First-Order Logic

Definition

The alphabet of a first-order language is organised into the following categories.

- Logical connectives: \bot , \neg , \land , \lor , \rightarrow , \forall and \exists .
- Auxiliary symbols: ".", ",", "(" and ")".
- Variables: we assume a countable infinite set \mathcal{X} of variables, ranged over by x, y, z, \ldots
- Constant symbols: we assume a countable set C of constant symbols, ranged over by a, b, c,
- Function symbols: we assume a countable set F of function symbols, ranged over by f, g, h, Each function symbol f has a fixed arity ar(f), which is a positive integer.
- Predicate symbols: we assume a countable set P of predicate symbols, ranged over by P, Q, R, Each predicate symbol P has a fixed arity ar(P), which is a non-negative integer. (Predicate symbols with arity 0 play the role of propositions.)

The union of the non-logical symbols of the language is called the *vocabulary* and is denoted by \mathcal{V} , i.e. $\mathcal{V} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$.

Notation

Throughout, and when not otherwise said, we assume a vocabulary $\mathcal{V}_{-} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}_{-}$.

Definition

The set of *terms* of a first-order language over a vocabulary \mathcal{V} is given by:

Term_{$$\mathcal{V}$$} \ni $t, u ::= x | c | f(t_1, \ldots, t_{ar(f)})$

The set of variables occurring in t is denoted by Vars(t).

Definition

The set of *formulas* of a first-order language over a vocabulary \mathcal{V} is given by:

$$\begin{array}{ll} \mathsf{Form}_{\mathcal{V}} & \ni \phi, \psi, \theta & ::= & P(t_1, \dots, t_{\mathsf{ar}(P)}) \mid \bot \mid (\neg \phi) \mid (\phi \land \psi) \mid (\phi \lor \psi) \\ & \mid (\phi \to \psi) \mid (\forall x. \phi) \mid (\exists x. \phi) \end{array}$$

An *atomic formula* has the form \perp or $P(t_1, \ldots, t_{ar(P)})$.

Remark

- We assume the conventions of propositional logic to omit parentheses, and additionally assume that quantifiers have the lowest precedence.
- Nested quantifications such as $\forall x . \forall y . \phi$ are abbreviated to $\forall x, y . \phi$.
- There are recursion and induction principles (e.g. structural ones) for $\text{Term}_{\mathcal{V}}$ and $\text{Form}_{\mathcal{V}}$.

Definition

- A formula ψ that occurs in a formula ϕ is called a *subformula* of ϕ .
- In a quantified formula $\forall x. \phi$ or $\exists x. \phi, x$ is the *quantified variable* and ϕ is the *scope* of the quantification.
- Occurrences of the quantified variable within the respective scope are said to be bound. Variable occurrences that are not bound are said to be *free*.
- The set of *free variables* (resp. *bound variables*) of a formula θ, is denoted FV(θ) (resp. BV(θ)).

Definition

- A *sentence* (or *closed* formula) is a formula without free variables.
- If $FV(\phi) = \{x_1, \ldots, x_n\}$, the *universal closure* of ϕ is the formula $\forall x_1, \ldots, x_n, \phi$ and the *existential closure* of ϕ is the formula $\exists x_1, \ldots, x_n, \phi$.

Definition

- A substitution is a mapping σ : X − > Term_V s.t. the set dom(σ) = {x ∈ X | σ(x) ≠ x}, called the substitution domain, is finite.
- The notation $[t_1/x_1, \ldots, t_n/x_n]$ (for distinct x_i 's) denotes the substitution whose domain is contained in $\{x_1, \ldots, x_n\}$ and maps each x_i to t_i .

Definition

The application of a substitution σ to a term t is denoted by $t \sigma$ and is defined recursively by:

$$\begin{array}{rcl} x \, \sigma & = & \sigma(x) \\ c \, \sigma & = & c \\ f(t_1, \dots, t_{\mathsf{ar}(f)}) \, \sigma & = & f(t_1 \, \sigma, \dots, t_{\mathsf{ar}(f)} \, \sigma) \end{array}$$

Remark

The result of

 $t[t_1/x_1,\ldots,t_n/x_n]$

corresponds to the simultaneous substitution of t_1, \ldots, t_n for x_1, \ldots, x_n in t. This differs from the application of the corresponding singleton substitutions in sequence,

```
((t [t_1/x_1])...)[t_n/x_n].
```

Notation

Given a function $f : X \longrightarrow Y$, $x \in X$ and $y \in Y$, the notation $f[x \mapsto y]$ stands for the function defined as f except possibly for x, to which y is assigned, called the patching of f in x to y.

Definition

The application of a substitution σ to a formula ϕ , written $\phi \sigma$, is given recursively by:

where $\odot \in \{\land, \lor \rightarrow\}$ and $Q \in \{\forall, \exists\}$.

Remark

- Only free occurrences of variables can change when a substitution is applied to a formula.
- Unrestricted application of substitutions to formulas can cause capturing of variables as in: $(\forall x. P(x, y)) [g(x)/y] = \forall x. P(x, g(x))$
- "Safe substitution" (which we assume throughout) is achieved by imposing that a substitution when applied to a formula should be free for it.

Definition

- A term t is free for x in θ iff x has no free occurrences in the scope of a quantifier Qy (y ≠ x) s.t. y ∈ Vars(t).
- A substitution σ is free for θ iff $\sigma(x)$ is free for x in θ , for all $x \in dom(\sigma)$.

Definition

Given a vocabulary \mathcal{V} , a \mathcal{V} -structure is a pair $\mathcal{M} = (D, I)$ where D is a nonempty set, called the *interpretation domain*, and I is called the *interpretation function*, and assigns constants, functions and predicates over D to the symbols of \mathcal{V} as follows:

- for each $c \in C$, the interpretation of c is a constant $I(c) \in D$;
- for each $f \in \mathcal{F}$, the interpretation of f is a function $I(f) : D^{\operatorname{ar}(f)} \to D$;
- for each P ∈ P, the interpretation of P is a function I(P) : D^{ar(P)} → {F, T}. In particular, 0-ary predicate symbols are interpreted as truth values.

 ${\mathcal V}\,$ -structures are also called models for ${\mathcal V}\,$.

Definition

Let *D* be the interpretation domain of a structure. An *assignment* for *D* is a function $\alpha : \mathcal{X} \to D$ from the set of variables to the domain *D*.

Notation

In what follows, we let $\mathcal{M}, \mathcal{M}', ...$ range over the structures of an intended vocabulary, and $\alpha, \alpha', ...$ range over the assignments for the interpretation domain of an intended structure.

Definition

Let $\mathcal{M} = (D, I)$ be a \mathcal{V} -structure and α an assignment for D.

• The value of a term t w.r.t. \mathcal{M} and α is an element of D, denoted by $[t]_{\mathcal{M},\alpha}$, and recursively given by:

$$\begin{split} \llbracket x \rrbracket_{\mathcal{M},\alpha} &= \alpha(x) \\ \llbracket c \rrbracket_{\mathcal{M},\alpha} &= I(c) \\ \llbracket f(t_1,\ldots,t_{\mathsf{ar}(f)}) \rrbracket_{\mathcal{M},\alpha} &= I(f)(\llbracket t_1 \rrbracket_{\mathcal{M},\alpha},\ldots,\llbracket t_{\mathsf{ar}(f)} \rrbracket_{\mathcal{M},\alpha}) \end{split}$$

• The *(truth) value of a formula* ϕ *w.r.t.* \mathcal{M} *and* α , is denoted by $\llbracket \phi \rrbracket_{\mathcal{M},\alpha}$, and recursively given by:

$$\begin{split} \llbracket \bot \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \\ \llbracket P(t_1, \dots, t_{\mathsf{ar}(P)}) \rrbracket_{\mathcal{M},\alpha} &= I(P)(\llbracket t_1 \rrbracket_{\mathcal{M},\alpha}, \dots, \llbracket t_{\mathsf{ar}(P)} \rrbracket_{\mathcal{M},\alpha}) \\ \llbracket \neg \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \\ \llbracket \phi \land \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \text{ and} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \phi \lor \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \text{ or} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \phi \to \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \text{ or} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \phi \to \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \text{ or} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \forall x. \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} [x \mapsto a] &= \mathsf{T} \text{ for all } a \in D \\ \llbracket \exists x. \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} [x \mapsto a] &= \mathsf{T} \text{ for some } a \in D \end{split}$$

Remark

Universal and existential quantifications are indeed a gain over PL. They can be read (resp.) as generalised conjunction and disjunction (possibly infinite):

$$\llbracket \forall x. \phi \rrbracket_{\mathcal{M},\alpha} = \bigwedge_{a \in D} \llbracket \phi \rrbracket_{\mathcal{M},\alpha[x \mapsto a]} \qquad \llbracket \exists x. \phi \rrbracket_{\mathcal{M},\alpha} = \bigvee_{a \in D} \llbracket \phi \rrbracket_{\mathcal{M},\alpha[x \mapsto a]}$$

Definition

Let $\mathcal V~$ be a vocabulary and $\mathcal M$ a $\mathcal V~$ -structure.

- \mathcal{M} satisfies ϕ with α , denoted by $\mathcal{M}, \alpha \models \phi$, iff $\llbracket \phi \rrbracket_{\mathcal{M}, \alpha} = \mathbf{T}$.
- \mathcal{M} satisfies ϕ (or that ϕ is valid in \mathcal{M} , or \mathcal{M} is a model of ϕ), denoted by $\mathcal{M} \models \phi$, iff for every assignment α , $\mathcal{M}, \alpha \models \phi$.
- φ is satisfiable if exists M s.t. M ⊨ φ, and it is valid, denoted by ⊨ φ, if M ⊨ φ for every M. φ is unsatisfiable (or a contradiction) if it is not satisfiable, and refutable if it is not valid.

Lemma

Let \mathcal{M} be a structure, t and u terms, ϕ a formula, and α , α' assignments.

- If for all $x \in Vars(t)$, $\alpha(x) = \alpha'(x)$, then $\llbracket t \rrbracket_{\mathcal{M}, \alpha} = \llbracket t \rrbracket_{\mathcal{M}, \alpha'}$
- If for all $x \in FV(\phi)$, $\alpha(x) = \alpha'(x)$, then $\mathcal{M}, \alpha \models \phi$ iff $\mathcal{M}, \alpha' \models \phi$.

•
$$\llbracket t \llbracket u/x \rrbracket \rrbracket_{\mathcal{M},\alpha} = \llbracket t \rrbracket_{\mathcal{M},\alpha[x \mapsto \llbracket u \rrbracket_{\mathcal{M},\alpha}]}$$

• If t is free for x in ϕ , then $\mathcal{M}, \alpha \models \phi[t/x]$ iff $\mathcal{M}, \alpha[x \mapsto \llbracket \mathcal{M} \rrbracket_{\alpha,t}] \models \phi$.

Proposition (Lifting validity of PL)

Let $\lceil \cdot \rceil$: **Prop** - > **Form**_{\mathcal{V}}, be a mapping from the set of proposition symbols to first-order formulas and denote also by $\lceil \cdot \rceil$ its homomorphic extension to all propositional formulas. Then, for all propositional formulas A and B:

- $\mathcal{M}, \alpha \models \lceil A \rceil$ iff $\overline{\mathcal{M}_{\alpha}} \models_{PL} A$, where $\overline{\mathcal{M}_{\alpha}} = \{P \mid \mathcal{M}, \alpha \models \lceil P \rceil\}$.
- If $\models_{PL} A$, then $\models_{FOL} [A]$.
- If $A \equiv_{PL} B$, then $\lceil A \rceil \equiv_{FOL} \lceil B \rceil$.

Some properties of logical equivalence

- The properties of logical equivalence listed for PL hold for FOL.
- The following equivalences hold:

$$\neg \forall x. \phi \equiv \exists x. \neg \phi \qquad \neg \exists x. \phi \equiv \forall x. \neg \phi$$
$$\forall x. \phi \land \psi \equiv (\forall x. \phi) \land (\forall x. \psi) \qquad \exists x. \phi \lor \psi \equiv (\exists x. \phi) \lor (\exists x. \psi)$$

- For $Q \in \{\forall, \exists\}$, if y is free for x in ϕ and $y \notin FV(\phi)$, then $Qx \cdot \phi \equiv Qy \cdot \phi [y/x]$.
- For $Q \in \{\forall, \exists\}$, if $x \notin FV(\phi)$, then $Qx \cdot \phi \equiv \phi$.
- For $Q \in \{\forall, \exists\}$ and $\odot \in \{\land, \lor\}$, if $x \notin FV(\psi)$, then $Qx \cdot \phi \odot \psi \equiv (Qx \cdot \phi) \odot \psi$.

Definition

A formula is in *prenex form* if it is of the form $Q_1x_1.Q_2x_2...Q_nx_n.\psi$ (possibly with n = 0) where each Q_i is a quantifier (either \forall or \exists) and ψ is a quantifier-free formula.

Proposition

For any formula of first-order logic, there exists an equivalent formula in prenex form.

Proof.

Such a prenex form can be obtained by rewriting, using the logical equivalences listed before.

Remark

Unlike PL, the validity problem of FOL is not decidable, but it is semi-decidable, i.e. there are procedures s.t., given a formula ϕ , they terminate with "yes" if ϕ is valid but may fail to terminate if ϕ is not valid.

Definition

- \mathcal{M} satisfies Γ with α , denoted by $\mathcal{M}, \alpha \models \Gamma$, if $\mathcal{M}, \alpha \models \phi$ for every $\phi \in \Gamma$.
- The notions of satisfiable, valid, unsatisfiable and refutable set of formulas are defined in the expected way.
- Γ entails ϕ (or ϕ is a logical consequence of Γ), denoted by $\Gamma \models \phi$, iff for every structure \mathcal{M} and assignment α , if $\mathcal{M}, \alpha \models \Gamma$ then $\mathcal{M}, \alpha \models \phi$.
- ϕ is *logically equivalent* to ψ , denoted by $\phi \equiv \psi$, iff $\llbracket \phi \rrbracket_{\mathcal{M},\alpha} = \llbracket \psi \rrbracket_{\mathcal{M},\alpha}$ for every structure \mathcal{M} and assignment α .

Some properties of semantic entailment

- The properties of semantic entailment listed for PL hold for FOL.
- If t is free for x in ϕ and $\Gamma \models \forall x . \phi$, then $\Gamma \models \phi [t/x]$.
- If $x \notin FV(\Gamma)$ and $\Gamma \models \phi$, then $\Gamma \models \forall x. \phi$.
- If t is free for x in ϕ and $\Gamma \models \phi[t/x]$, then $\Gamma \models \exists x. \phi$.
- If $x \notin FV(\Gamma \cup \{\psi\})$, $\Gamma \models \exists x. \phi$ and $\Gamma, \phi \models \psi$, then $\Gamma \models \psi$.

Proof system

The natural deduction system $\mathcal{N}_{\mathsf{FOL}}$

- The proof system for FOL we consider is a natural deduction system in sequent style extending $\mathcal{N}_{PL}.$
- The various definitions made in the context of \mathcal{N}_{PL} carry over to \mathcal{N}_{FOL} . The difference is that \mathcal{N}_{FOL} deals with first-order formulas and it has additional introduction and elimination rules to deal with the quantifiers.

Quantifier rules of \mathcal{N}_{FOL}

$$(\mathsf{I}_{\forall}) \quad \frac{\mathsf{\Gamma} \vdash \phi \left[y / x \right]}{\mathsf{\Gamma} \vdash \forall x. \phi} \text{ (a)} \qquad \qquad (\mathsf{E}_{\forall})$$

$$(\mathsf{I}_{\exists}) \quad \frac{\Gamma \vdash \phi \left[t/x \right]}{\Gamma \vdash \exists x. \phi} \qquad (\mathsf{E}_{\exists}) \quad \frac{\Gamma \vdash \exists x. \phi \qquad \Gamma, \phi \left[y/x \right] \vdash \theta}{\Gamma \vdash \theta} (\mathsf{b})$$

 $\frac{\Gamma \vdash \forall x. \phi}{\Gamma \vdash \phi \left[t/x \right]}$

(a) y ∉ FV(Γ) and either x = y or y ∉ FV(φ).
(b) y ∉ FV(Γ ∪ {θ}) and either x = y or y ∉ FV(φ).
(c) Recall that we assume safe substitution, i.e. in a substitution φ[t/x], we assume that t is free for x in φ.

Remark

The properties of N_{PL} can be extended to N_{FOL} , in particular the soundness and completeness theorems.

Theorem (Adequacy)

 $\Gamma \models \varphi \text{ iff } \Gamma \vdash \varphi.$

First-order theories

Definition

Let \mathcal{V} be a vocabulary of a first-order language.

- A first-order theory T is a set of V -sentences that is closed under derivability (i.e., T ⊢ φ implies φ ∈ T). A T-structure is a V -structure that validates every formula of T.
- A formula ϕ is \mathcal{T} -valid (resp. \mathcal{T} -satisfiable) if every (resp. some) \mathcal{T} -structure validates ϕ . $\mathcal{T} \models \phi$ denotes the fact that ϕ is \mathcal{T} -valid.
- Other concepts regarding validity of first-order formulas are carried over to theories in the obvious way.

Definition

A subset $\mathcal{A} \subseteq \mathcal{T}$ is called an *axiom set* for the theory \mathcal{T} when \mathcal{T} is the deductive closure of \mathcal{A} , i.e. $\psi \in \mathcal{T}$ iff $\mathcal{A} \vdash \psi$, or equivalently, iff $\vdash \psi$ can be derived in \mathcal{N}_{FOL} with an axiom-schema:

$$\overline{\Gamma \vdash \phi} \text{ if } \phi \in \mathcal{A}$$

First-order theories

Equality theory

The *theory of equality* \mathcal{T}_{E} for \mathcal{V} (which is assumed to have a binary equality predicate symbol "=") has the following axiom set:

- reflexivity: $\forall x . x = x$
- symmetry: $\forall x, y . x = y \rightarrow y = x$
- transitivity: $\forall x, y, z. x = y \land y = z \rightarrow x = z$
- congruence for function symbols: for every $f \in \mathcal{F}$ with ar(f) = n,

$$\forall \overline{x}, \overline{y}. x_1 = y_1 \land \ldots \land x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$$

• congruence for predicate symbols: for every $P \in \mathcal{P}$ with ar(P) = n,

$$\forall \overline{x}, \overline{y}. x_1 = y_1 \land \ldots \land x_n = y_n \rightarrow P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)$$

Theorem

A sentence ϕ is valid in all normal structures (i.e. structures which interpret = as the equality relation over the interpretation domain) iff $\phi \in T_{\mathsf{E}}$.