Generation of Verification Conditions

Andreas Podelski

May 23/24, 2017

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
a derivation is a sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
a derivation is a sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» mechanization:

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
a derivation is a sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» mechanization:
» construct a derivation assuming that side conditions hold,

» and then check side conditions
“discharge the verification condition”

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
a derivation is a sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» mechanization:
» construct a derivation assuming that side conditions hold,

» and then check side conditions
“discharge the verification condition”

> if check does not succeed: try another derivation

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
a derivation is a sequence of Hoare triples,

each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» mechanization:
» construct a derivation assuming that side conditions hold,

» and then check side conditions
“discharge the verification condition”

> if check does not succeed: try another derivation

> next:
deterministic strategy to construct unique derivation

System #H (1)

» Hoare triple {¢} C {¢'} derivable in H if
exists a derivation using the axioms and inference rules of H

System #H (1)

» Hoare triple {¢} C {¢'} derivable in H if
exists a derivation using the axioms and inference rules of H

» skip
{¢} skip {¢}

System #H (1)

» Hoare triple {¢} C {¢'} derivable in H if
exists a derivation using the axioms and inference rules of H

» skip
{¢} skip {¢}

» assighment

{vle/x]} x = e {y}

System H (2)

» sequential command C = G ; G

{0} G {¢'} {¢'} C{¢}

{o} C{v}

System H (2)

» sequential command C = G ; G

{0y G {o'} {¢} C{y}
{o} C{v}

» conditional command C = if bthen (else G

{onb} G{yy {oA-b} C{Y}

{¢} C{v}

System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}

[0} C ('} if ¢/ =¢ and ¥ =7

System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}
{0} C{¥'}

> Hoare triple derivable in all logicals models in which
implications in side condition are valid

if ¢/ =¢ and ¥ =7

backward construction of derivation

» given Hoare triple {¢} C {¢},
“guess inference rule and guess assumptions”

generate Hoare triples from which we could infer {¢} C {4}
. and collect side conditions of inference rule (if any)

backward construction of derivation

» given Hoare triple {¢} C {¢},
“guess inference rule and guess assumptions”
generate Hoare triples from which we could infer {¢} C {4}
. and collect side conditions of inference rule (if any)
> repeat on generated Hoare triples
to generate new Hoare triples
until every Hoare triple is an axiom

mechanize backward inference

» given Hoare triple {¢} C {¢},
from what Hoare triples could we have inferred it?
. using what inference rule?

mechanize backward inference

» given Hoare triple {¢} C {¢},
from what Hoare triples could we have inferred it?
. using what inference rule?

> next:
go through each form of command C
(skip, update, seq, cond, while)

backward inference

777

(9} skip (0]

backward inference

777
{¢} skip {4}

» derivation can use what axiom and what inference rule?

backward inference

m”?
{¢} skip {¢}
» derivation can use what axiom and what inference rule?

> axiom for skip

{¢} skip {¢}

backward inference

>
77

{0} skip {¢}
» derivation can use what axiom and what inference rule?
> axiom for skip

{0} skip {¢}
» ‘strengthen precondition, weaken postcondition’ inference rule

{¢} C{v}

G if ¢ = ¢ and ¥ — o)

backward inference

>
77

(9} skip (0]

backward inference

77
{¢} skip {1}
» possible derivation sequence: axiom for (skip), followed by
weaking of postcondition

{¢} skip {¢}
{¢} skip {¢}

backward inference

77
{¢} skip {1}
» possible derivation sequence: axiom for (skip), followed by
weaking of postcondition

{¢} skip {¢}
{¢} skip {¢}

» side condition: ¢ — 1)

backward inference

77
{¢} skip {1}
» possible derivation sequence: axiom for (skip), followed by
weaking of postcondition

{¢} skip {¢}
{¢} skip {¢}

» side condition: ¢ — 1)

» possible derivation sequence:
axiom for (skip), followed by strengthening of precondition

{v} skip {v}
{¢} skip {}

backward inference

77
{¢} skip {1}
» possible derivation sequence: axiom for (skip), followed by
weaking of postcondition

{¢} skip {¢}
{¢} skip {¢}

» side condition: ¢ — 1)

» possible derivation sequence:
axiom for (skip), followed by strengthening of precondition

{v} skip {v}
{¢} skip {}

» same side condition: ¢ — ¥

new axiom for skip

Gyskp{g) " 07V

new axiom for skip

Gyskp{g) " 07V

> old axiom & strengthening of precondition

new axiom for skip

Gyskp{g) " 07V

> old axiom & strengthening of precondition

> ¢ is a precondition for ¢ under skip
if and only if
¢ — 1 is valid

new axiom for skip

Gyskp{g) " 07V

> old axiom & strengthening of precondition

> ¢ is a precondition for ¢ under skip
if and only if
¢ — 1 is valid

> 1) is the weakest precondition for i) under skip

new axiom for update

m if ¢ — le/x]

new axiom for update

m if ¢ — le/x]

» old axiom & strengthening of precondition

new axiom for update

m if ¢ — le/x]

» old axiom & strengthening of precondition

> ¢ is a precondition for) under x := e
if and only if
¢ — Y[e/x] is valid

new axiom for update

m if ¢ — le/x]

» old axiom & strengthening of precondition

> ¢ is a precondition for) under x := e
if and only if
¢ — Y[e/x] is valid

» 1[e/x] is the weakest precondition for 1) under x := e

new rule for seq

» old rule:

{o} G {0} {0} G {¥}

{0} G G {¥}

new rule for seq

» old rule:

{o} G {0} {0} G {¥}

{0} G G {¥}

> new rule:

{1} CL{g2} {92} O {¢}¢
{o} G G {v}

— ¢1

new rule for seq

» old rule:

{o} G {0} {0} G {¥}
{¢} G; G {¥}

> new rule:

{1} CL{g2} {92} O {¢}¢
{o} G G {v}

> let ¢p be the weakest precondition of) under C; and
let ¢1 be the weakest precondition of ¢, under (3

— ¢1

new rule for seq

» old rule:

{o} G {0} {0} G {¥}
{¢} G; G {¥}

> new rule:

{91} G {d2} {¢2} G {¢}
{o} G G {v}

> let ¢p be the weakest precondition of) under C; and
let ¢1 be the weakest precondition of ¢, under (3

> ¢ is a precondition for ¢ under Ci; G
if and only if
¢ — ¢1 is valid

»— P1

new rule for seq

» old rule:

{o} G {0} {0} G {¥}
{¢} G; G {¥}

> new rule:

{91} G {d2} {¢2} G {¢}
{o} G G {v}

> let ¢p be the weakest precondition of) under C; and
let ¢1 be the weakest precondition of ¢, under (3

»— P1

> ¢ is a precondition for ¢ under Ci; G
if and only if
¢ — ¢1 is valid

» the weakest precondition of 1 under C; ; (o is
the weakest precondition of
(the weakest precondition of i) under ()
under ¢y

new rule for cond

> old rule:

fonby G{yy {¢n—b} G{v}

{¢} if bthen G else &; {¢}

new rule for cond

> old rule:

fonby G{yy {¢n—b} G{v}
{¢} if bthen G else &; {¢}

> new rule:

{o1} G{v} {¢2} G {¥}
{¢} if bthen C; else &; {¢}

¢ — (0bVep1) and ¢ — (bV2)

new rule for cond

> old rule:

fonby G{yy {¢n—b} G{v}
{¢} if bthen G else &; {¢}

> new rule:

{o1} G{v} {¢2} G {¥}
{¢} if bthen C; else &; {¢}

¢ — (0bVep1) and ¢ — (bV2)

> let ¢1 be the weakest precondition of) under C; and
let ¢ be the weakest precondition of ¢ under G

new rule for cond

> old rule:

fonby G{yy {¢n—b} G{v}
{¢} if bthen G else &; {¢}

> new rule:

{o1} G{v} {¢2} G {¥}
{¢} if bthen C; else &; {¢}

¢ — (0bVep1) and ¢ — (bV2)

> let ¢1 be the weakest precondition of) under C; and
let ¢ be the weakest precondition of ¢ under G

> ¢ is a precondition for ¢ under if b then C; else C;
if and only if
¢ — ((0bV p1) AN (bV ¢2)) is valid

new rule for cond

> old rule:

fonby G{yy {¢n—b} G{v}
{¢} if bthen G else &; {¢}

> new rule:

{o1} G{v} {¢2} G {¥}
{¢} if bthen C; else &; {¢}

¢ — (0bVep1) and ¢ — (bV2)

> let ¢1 be the weakest precondition of) under C; and
let ¢ be the weakest precondition of ¢ under G
> ¢ is a precondition for ¢ under if b then C; else C;
if and only if
¢ — ((0bV p1) AN (bV ¢2)) is valid
> the weakest precondition of ¢ under if b then C else C; is
the conjunction of =bV ¢1 and bV ¢9

new rule for while

» old rule:

{0 A b} Co {6}

{6} while bdo {6} C, {0 A—b}

new rule for while

» old rule:

{0 A b} Co {6}
{0} while bdo {0} Co {0 A—b}
» new rule = old rule & strengthening & weakening
{0 A b} Go {6}
{¢} while bdo {0} Cy {v}

¢—60 and OA—b—

new rule for while

» old rule:

{0 A b} Co {6}
{0} while bdo {0} Co {0 A—b}
» new rule = old rule & strengthening & weakening
{0 A b} Go {6}
{¢} while bdo {0} Cy {v}

¢—60 and OA—b—

» ¢ is a precondition for 1) under while b do {6} G
if and only if
¢ — 6 and @ A —b —) are valid and {6 A b} Gy {0}

new rule for while

» old rule:

{0 A b} Co {6}
{6} while bdo {0} Co {0/ —b}

» new rule = old rule & strengthening & weakening

{0 A b} Go {6}
{67 while b do {0} Co {0}

¢—60 and OA—b—

» ¢ is a precondition for 1) under while b do {6} G
if and only if
¢ — 6 and @ A —b —) are valid and {6 A b} Gy {0}

» 0 is the weakest precondition for ¢ under while b do {6} Gy
assuming
0 A —b — 1 is valid and
{0 A b} Co {0}

weakest precondition wp(C,)

> Wp(Skipv ¢) = w

weakest precondition wp(C,)

» wp(skip, 1)) = v
> wp(x = e,9) = Yle/x]

weakest precondition wp(C,)

> wp(skip,) = ¢
> wp(x = e,) = 1le/x]
» wp(Cy; G, v) = wp(Cy,wp(Ca, 7))

weakest precondition wp(C,)

wp(skip, 1)) = 1)
wp(x = e, 1) = le/x]
wp(Cy 5 G, 9) = wp(Gy, wp(G, ¢))
wp(if b then C else G, 1) = (=bV 1) A (bV ¢2)

where
¢1 = wp(Cy, 1)
¢2 - Wp(C27 1/})

vV vV v v

weakest precondition wp(C,)

wp(skip, 1)) = 1)
wp(x = e, 1) = le/x]
wp(Cy 5 G, 9) = wp(Gy, wp(G, ¢))
wp(if b then C else G, 1) = (=bV 1) A (bV ¢2)

where
¢1 = wp(Cy, 1)
¢2 - Wp(C27 1/})

» wp(while b do {0} Co,v) =6

vV vV v v

verification condition

» for command C of form: skip, update, seq, cond,

verification condition

» for command C of form: skip, update, seq, cond,
to check Hoare triple {¢} C {¢},

verification condition

» for command C of form: skip, update, seq, cond,
to check Hoare triple {¢} C {¢},

check validity of verification condition

¢ — wp(C,)

verification condition

» for command C of form: skip, update, seq, cond,
to check Hoare triple {¢} C {¢},

check validity of verification condition

¢ = wp(C,¢)
» for command C of form: while b do {6} G ,

verification condition

» for command C of form: skip, update, seq, cond,
to check Hoare triple {¢} C {¢},

check validity of verification condition

¢ — wp(C,)

» for command C of form: while b do {6} G ,
to check Hoare triple {¢} C {¢},

verification condition

» for command C of form: skip, update, seq, cond,
to check Hoare triple {¢} C {¢},

check validity of verification condition

¢ — wp(C,)

» for command C of form: while b do {6} G ,
to check Hoare triple {¢} C {¢},

check Hoare triple {0 A b} Co {6}
and check validity of two implications

¢ — 0
ON—-b—

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},

» construct a backwards derivation

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
» construct a backwards derivation
» derivation = tree of Hoare triples,
each new Hoare triple is an axiom (skip, update)

or it is an assumption in one of the inference rules (seq, cond,
while)

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},

» construct a backwards derivation

» derivation = tree of Hoare triples,
each new Hoare triple is an axiom (skip, update)
or it is an assumption in one of the inference rules (seq, cond,
while)

» inference rule instantiated for given precondition and given
postcondition, side condition:
precondition = weakest precondition

» derivation unique

mechanization of correctness proof

» given a Hoare triple {¢} C {v},
» construct a backwards derivation

» derivation = tree of Hoare triples,
each new Hoare triple is an axiom (skip, update)
or it is an assumption in one of the inference rules (seq, cond,
while)

» inference rule instantiated for given precondition and given
postcondition, side condition:
precondition = weakest precondition

» derivation unique

» overall verification condition = set of side conditions

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,

» add one implication:

¢ — wp(C,)

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,

» add one implication:

¢ — wp(C,)

» for command C of form: while b do {0} Cp ,

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,
» add one implication:

¢ — wp(C,)

» for command C of form: while b do {0} Cp ,
» add two implications:

¢ —0
ON—b—

and add verification condition for Hoare triple {6 A b} Co {6}

Adequacy of Verification Condition

> let ® be the verification condition for {¢} C {¢}

Adequacy of Verification Condition

> let ® be the verification condition for {¢} C {¢}

> let [be a set of assertions
(e.g., axioms for bounded integer arithmetic,
axioms for factorial function, ...)

Adequacy of Verification Condition

> let ® be the verification condition for {¢} C {¢}

> let [be a set of assertions
(e.g., axioms for bounded integer arithmetic,
axioms for factorial function, ...)

M=o iff TF{¢} C{v}

