Hoare Calculus

Andreas Podelski

May 17, 2017

Loop Invariant, Invariant, Inductive Invariant

given while command C = while b do (,

» 0 is loop invariant if:

{01 b} Co {0}

Loop Invariant, Invariant, Inductive Invariant

given while command C = while b do (,

» 0 is loop invariant if:
{07 b} Co {0}
» given precondition ¢, 6 is invariant if:

{¢} skip {6}
{¢} if b then C else skip {0}
{¢} if bthen {Cy ; if bthen (else skip} else skip {0}

Loop Invariant, Invariant, Inductive Invariant

given while command C = while b do (,

» 0 is loop invariant if:
{07 b} Co {0}
» given precondition ¢, 6 is invariant if:

{¢} skip {6}
{¢} if b then C else skip {0}
{¢} if bthen {Cy ; if bthen (else skip} else skip {0}

» given precondition ¢, 6 is inductive invariant if:

{¢} skip {0}
{0 A b} Co {0}

Annotated Programs

» expression (where f maps into Val)

e = x| f(e,...

7en)

Annotated Programs

» expression (where f maps into Val)
e n= x| f(en,...,en)
» Boolean expression (where f maps into {T,F})

b = x| f(e,...,en)

Annotated Programs

» expression (where f maps into Val)
e n= x| f(en,...,en)

» Boolean expression (where f maps into {T,F})
b = x| f(e,...,en)

> assertion

¢, 0,0 = b[T[L[=¢|oVi|Ixg

Annotated Programs

» expression (where f maps into Val)
e n= x| f(en,...,en)
» Boolean expression (where f maps into {T,F})
b = x| f(e,...,en)
> assertion
6,0,0 5= b| T|L]|~0|6Ve|Ixd
» command

C == skip|x:=e| C; G |if bthen C; else (; |
while b do {0} C

Example: Factorial function

>

while i < ndo {f = fact(i— 1) Ai < n+1} {
f=Ffxi
i=i+1

}

{f = fact(n)}

Example: Factorial function

>

while i < ndo {f = fact(i— 1) Ai < n+1}{
f=Ffxi
i=i+1

}

{f = fact(n)}

» function symbol fact used in assertions ¢, 1,0
not used in commands C

Example: Factorial function

>

while i < ndo {f = fact(i— 1) Ai < n+1}{
f=Ffxi
i=i+1

}

{f = fact(n)}

» function symbol fact used in assertions ¢, 1,0
not used in commands C

> interpretation of function symbol fact in logical model for
integers (bounded or unbounded)

Example: Factorial function

>

while i < ndo {f = fact(i— 1) Ai < n+1}{
f=Ffxi
i=i+1
}
{f = fact(n)}
» function symbol fact used in assertions ¢, 1,0
not used in commands C
> interpretation of function symbol fact in logical model for
integers (bounded or unbounded)
> axioms added in set of assertions I’
fact(0) =1
Vn. n> 0 — fact(n) = n x fact(n — 1)

Loop Unfolding

» equivalence (proved using the semantics of programs)

while b do C; = if bthen {(; while b do Gy} else skip

Loop Unfolding

» equivalence (proved using the semantics of programs)
while b do C; = if bthen {(; while b do Gy} else skip

» number of unfoldings may be huge

Loop Unfolding

» equivalence (proved using the semantics of programs)
while b do C; = if bthen {(; while b do Gy} else skip

» number of unfoldings may be huge

» number of unfoldings statically not known

System #H (1)

» Hoare triple {¢} C {¢'} derivable in H if
exists a derivation using the axioms and inference rules of H

System #H (1)

» Hoare triple {¢} C {¢'} derivable in H if
exists a derivation using the axioms and inference rules of H

» skip
{¢} skip {¢}

System #H (1)

» Hoare triple {¢} C {¢'} derivable in H if
exists a derivation using the axioms and inference rules of H

» skip
{¢} skip {¢}

» assighment

{vle/x]} x = e {y}

System H (2)

» sequential command C = G ; G

{0} G {¢'} {¢'} C{¢}

{o} C{v}

System H (2)

» sequential command C = G ; G

{0y G {o'} {¢} C{y}
{o} C{v}

» conditional command C = if bthen (else G

{onb} G{yy {oA-b} C{Y}

{¢} C{v}

System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}

[0} C ('} if ¢/ =¢ and ¥ =7

System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}

[0} C ('} if ¢/ =¢ and ¥ =7

System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}
{0} C{¥'}

> Hoare triple derivable in all logicals models in which
implications in side condition are valid

if ¢/ =¢ and ¥ =7

Soundness of ‘H

» if {¢p} C {1} derivable in given logical model
then {¢} C {9} valid in the model

Soundness of ‘H

» if {¢p} C {1} derivable in given logical model
then {¢} C {9} valid in the model

» if {¢} C {¢} derivable from given set of assertions I
then {¢} C {¢} valid in all models in which T is valid

Soundness of ‘H

» if {¢p} C {1} derivable in given logical model
then {¢} C {9} valid in the model

» if {¢} C {¢} derivable from given set of assertions I
then {¢} C {¢} valid in all models in which T is valid

> inverse does not hold in general

Soundness of ‘H

» if {¢p} C {1} derivable in given logical model
then {¢} C {9} valid in the model

» if {¢} C {¢} derivable from given set of assertions I
then {¢} C {¢} valid in all models in which T is valid

> inverse does not hold in general

» derivability depends on annotation with loop invariants,
validity does not

Example: Factorial function

{n>0}

f.=1;

i=1;

while i < ndo {f = fact(i—1)ANi < n+1}{
f=Ffxi
i=i+1

¥

{f = fact(n)}

Adaptation

» {n =10} Fact {f = fact(n)} valid

Adaptation

» {n =10} Fact {f = fact(n)} valid
» derivable from {n > 0} Fact {f = fact(n)}

Adaptation

» {n =10} Fact {f = fact(n)} valid
» derivable from {n > 0} Fact {f = fact(n)}

> not derivable from
{n>0An=no} Fact {f = fact(n) A\n=ng}

Adaptation

» {n =10} Fact {f = fact(n)} valid
» derivable from {n > 0} Fact {f = fact(n)}

> not derivable from
{n>0An=no} Fact {f = fact(n) A\n=ng}

none of the implications in side conditions is valid

Adaptation

v

{n =10} Fact {f = fact(n)} valid
derivable from {n > 0} Fact {f = fact(n)}

not derivable from
{n>0An=no} Fact {f = fact(n) A\n=ng}

none of the implications in side conditions is valid

v

v

v

more complicated inference rule for ‘instantiating a Hoare
triple’ with auxiliary variables

Adaptation

v

{n =10} Fact {f = fact(n)} valid

derivable from {n > 0} Fact {f = fact(n)}

not derivable from

{n>0An=no} Fact {f = fact(n) A\n=ng}
none of the implications in side conditions is valid

more complicated inference rule for ‘instantiating a Hoare
triple’ with auxiliary variables

in practice, we will need adaptation only for procedure
contracts
which we will introduce later

