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» given precondition ¢, 6 is inductive invariant if:

{¢} skip {0}
{0 A b} Co {0}
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Annotated Programs

» expression (where f maps into Val)
e n= x| f(en,...,en)
» Boolean expression (where f maps into {T,F})
b = x| f(e,...,en)
> assertion
6,0,0 5= b| T|L]|~0|6Ve|Ixd
» command

C == skip|x:=e| C; G |if bthen C; else (; |
while b do {0} C
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Example: Factorial function

>

while i < ndo {f = fact(i— 1) Ai < n+1}{
f=Ffxi
i=i+1
}
{f = fact(n)}
» function symbol fact used in assertions ¢, 1,0
not used in commands C
> interpretation of function symbol fact in logical model for
integers (bounded or unbounded)
> axioms added in set of assertions I’
fact(0) =1
Vn. n> 0 — fact(n) = n x fact(n — 1)
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Loop Unfolding

» equivalence (proved using the semantics of programs)
while b do C; = if bthen {( ; while b do Gy} else skip

» number of unfoldings may be huge

» number of unfoldings statically not known
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» skip
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» assighment

{vle/x]} x = e {y}
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» sequential command C = G ; G

{0y G {o'}  {¢} C{y}
{o} C{v}

» conditional command C = if bthen ( else G

{onb} G{yy  {oA-b} C{Y}

{¢} C{v}



System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}




System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}

[0} C ('} if ¢/ =¢ and ¥ =7



System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}

[0} C ('} if ¢/ =¢ and ¥ =7



System H (3)

» while command C = while bdo {6} G

{0 A b} Go {0}
{0} C {0 A b}

» strengthen precondition, weaken postcondition

{o} C{Y}
{0} C{¥'}

> Hoare triple derivable in all logicals models in which
implications in side condition are valid

if ¢/ =¢ and ¥ =7
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Soundness of ‘H

» if {¢p} C {1} derivable in given logical model
then {¢} C {9} valid in the model

» if {¢} C {¢} derivable from given set of assertions I
then {¢} C {¢} valid in all models in which T is valid

> inverse does not hold in general

» derivability depends on annotation with loop invariants,
validity does not



Example: Factorial function

{n>0}

f.=1;

i=1;

while i < ndo {f = fact(i—1)ANi < n+1}{
f=Ffxi
i=i+1

¥

{f = fact(n)}
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Adaptation

v

{n =10} Fact {f = fact(n)} valid

derivable from {n > 0} Fact {f = fact(n)}

not derivable from

{n>0An=no} Fact {f = fact(n) A\n=ng}
none of the implications in side conditions is valid

more complicated inference rule for ‘instantiating a Hoare
triple’ with auxiliary variables

in practice, we will need adaptation only for procedure
contracts
which we will introduce later



