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mechanization of correctness proof

I given a Hoare triple {φ} C {ψ},
a derivation is a sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

I mechanization:

I construct a derivation assuming that side conditions hold,

I and then check side conditions
“discharge the verification condition”

I if check does not succeed: try another derivation

I next:
deterministic strategy to construct unique derivation
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System H (1)

I Hoare triple {φ} C {ψ} derivable in H if
exists a derivation using the axioms and inference rules of H

I skip

{φ} skip {φ}
I assignment

{ψ[e/x ]} x := e {ψ}
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backward construction of derivation

I given Hoare triple {φ} C {ψ},
“guess inference rule and guess assumptions”
generate Hoare triples from which we could infer {φ} C {ψ}
. . . and collect side conditions of inference rule (if any)

I repeat on generated Hoare triples
to generate new Hoare triples
until every Hoare triple is an axiom
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I next:
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mechanization of correctness proof
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I construct a backwards derivation

I derivation = tree of Hoare triples,
each new Hoare triple is an axiom (skip, update)
or it is an assumption in one of the inference rules (seq, cond,
while)

I inference rule instantiated for given precondition and given
postcondition, side condition:
precondition ⇒ weakest precondition

I derivation unique

I overall verification condition = set of side conditions
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