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mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
a derivation is a sequence of Hoare triples,

each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» mechanization:
» construct a derivation assuming that side conditions hold,

» and then check side conditions
“discharge the verification condition”

> if check does not succeed: try another derivation

> next:
deterministic strategy to construct unique derivation
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» assighment

{vle/x]} x = e {y}
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» sequential command C = G ; G

{0y G {o'}  {¢} C{y}
{o} C{v}

» conditional command C = if bthen ( else G

{onb} G{yy  {oA-b} C{Y}

{¢} C{v}
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System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}
{0} C{¥'}

> Hoare triple derivable in all logicals models in which
implications in side condition are valid

if ¢/ =¢ and ¥ =7
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backward construction of derivation

» given Hoare triple {¢} C {¢},
“guess inference rule and guess assumptions”
generate Hoare triples from which we could infer {¢} C {4}
. and collect side conditions of inference rule (if any)
> repeat on generated Hoare triples
to generate new Hoare triples
until every Hoare triple is an axiom
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mechanize backward inference

» given Hoare triple {¢} C {¢},
from what Hoare triples could we have inferred it?
. using what inference rule?

> next:
go through each form of command C
(skip, update, seq, cond, while)
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backward inference

>
77

{0} skip {¢}
» derivation can use what axiom and what inference rule?
> axiom for skip

{0} skip {¢}
» ‘strengthen precondition, weaken postcondition’ inference rule

{¢} C{v}

G if ¢ = ¢ and ¥ — o)
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backward inference

77
{¢} skip {1}
» possible derivation sequence: axiom for (skip), followed by
weaking of postcondition

{¢} skip {¢}
{¢} skip {¢}

» side condition: ¢ — 1)

» possible derivation sequence:
axiom for (skip), followed by strengthening of precondition

{v} skip {v}
{¢} skip {}

» same side condition: ¢ — ¥
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Gyskp{g) " 07V

> old axiom & strengthening of precondition

> ¢ is a precondition for ¢ under skip
if and only if
¢ — 1 is valid

> 1) is the weakest precondition for i) under skip
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new axiom for update

m if ¢ — le/x]

» old axiom & strengthening of precondition

> ¢ is a precondition for ) under x := e
if and only if
¢ — Y[e/x] is valid

» 1[e/x] is the weakest precondition for 1) under x := e
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new rule for seq

» old rule:

{o} G {0} {0} G {¥}
{¢} G; G {¥}

> new rule:

{91} G {d2}  {¢2} G {¢}
{o} G G {v}

> let ¢p be the weakest precondition of ) under C; and
let ¢1 be the weakest precondition of ¢, under (3

»— P1

> ¢ is a precondition for ¢ under Ci; G
if and only if
¢ — ¢1 is valid

» the weakest precondition of 1 under C; ; (o is
the weakest precondition of
(the weakest precondition of i) under ()
under ¢y
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new rule for cond

> old rule:

fonby G{yy  {¢n—b} G{v}
{¢} if bthen G else &; {¢}

> new rule:

{o1} G{v}  {¢2} G {¥}
{¢} if bthen C; else &; {¢}

¢ — (0bVep1) and ¢ — (bV2)

> let ¢1 be the weakest precondition of ) under C; and
let ¢ be the weakest precondition of ¢ under G
> ¢ is a precondition for ¢ under if b then C; else C;
if and only if
¢ — ((0bV p1) AN (bV ¢2)) is valid
> the weakest precondition of ¢ under if b then C else C; is
the conjunction of =bV ¢1 and bV ¢9
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new rule for while

» old rule:

{0 A b} Co {6}
{6} while bdo {0} Co {0/ —b}

» new rule = old rule & strengthening & weakening

{0 A b} Go {6}
{67 while b do {0} Co {0}

¢—60 and OA—b—

» ¢ is a precondition for 1) under while b do {6} G
if and only if
¢ — 6 and @ A —b — ) are valid and {6 A b} Gy {0}

» 0 is the weakest precondition for ¢ under while b do {6} Gy
assuming
0 A —b — 1 is valid and
{0 A b} Co {0}
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weakest precondition wp(C, )

wp(skip, 1)) = 1)
wp(x = e, 1) = le/x]
wp(Cy 5 G, 9) = wp( Gy, wp( G, ¢))
wp(if b then C else G, 1) = (=bV 1) A (bV ¢2)

where
¢1 = wp(Cy, 1)
¢2 - Wp(C27 1/})

» wp(while b do {0} Co,v) =6

vV vV v v
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verification condition

» for command C of form: skip, update, seq, cond,
to check Hoare triple {¢} C {¢},

check validity of verification condition

¢ — wp(C, )

» for command C of form: while b do {6} G ,
to check Hoare triple {¢} C {¢},

check Hoare triple {0 A b} Co {6}
and check validity of two implications

¢ — 0
ON—-b—
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mechanization of correctness proof

» given a Hoare triple {¢} C {v},
» construct a backwards derivation

» derivation = tree of Hoare triples,
each new Hoare triple is an axiom (skip, update)
or it is an assumption in one of the inference rules (seq, cond,
while)

» inference rule instantiated for given precondition and given
postcondition, side condition:
precondition = weakest precondition

» derivation unique

» overall verification condition = set of side conditions
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verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,
» add one implication:

¢ — wp(C, )

» for command C of form: while b do {0} Cp ,
» add two implications:

¢ —0
ON—b—

and add verification condition for Hoare triple {6 A b} Co {6}
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Adequacy of Verification Condition

> let ® be the verification condition for {¢} C {¢}

> let [ be a set of assertions
(e.g., axioms for bounded integer arithmetic,
axioms for factorial function, ...)

M=o iff TF{¢} C{v}



