
First-Order Logic



Syntax

Definition

The alphabet of a first-order language is organised into the following categories.

Logical connectives: ⊥, ¬, ∧, ∨, →, ∀ and ∃.

Auxiliary symbols: “.”, “,”, “(“ and “)”.

Variables: we assume a countable infinite set X of variables, ranged over by
x , y , z, . . ..

Constant symbols: we assume a countable set C of constant symbols, ranged
over by a, b, c, . . ..

Function symbols: we assume a countable set F of function symbols, ranged
over by f , g , h, . . .. Each function symbol f has a fixed arity ar(f ), which is a
positive integer.

Predicate symbols: we assume a countable set P of predicate symbols, ranged
over by P, Q, R, . . .. Each predicate symbol P has a fixed arity ar(P), which is a
non-negative integer. (Predicate symbols with arity 0 play the role of
propositions.)

The union of the non-logical symbols of the language is called the vocabulary and is
denoted by V , i.e. V = C ∪ F ∪ P.

Notation

Throughout, and when not otherwise said, we assume a vocabulary V = C ∪ F ∪ P.



Syntax

Definition

The set of terms of a first-order language over a vocabulary V is given by:

TermV ∋ t, u ::= x | c | f (t1, . . . , tar(f ))

The set of variables occurring in t is denoted by Vars(t).

Definition

The set of formulas of a first-order language over a vocabulary V is given by:

FormV ∋ φ, ψ, θ ::= P(t1, . . . , tar(P)) | ⊥ | (¬φ) | (φ ∧ ψ) | (φ ∨ ψ)
| (φ → ψ) | (∀x . φ) | (∃x . φ)

An atomic formula has the form ⊥ or P(t1, . . . , tar(P)).

Remark

We assume the conventions of propositional logic to omit parentheses, and
additionally assume that quantifiers have the lowest precedence.
Nested quantifications such as ∀x .∀y . φ are abbreviated to ∀x , y . φ.
There are recursion and induction principles (e.g. structural ones) for TermV

and FormV .



Syntax

Definition

A formula ψ that occurs in a formula φ is called a subformula of φ.
In a quantified formula ∀x . φ or ∃x . φ, x is the quantified variable and φ is the
scope of the quantification.
Occurrences of the quantified variable within the respective scope are said to be
bound. Variable occurrences that are not bound are said to be free.
The set of free variables (resp.bound variables) of a formula θ, is denoted FV(θ)
(resp. BV(θ)).

Definition

A sentence (or closed formula) is a formula without free variables.
If FV(φ) = {x1, . . . , xn}, the universal closure of φ is the formula ∀x1, . . . , xn . φ
and the existential closure of φ is the formula ∃x1, . . . , xn . φ.

Definition

A substitution is a mapping σ : X− > TermV s.t. the set
dom(σ) = {x ∈ X | σ(x) ,= x}, called the substitution domain, is finite.
The notation [t1/x1, . . . , tn/xn] (for distinct xi ’s) denotes the substitution whose
domain is contained in {x1, . . . , xn} and maps each xi to ti .



Syntax

Definition

The application of a substitution σ to a term t is denoted by t σ and is defined
recursively by:

x σ = σ(x)
c σ = c

f (t1, . . . , tar(f )) σ = f (t1 σ, . . . , tar(f ) σ)

Remark

The result of
t [t1/x1, . . . , tn/xn]

corresponds to the simultaneous substitution of t1, . . . , tn for x1, . . . , xn in t. This
differs from the application of the corresponding singleton substitutions in sequence,

((t [t1/x1]) . . .) [tn/xn] .

Notation

Given a function f : X −→ Y , x ∈ X and y ∈ Y , the notation f [x 4→ y ] stands for the
function defined as f except possibly for x, to which y is assigned, called the patching
of f in x to y.



Syntax

Definition

The application of a substitution σ to a formula φ, written φ σ, is given recursively by:

⊥σ = ⊥

P(t1, . . . , tar(P)) σ = P(t1 σ, . . . , tar(P) σ)

(¬φ) σ = ¬(φ σ)

(φ ⊙ ψ) σ = (φ σ) ⊙ (ψ σ)

(Qx . φ) σ = Qx . (φ(σ[x 4→ x]))

where ⊙ ∈ {∧,∨ →} and Q ∈ {∀, ∃}.

Remark

Only free occurrences of variables can change when a substitution is applied to
a formula.
Unrestricted application of substitutions to formulas can cause capturing of
variables as in: (∀x .P(x , y)) [g(x)/y ] = ∀x .P(x , g(x))
“Safe substitution” (which we assume throughout) is achieved by imposing that
a substitution when applied to a formula should be free for it.

Definition

A term t is free for x in θ iff x has no free occurrences in the scope of a
quantifier Qy (y ,= x) s.t. y ∈ Vars(t).
A substitution σ is free for θ iff σ(x) is free for x in θ, for all x ∈ dom(σ).



Semantics

Definition

Given a vocabulary V , a V -structure is a pair M = (D, I ) where D is a nonempty
set, called the interpretation domain, and I is called the interpretation function, and
assigns constants, functions and predicates over D to the symbols of V as follows:

for each c ∈ C, the interpretation of c is a constant I (c) ∈ D;
for each f ∈ F , the interpretation of f is a function I (f ) : Dar(f ) → D;
for each P ∈ P, the interpretation of P is a function I (P) : Dar(P) → {F, T}. In
particular, 0-ary predicate symbols are interpreted as truth values.

V -structures are also called models for V .

Definition

Let D be the interpretation domain of a structure. An assignment for D is a function
α : X → D from the set of variables to the domain D.

Notation

In what follows, we let M,M′, ... range over the structures of an intended vocabulary,
and α, α′, ... range over the assignments for the interpretation domain of an intended
structure.



Semantics

Definition

Let M = (D, I ) be a V -structure and α an assignment for D.

The value of a term t w.r.t. M and α is an element of D, denoted by [[t]]M,α,
and recursively given by:

[[x]]M,α = α(x)
[[c]]M,α = I (c)
[[f (t1, . . . , tar(f ))]]M,α = I (f )([[t1]]M,α, . . . , [[tar(f )]]M,α)

The (truth) value of a formula φ w.r.t. M and α, is denoted by [[φ]]M,α, and
recursively given by:

[[⊥]]M,α = F

[[P(t1, . . . , tar(P))]]M,α = I (P)([[t1]]M,α, . . . , [[tar(P)]]M,α)
[[¬φ]]M,α = T iff [[φ]]M,α = F

[[φ ∧ ψ]]M,α = T iff [[φ]]M,α = T and [[ψ]]M,α = T

[[φ ∨ ψ]]M,α = T iff [[φ]]M,α = T or [[ψ]]M,α = T

[[φ → ψ]]M,α = T iff [[φ]]M,α = F or [[ψ]]M,α = T

[[∀x . φ]]M,α = T iff [[φ]]M,α[x &→a] = T for all a ∈ D
[[∃x . φ]]M,α = T iff [[φ]]M,α[x &→a] = T for some a ∈ D



Semantics

Remark

Universal and existential quantifications are indeed a gain over PL. They can be read
(resp.) as generalised conjunction and disjunction (possibly infinite):

[[∀x . φ]]M,α =
∧

a∈D

[[φ]]M,α[x &→a] [[∃x . φ]]M,α =
∨

a∈D

[[φ]]M,α[x &→a]

Definition

Let V be a vocabulary and M a V -structure.

M satisfies φ with α, denoted by M, α |= φ, iff [[φ]]M,α = T.
M satisfies φ (or that φ is valid in M, or M is a model of φ), denoted by
M |= φ, iff for every assignment α, M, α |= φ.
φ is satisfiable if exists M s.t. M |= φ, and it is valid, denoted by |= φ, if
M |= φ for every M. φ is unsatisfiable (or a contradiction) if it is not
satisfiable, and refutable if it is not valid.

Lemma

Let M be a structure, t and u terms, φ a formula, and α, α′ assignments.

If for all x ∈ Vars(t), α(x) = α′(x), then [[t]]M,α = [[t]]M,α′

If for all x ∈ FV(φ), α(x) = α′(x), then M, α |= φ iff M, α′ |= φ.
[[t [u/x]]]M,α = [[t]]M,α[x &→[[u]]M,α]

If t is free for x in φ, then M, α |= φ [t/x] iff M, α[x 4→ [[M]]α,t ] |= φ.



Semantics

Proposition (Lifting validity of PL)

Let ⌈·⌉ : Prop − > FormV , be a mapping from the set of proposition symbols to
first-order formulas and denote also by ⌈·⌉ its homomorphic extension to all
propositional formulas. Then, for all propositional formulas A and B:

M, α |= ⌈A⌉ iff Mα |=PL A, where Mα = {P | M, α |= ⌈P⌉}.
If |=PL A, then |=FOL ⌈A⌉.
If A ≡PL B, then ⌈A⌉ ≡FOL ⌈B⌉.

Some properties of logical equivalence

The properties of logical equivalence listed for PL hold for FOL.
The following equivalences hold:

¬∀x . φ ≡ ∃x .¬φ ¬∃x . φ ≡ ∀x .¬φ

∀x . φ ∧ ψ ≡ (∀x . φ) ∧ (∀x .ψ) ∃x . φ ∨ ψ ≡ (∃x . φ) ∨ (∃x .ψ)

For Q ∈ {∀, ∃}, if y is free for x in φ and y ,∈ FV(φ), then Qx . φ ≡ Qy . φ [y/x].
For Q ∈ {∀, ∃}, if x ,∈ FV(φ), then Qx . φ ≡ φ.
For Q ∈ {∀, ∃} and ⊙ ∈ {∧,∨}, if x ,∈ FV(ψ), then Qx . φ ⊙ ψ ≡ (Qx . φ) ⊙ ψ.



Semantics

Definition

A formula is in prenex form if it is of the form Q1x1.Q2x2. . . . Qnxn.ψ (possibly with
n = 0) where each Qi is a quantifier (either ∀ or ∃) and ψ is a quantifier-free formula .

Proposition

For any formula of first-order logic, there exists an equivalent formula in prenex form.

Proof.

Such a prenex form can be obtained by rewriting, using the logical equivalences listed
before.

Remark

Unlike PL, the validity problem of FOL is not decidable, but it is semi-decidable, i.e.
there are procedures s.t., given a formula φ, they terminate with “yes” if φ is valid but
may fail to terminate if φ is not valid.



Semantics

Definition

M satisfies Γ with α, denoted by M, α |= Γ, if M, α |= φ for every φ ∈ Γ.
The notions of satisfiable, valid, unsatisfiable and refutable set of formulas are
defined in the expected way.
Γ entails φ (or φ is a logical consequence of Γ), denoted by Γ |= φ, iff for every
structure M and assignment α, if M, α |= Γ then M, α |= φ.
φ is logically equivalent to ψ , denoted by φ ≡ ψ, iff [[φ]]M,α = [[ψ]]M,α for
every structure M and assignment α.

Some properties of semantic entailment

The properties of semantic entailment listed for PL hold for FOL.
If t is free for x in φ and Γ |= ∀x . φ, then Γ |= φ [t/x].
If x ,∈ FV(Γ) and Γ |= φ, then Γ |= ∀x . φ.
If t is free for x in φ and Γ |= φ [t/x], then Γ |= ∃x . φ.
If x ,∈ FV(Γ ∪ {ψ}), Γ |= ∃x . φ and Γ, φ |= ψ, then Γ |= ψ.



Proof system

The natural deduction system NFOL

The proof system for FOL we consider is a natural deduction system in sequent
style extending NPL.
The various definitions made in the context of NPL carry over to NFOL. The
difference is thatNFOL deals with first-order formulas and it has additional
introduction and elimination rules to deal with the quantifiers.

Quantifier rules of NFOL

Γ ⊢ φ [y/x]
(I∀) (a)

Γ ⊢ ∀x . φ

Γ ⊢ ∀x . φ
(E∀)

Γ ⊢ φ [t/x]

Γ ⊢ φ [t/x]
(I∃)

Γ ⊢ ∃x . φ

Γ ⊢ ∃x . φ Γ, φ [y/x] ⊢ θ
(E∃) (b)

Γ ⊢ θ

(a) y ,∈ FV(Γ) and either x = y or y ,∈ FV(φ).
(b) y ,∈ FV(Γ ∪ {θ}) and either x = y or y ,∈ FV(φ).
(c) Recall that we assume safe substitution, i.e. in a substitution φ[t/x], we assume
that t is free for x in φ.

Remark

The properties of NPL can be extended to NFOL, in particular the soundness and
completeness theorems.

Theorem (Adequacy)

Γ |= ϕ iff Γ ⊢ ϕ.



First-order theories

Definition

Let V be a vocabulary of a first-order language.

A first-order theory T is a set of V -sentences that is closed under derivability
(i.e., T ⊢ φ implies φ ∈ T ). A T -structure is a V -structure that validates every
formula of T .
A formula φ is T -valid (resp. T -satisfiable) if every (resp. some) T -structure
validates φ. T |= φ denotes the fact that φ is T -valid.
Other concepts regarding validity of first-order formulas are carried over to
theories in the obvious way.

Definition

A subset A ⊆ T is called an axiom set for the theory T when T is the deductive
closure of A , i.e. ψ ∈ T iff A ⊢ ψ, or equivalently, iff ⊢ ψ can be derived in NFOL

with an axiom-schema:
if φ ∈ A

Γ ⊢ φ

.



First-order theories

Equality theory

The theory of equality TE for V (which is assumed to have a binary equality
predicate symbol “=”) has the following axiom set:

reflexivity: ∀x . x = x
symmetry: ∀x , y . x = y → y = x
transitivity: ∀x , y , z . x = y ∧ y = z → x = z
congruence for function symbols: for every f ∈ F with ar(f ) = n,

∀x , y . x1 = y1 ∧ . . . ∧ xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn)

congruence for predicate symbols: for every P ∈ P with ar(P) = n,

∀x , y . x1 = y1 ∧ . . . ∧ xn = yn → P(x1, . . . , xn) → P(y1, . . . , yn)

Theorem

A sentence φ is valid in all normal structures (i.e. structures which interpret = as the
equality relation over the interpretation domain) iff φ ∈ TE .


