Generation of Verification Conditions

Andreas Podelski

May 23/24, 2017

• given a Hoare triple $\{\phi\}$ C $\{\psi\}$, a derivation is a sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)

- ▶ given a Hoare triple $\{\phi\}$ C $\{\psi\}$, a derivation is a sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)
- mechanization:

- ▶ given a Hoare triple $\{\phi\}$ C $\{\psi\}$, a derivation is a sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)
- mechanization:
- construct a derivation assuming that side conditions hold,
- and then check side conditions "discharge the verification condition"

- ▶ given a Hoare triple $\{\phi\}$ C $\{\psi\}$, a derivation is a sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)
- mechanization:
- construct a derivation assuming that side conditions hold,
- and then check side conditions "discharge the verification condition"
- ▶ if check does not succeed: try another derivation

- given a Hoare triple $\{\phi\}$ C $\{\psi\}$, a derivation is a sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)
- mechanization:
- construct a derivation assuming that side conditions hold,
- and then check side conditions "discharge the verification condition"
- if check does not succeed: try another derivation
- next: deterministic strategy to construct unique derivation

System \mathcal{H} (1)

▶ Hoare triple $\{\phi\}$ C $\{\psi\}$ derivable in $\mathcal H$ if exists a derivation using the axioms and inference rules of $\mathcal H$

System \mathcal{H} (1)

- ▶ Hoare triple $\{\phi\}$ C $\{\psi\}$ derivable in \mathcal{H} if exists a derivation using the axioms and inference rules of \mathcal{H}
- skip

$$\overline{\{\phi\} \ \text{skip} \ \{\phi\}}$$

System \mathcal{H} (1)

- ▶ Hoare triple $\{\phi\}$ C $\{\psi\}$ derivable in $\mathcal H$ if exists a derivation using the axioms and inference rules of $\mathcal H$
- skip

$$\overline{\{\phi\} \ \text{skip} \ \{\phi\}}$$

assignment

$$\overline{\{\psi[e/x]\}\ x := e\ \{\psi\}}$$

System \mathcal{H} (2)

• sequential command $C \equiv C_1$; C_2

$$\frac{\{\phi\}\ C_1\ \{\phi'\}\qquad \{\phi'\}\ C\ \{\psi\}}{\{\phi\}\ C\ \{\psi\}}$$

System \mathcal{H} (2)

• sequential command $C \equiv C_1$; C_2

$$\frac{\{\phi\} \ C_1 \ \{\phi'\} \qquad \{\phi'\} \ C \ \{\psi\}}{\{\phi\} \ C \ \{\psi\}}$$

▶ conditional command $C \equiv \text{if } b \text{ then } C_1 \text{ else } C_2$

$$\frac{\{\phi \wedge b\} \ \textit{C}_1 \ \{\psi\} \qquad \{\phi \wedge \neg b\} \ \textit{C} \ \{\psi\}}{\{\phi\} \ \textit{C} \ \{\psi\}}$$

System \mathcal{H} (3)

• while command $C \equiv$ while b do $\{\theta\}$ C_0 $\frac{\{\theta \wedge b\} \ C_0 \ \{\theta\}}{\{\theta\} \ C \ \{\theta \wedge \neg b\}}$

System \mathcal{H} (3)

▶ while command $C \equiv$ while b do $\{\theta\}$ C_0

$$\frac{\{\theta \wedge b\} \ C_0 \ \{\theta\}}{\{\theta\} \ C \ \{\theta \wedge \neg b\}}$$

strengthen precondition, weaken postcondition

$$\frac{\{\phi\} \ C \ \{\psi\}}{\{\phi'\} \ C \ \{\psi'\}} \quad \text{if} \quad \phi' \to \phi \quad \text{and} \quad \psi \to \psi'$$

System \mathcal{H} (3)

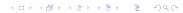
▶ while command $C \equiv$ while b do $\{\theta\}$ C_0

$$\frac{\{\theta \wedge b\} \ C_0 \ \{\theta\}}{\{\theta\} \ C \ \{\theta \wedge \neg b\}}$$

strengthen precondition, weaken postcondition

$$\frac{\{\phi\}\ C\ \{\psi\}}{\{\phi'\}\ C\ \{\psi'\}} \quad \text{if} \quad \phi' \to \phi \quad \text{and} \quad \psi \to \psi'$$

 Hoare triple derivable in all logicals models in which implications in side condition are valid



backward construction of derivation

▶ given Hoare triple $\{\phi\}$ C $\{\psi\}$, "guess inference rule and guess assumptions" generate Hoare triples from which we could infer $\{\phi\}$ C $\{\psi\}$... and collect side conditions of inference rule (if any)

backward construction of derivation

- ▶ given Hoare triple $\{\phi\}$ C $\{\psi\}$, "guess inference rule and guess assumptions" generate Hoare triples from which we could infer $\{\phi\}$ C $\{\psi\}$... and collect side conditions of inference rule (if any)
- repeat on generated Hoare triples to generate new Hoare triples until every Hoare triple is an axiom

mechanize backward inference

▶ given Hoare triple $\{\phi\}$ C $\{\psi\}$, from what Hoare triples could we have inferred it? ... using what inference rule?

mechanize backward inference

- given Hoare triple {φ} C {ψ}, from what Hoare triples could we have inferred it? ... using what inference rule?
- next: go through each form of command C (skip, update, seq, cond, while)

 $\frac{???}{\{\phi\} \; \mathrm{skip} \; \{\psi\}}$

$$\frac{???}{\{\phi\}\; \mathbf{skip}\; \{\psi\}}$$

derivation can use what axiom and what inference rule?

$$\frac{???}{\{\phi\}\; \mathbf{skip}\; \{\psi\}}$$

- derivation can use what axiom and what inference rule?
- axiom for skip

$$\overline{\{\phi\} \ \mathsf{skip} \ \{\phi\}}$$

•

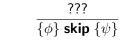
$$\frac{???}{\{\phi\}\; \text{skip}\; \{\psi\}}$$

- derivation can use what axiom and what inference rule?
- axiom for skip

$$\overline{\{\phi\} \ \text{skip} \ \{\phi\}}$$

'strengthen precondition, weaken postcondition' inference rule

$$\frac{\{\phi\} \ C \ \{\psi\}}{\{\phi'\} \ C \ \{\psi'\}} \quad \text{if} \quad \phi' \to \phi \quad \text{and} \quad \psi \to \psi'$$



•

$$\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$$

possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \text{ skip } \{\phi\}}{\{\phi\} \text{ skip } \{\psi\}}$$

•

$$\frac{???}{\{\phi\} \; \text{skip} \; \{\psi\}}$$

 possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \ \text{skip} \ \{\phi\}}{\{\phi\} \ \text{skip} \ \{\psi\}}$$

▶ side condition: $\phi \rightarrow \psi$

•

$$\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$$

 possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \text{ skip } \{\phi\}}{\{\phi\} \text{ skip } \{\psi\}}$$

- ▶ side condition: $\phi \rightarrow \psi$
- possible derivation sequence: axiom for (skip), followed by strengthening of precondition

$$\frac{\{\psi\}}{\{\phi\}}$$
 skip $\{\psi\}$

$$\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$$

possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \text{ skip } \{\phi\}}{\{\phi\} \text{ skip } \{\psi\}}$$

- ▶ side condition: $\phi \rightarrow \psi$
- possible derivation sequence: axiom for (skip), followed by strengthening of precondition

> same side condition: $\phi \rightarrow \psi$

$$\overline{\{\phi\}\; {\rm skip}\; \{\psi\}} \quad {\rm if} \quad \phi \to \psi$$

 \triangleright

$$\overline{\{\phi\}\; {\rm skip}\; \{\psi\}} \quad {\rm if} \ \, \phi \to \psi$$

▶ old axiom & strengthening of precondition

ightharpoonup

$$\frac{}{\{\phi\}\; {\rm skip}\; \{\psi\}} \ \ {\rm if} \ \ \phi \to \psi$$

- old axiom & strengthening of precondition
- ϕ is a precondition for ψ under **skip** if and only if $\phi \rightarrow \psi$ is valid

ightharpoonup

$$\frac{}{\{\phi\}\; {\rm skip}\; \{\psi\}} \ \ {\rm if} \ \ \phi \to \psi$$

- old axiom & strengthening of precondition
- ϕ is a precondition for ψ under **skip** if and only if $\phi \rightarrow \psi$ is valid
- lacktriangledown ψ is the weakest precondition for ψ under **skip**

$$\overline{\{\phi\}\; x := e\; \{\psi\}} \quad \text{if} \ \ \phi \to \psi \big[e/x \big]$$

$$\frac{}{\{\phi\}\; x := e\; \{\psi\}} \quad \text{if} \quad \phi \to \psi[e/x]$$

▶ old axiom & strengthening of precondition

 \triangleright

$$\frac{1}{\{\phi\} \ x := e \ \{\psi\}}$$
 if $\phi \to \psi[e/x]$

- old axiom & strengthening of precondition
- ϕ is a precondition for ψ under x := e if and only if $\phi \to \psi[e/x]$ is valid

 \triangleright

$$\frac{1}{\{\phi\} \ x := e \ \{\psi\}} \quad \text{if} \quad \phi \to \psi[e/x]$$

- old axiom & strengthening of precondition
- φ is a precondition for ψ under x := e
 if and only if
 φ → ψ[e/x] is valid
- $\psi[e/x]$ is the weakest precondition for ψ under x:=e

new rule for seq

▶ old rule:

$$\frac{\left\{\phi\right\} \ C_1 \ \left\{\theta\right\} \quad \left\{\theta\right\} \ C_2 \ \left\{\psi\right\}}{\left\{\phi\right\} \ C_1 \ ; \ C_2 \ \left\{\psi\right\}}$$

▶ old rule:

$$\frac{\{\phi\} \ C_1 \ \{\theta\} \ \ \{\theta\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\} \ C_1 \ \{\phi_2\} \quad \{\phi_2\} \ C_2 \ \{\psi\}}{\{\phi\} \quad C_1 \ ; \ C_2 \ \{\psi\}} \phi \rightarrow \phi_1$$

old rule:

$$\frac{\{\phi\} \ C_1 \ \{\theta\} \qquad \{\theta\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\}\ C_1\ \{\phi_2\}\quad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ C_1\ ;\ C_2\ \{\psi\}}\phi\to\phi_1$$

▶ let ϕ_2 be the weakest precondition of ψ under C_2 and let ϕ_1 be the weakest precondition of ϕ_2 under C_1

old rule:

$$\frac{\{\phi\} \ C_1 \ \{\theta\} \qquad \{\theta\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\}\ C_1\ \{\phi_2\}\quad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ C_1\ ;\ C_2\ \{\psi\}}\phi\to\phi_1$$

- ▶ let ϕ_2 be the weakest precondition of ψ under C_2 and let ϕ_1 be the weakest precondition of ϕ_2 under C_1
- ϕ is a precondition for ψ under C_1 ; C_2 if and only if $\phi \to \phi_1$ is valid

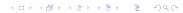
old rule:

$$\frac{\{\phi\} \ C_1 \ \{\theta\} \ \ \{\theta\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\}\ C_1\ \{\phi_2\}\quad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ C_1\ ;\ C_2\ \{\psi\}}\phi\to\phi_1$$

- ▶ let ϕ_2 be the weakest precondition of ψ under C_2 and let ϕ_1 be the weakest precondition of ϕ_2 under C_1
- ϕ is a precondition for ψ under C_1 ; C_2 if and only if $\phi \to \phi_1$ is valid
- the weakest precondition of ψ under C_1 ; C_2 is the weakest precondition of (the weakest precondition of ψ under C_2) under C_1



old rule:

$$\frac{\{\phi \land b\} \ C_1 \ \{\psi\} \qquad \{\phi \land \neg b\} \ C_2 \ \{\psi\}}{\{\phi\} \ \ \text{if} \ b \ \text{then} \ C_1 \ \text{else} \ C_2 \ \ \{\psi\}}$$

old rule:

$$\frac{\{\phi \wedge b\} \ C_1 \ \{\psi\} \qquad \{\phi \wedge \neg b\} \ C_2 \ \{\psi\}}{\{\phi\} \ \ \text{if} \ b \ \text{then} \ C_1 \ \text{else} \ C_2 \ \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\}\ C_1\ \{\psi\}\qquad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ \ \text{if b then C_1 else C_2 }\{\psi\}}\quad \phi\to \left(\neg b\vee\phi_1\right)\ \ \text{and}\ \ \phi\to \left(b\vee\phi_2\right)$$

old rule:

$$\frac{\{\phi \land b\} \ C_1 \ \{\psi\} \qquad \{\phi \land \neg b\} \ C_2 \ \{\psi\}}{\{\phi\} \ \ \text{if} \ b \ \text{then} \ C_1 \ \text{else} \ C_2 \ \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\}\ C_1\ \{\psi\}\qquad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ \ \text{if b then C_1 else C_2 }\{\psi\}}\quad \phi\to (\neg b\vee\phi_1)\ \ \text{and}\ \ \phi\to (b\vee\phi_2)$$

▶ let ϕ_1 be the weakest precondition of ψ under C_1 and let ϕ_2 be the weakest precondition of ψ under C_2

old rule:

$$\frac{\{\phi \land b\} \ C_1 \ \{\psi\} \qquad \{\phi \land \neg b\} \ C_2 \ \{\psi\}}{\{\phi\} \ \ \text{if} \ b \ \text{then} \ C_1 \ \text{else} \ C_2 \ \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\}\ C_1\ \{\psi\}\qquad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ \ \text{if}\ b\ \text{then}\ C_1\ \text{else}\ C_2\ \{\psi\}}\quad \phi\to (\neg b\lor\phi_1)\ \ \text{and}\ \ \phi\to (b\lor\phi_2)$$

- ▶ let ϕ_1 be the weakest precondition of ψ under C_1 and let ϕ_2 be the weakest precondition of ψ under C_2
- ϕ is a precondition for ψ under **if** b **then** C_1 **else** C_2 if and only if $\phi \to ((\neg b \lor \phi_1) \land (b \lor \phi_2))$ is valid

old rule:

$$\frac{\{\phi \wedge b\} \ C_1 \ \{\psi\} \qquad \{\phi \wedge \neg b\} \ C_2 \ \{\psi\}}{\{\phi\} \ \ \text{if} \ b \ \text{then} \ C_1 \ \text{else} \ C_2 \ \ \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\}\ C_1\ \{\psi\}\qquad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ \ \text{if}\ b\ \text{then}\ C_1\ \text{else}\ C_2\ \{\psi\}}\quad \phi\to (\neg b\vee\phi_1)\ \ \text{and}\ \ \phi\to (b\vee\phi_2)$$

- ▶ let ϕ_1 be the weakest precondition of ψ under C_1 and let ϕ_2 be the weakest precondition of ψ under C_2
- ϕ is a precondition for ψ under **if** b **then** C_1 **else** C_2 if and only if $\phi \to ((\neg b \lor \phi_1) \land (b \lor \phi_2))$ is valid
- ▶ the weakest precondition of ψ under **if** b **then** C_1 **else** C_2 is the conjunction of $\neg b \lor \phi_1$ and $b \lor \phi_2$

old rule:

$$\frac{\{\theta \wedge b\} \ \textit{C}_0 \ \{\theta\}}{\{\theta\} \ \ \text{while} \ \textit{b} \ \text{do} \ \{\theta\} \ \ \textit{C}_0 \ \ \{\theta \wedge \neg b\}}$$

old rule:

$$\frac{\{\theta \wedge b\} \ C_0 \ \{\theta\}}{\{\theta\} \ \ \text{while} \ b \ \text{do} \ \{\theta\} \ C_0 \ \ \{\theta \wedge \neg b\}}$$

new rule = old rule & strengthening & weakening

$$\frac{\{\theta \wedge b\} \ \textit{C}_0 \ \{\theta\}}{\{\phi\} \ \ \text{while} \ \textit{b} \ \text{do} \ \{\theta\} \ \textit{C}_0 \ \ \{\psi\}} \quad \phi \rightarrow \theta \ \ \text{and} \ \ \theta \wedge \neg \textit{b} \rightarrow \psi$$

old rule:

$$\frac{\{\theta \wedge b\} \ \textit{C}_0 \ \{\theta\}}{\{\theta\} \ \ \text{while} \ \textit{b} \ \text{do} \ \{\theta\} \ \ \textit{C}_0 \ \ \{\theta \wedge \neg \textit{b}\}}$$

▶ new rule = old rule & strengthening & weakening

$$\frac{\{\theta \wedge b\} \ \textit{C}_0 \ \{\theta\}}{\{\phi\} \ \ \text{while} \ \textit{b} \ \text{do} \ \{\theta\} \ \textit{C}_0 \ \ \{\psi\}} \quad \phi \rightarrow \theta \ \ \text{and} \ \ \theta \wedge \neg \textit{b} \rightarrow \psi$$

• ϕ is a precondition for ψ under **while** b **do** $\{\theta\}$ C_0 if and only if $\phi \to \theta$ and $\theta \land \neg b \to \psi$ are valid and $\{\theta \land b\}$ C_0 $\{\theta\}$

old rule:

$$\frac{\{\theta \wedge b\} \ \textit{C}_0 \ \{\theta\}}{\{\theta\} \ \ \text{while} \ \textit{b} \ \text{do} \ \{\theta\} \ \ \textit{C}_0 \ \ \{\theta \wedge \neg \textit{b}\}}$$

▶ new rule = old rule & strengthening & weakening

$$\frac{\{\theta \wedge b\} \ \textit{C}_0 \ \{\theta\}}{\{\phi\} \ \ \text{while} \ \textit{b} \ \text{do} \ \{\theta\} \ \textit{C}_0 \ \ \{\psi\}} \quad \phi \rightarrow \theta \ \ \text{and} \ \ \theta \wedge \neg \textit{b} \rightarrow \psi$$

- ϕ is a precondition for ψ under **while** b **do** $\{\theta\}$ C_0 if and only if $\phi \to \theta$ and $\theta \land \neg b \to \psi$ are valid and $\{\theta \land b\}$ C_0 $\{\theta\}$
- θ is the weakest precondition for ψ under **while** b **do** $\{\theta\}$ C_0 assuming $\theta \land \neg b \rightarrow \psi$ is valid and $\{\theta \land b\}$ C_0 $\{\theta\}$

• $wp(\mathbf{skip}, \psi) = \psi$

- $wp(skip, \psi) = \psi$
- $\mathbf{vp}(\mathbf{x} := \mathbf{e}, \psi) = \psi[\mathbf{e}/\mathbf{x}]$

- $wp(skip, \psi) = \psi$
- $wp(C_1; C_2, \psi) = wp(C_1, wp(C_2, \psi))$

• $\operatorname{wp}(\operatorname{skip}, \psi) = \psi$ • $\operatorname{wp}(x := e, \psi) = \psi[e/x]$ • $\operatorname{wp}(C_1 ; C_2, \psi) = \operatorname{wp}(C_1, \operatorname{wp}(C_2, \psi))$ • $\operatorname{wp}(\operatorname{if} b \operatorname{then} C_1 \operatorname{else} C_2, \psi) = (\neg b \lor \phi_1) \land (b \lor \phi_2)$ where • $\phi_1 = \operatorname{wp}(C_1, \psi)$ • $\phi_2 = \operatorname{wp}(C_2, \psi)$

• wp(while b do $\{\theta\}$ C_0, ψ) = θ

• $\operatorname{wp}(\operatorname{skip}, \psi) = \psi$ • $\operatorname{wp}(x := e, \psi) = \psi[e/x]$ • $\operatorname{wp}(C_1; C_2, \psi) = \operatorname{wp}(C_1, \operatorname{wp}(C_2, \psi))$ • $\operatorname{wp}(\operatorname{if} b \operatorname{then} C_1 \operatorname{else} C_2, \psi) = (\neg b \lor \phi_1) \land (b \lor \phi_2)$ where • $\phi_1 = \operatorname{wp}(C_1, \psi)$ • $\phi_2 = \operatorname{wp}(C_2, \psi)$

▶ for command *C* of form: skip, update, seq, cond,

• for command C of form: skip, update, seq, cond, to check Hoare triple $\{\phi\}$ C $\{\psi\}$,

 for command C of form: skip, update, seq, cond, to check Hoare triple {φ} C {ψ}, check validity of verification condition

$$\phi o \mathsf{wp}(\mathsf{C}, \psi)$$

 for command C of form: skip, update, seq, cond, to check Hoare triple {φ} C {ψ},
 check validity of verification condition

$$\phi o \mathsf{wp}(\mathsf{C}, \psi)$$

▶ for command C of form: while b do $\{\theta\}$ C_0 ,

 for command C of form: skip, update, seq, cond, to check Hoare triple {φ} C {ψ},
 check validity of verification condition

$$\phi o \mathsf{wp}(\mathsf{C}, \psi)$$

• for command C of form: while b do $\{\theta\}$ C_0 , to check Hoare triple $\{\phi\}$ C $\{\psi\}$,

 for command C of form: skip, update, seq, cond, to check Hoare triple {φ} C {ψ},
 check validity of verification condition

$$\phi o \mathsf{wp}(C, \psi)$$

• for command C of form: while b do $\{\theta\}$ C_0 , to check Hoare triple $\{\phi\}$ C $\{\psi\}$, check Hoare triple $\{\theta \land b\}$ C_0 $\{\theta\}$ and check validity of two implications

$$\phi \to \theta \\
\theta \land \neg b \to \psi$$

 \blacktriangleright given a Hoare triple $\{\phi\}$ C $\{\psi\}$,

- given a Hoare triple $\{\phi\}$ C $\{\psi\}$,
- construct a backwards derivation

- given a Hoare triple $\{\phi\}$ C $\{\psi\}$,
- construct a backwards derivation
- derivation = tree of Hoare triples, each new Hoare triple is an axiom (skip, update) or it is an assumption in one of the inference rules (seq, cond, while)

- given a Hoare triple $\{\phi\}$ C $\{\psi\}$,
- construct a backwards derivation
- derivation = tree of Hoare triples, each new Hoare triple is an axiom (skip, update) or it is an assumption in one of the inference rules (seq, cond, while)
- ▶ inference rule instantiated for given precondition and given postcondition, side condition: precondition ⇒ weakest precondition
- derivation unique

- given a Hoare triple $\{\phi\}$ C $\{\psi\}$,
- construct a backwards derivation
- derivation = tree of Hoare triples, each new Hoare triple is an axiom (skip, update) or it is an assumption in one of the inference rules (seq, cond, while)
- ▶ inference rule instantiated for given precondition and given postcondition, side condition: precondition ⇒ weakest precondition
- derivation unique
- overall verification condition = set of side conditions

▶ for command *C* of form: skip, update, seq, cond,

- ▶ for command *C* of form: skip, update, seq, cond,
- add one implication:

$$\phi o \mathsf{wp}(\mathsf{C}, \psi)$$

- ▶ for command *C* of form: skip, update, seq, cond,
- add one implication:

$$\phi \to \mathsf{wp}(C, \psi)$$

▶ for command C of form: while b do $\{\theta\}$ C_0 ,

- for command C of form: skip, update, seq, cond,
- add one implication:

$$\phi o \mathsf{wp}(\mathsf{C}, \psi)$$

- ▶ for command C of form: **while** b **do** $\{\theta\}$ C_0 ,
- add two implications:

$$\phi \to \theta \\
\theta \land \neg b \to \psi$$

and add verification condition for Hoare triple $\{\theta \wedge b\}$ \textit{C}_0 $\{\theta\}$

Adequacy of Verification Condition

▶ let Φ be the verification condition for $\{\phi\}$ C $\{\psi\}$

Adequacy of Verification Condition

- ▶ let Φ be the verification condition for $\{\phi\}$ C $\{\psi\}$
- let Γ be a set of assertions
 (e.g., axioms for bounded integer arithmetic, axioms for factorial function, . . .)

Adequacy of Verification Condition

- ▶ let Φ be the verification condition for $\{\phi\}$ C $\{\psi\}$
- let Γ be a set of assertions
 (e.g., axioms for bounded integer arithmetic, axioms for factorial function, . . .)

$$\Gamma \models \Phi \ \text{ iff } \ \Gamma \vdash \{\phi\} \ C \ \{\psi\}$$