-
gramming Languages pages 269—282. ACM Press, 1979.

— 99 —

Recent surveys
– Patrick Cousot. Interprétation abstraite. Technique et Science
Informatique, Vol. 19, Nb 1-2-3. Janvier 2000, Hermès, Paris,
France. pp. 155-164.
– Patrick Cousot. Abstract Interpretation Based Formal Meth-
ods and Future Challenges. In Informatics, 10 Years Back —
10 Years Ahead, R. Wilhelm (Ed.), LNCS 2000, pp. 138-156,
2001.
– Patrick Cousot & Radhia Cousot. Abstract Interpretation
Based Verification of Embedded Software: Problems and Per-
spectives. In Proc. 1st Int. Workshop on Embedded Software,
EMSOFT 2001, T.A. Henzinger & C.M. Kirsch (Eds.), LNCS
2211, pp. 97–113. Springer, 2001.

— 100 —

— 101 —

Anticipated Content of Course 16.399:
Abstract Interpretation

– Today : an informal overview of abstract interpreta-
tion;
– The software verification problem (undecidability, com-
plexity, test, simulation, specification, formal methods
(deductive methods, model-checking, static analysis)
and their limitations, intuitive notion of approxima-
tion, false alarms);
– Mathematical foundations (naive set theory, first order
classical logic, lattice theory, fixpoints);

— 102 —

– Semantics of programming languages (abstract syntax,
operational semantics, inductive definitions, example
of a simple imperative language, grammar and inter-
pretor of the language, trace semantics);
– Program specification and manual proofs (safety prop-
erties, Hoare logic, predicate transformers, liveness prop-
erties, linear-time temporal logic (LTL));
– Order-theoretic approximation (abstraction, closures,
Galois connections, fixpoint abstraction, widening, nar-
rowing, reduced product, absence of best approxima-
tion, refinement);

— 103 —

– Principle of static analysis by abstract interpretation
(reachability analysis of a transition system, finite ap-
proximation, model-checking, infinite approximation,
static analysis, program-based versus language-based
analysis, limitations of finite approximations);
– Design of a generic structural abstract interpreter (col-
lecting semantics, non-relational and relational analy-
sis, convergence acceleration by wideing/narrowing);
– Static analysis (forward reachability analysis, back-
ward analysis, iterated forward/backward analysis, in-
evitability analysis, termination)

— 104 —

