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Loop Invariant, Invariant, Inductive Invariant

given while command C ≡ while b do C0

I θ is loop invariant if:

{θ ∧ b} C0 {θ}

I given precondition φ, θ is invariant if:

{φ} skip {θ}
{φ} if b then C0 else skip {θ}
{φ} if b then {C0 ; if b then C0 else skip} else skip {θ}
. . .

I given precondition φ, θ is inductive invariant if:

{φ} skip {θ}
{θ ∧ b} C0 {θ}
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Annotated Programs

I expression (where f maps into Val)

e ::= x | f (e1, . . . , en)

I Boolean expression (where f maps into {T,F})

b ::= x | f (e1, . . . , en)

I assertion

φ, ψ, θ ::= b | > | ⊥ | ¬φ | φ ∨ ψ | ∃x .φ

I command

C ::= skip | x := e | C1;C2 | if b then C1 else C2 |
while b do {θ} C
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Example: Factorial function
I

{n ≥ 0}
f := 1;
i := 1;
while i ≤ n do {f = fact(i − 1) ∧ i ≤ n + 1} {

f := f × i
i := i + 1

}
{f = fact(n)}

I function symbol fact used in assertions φ, ψ, θ
not used in commands C

I interpretation of function symbol fact in logical model for
integers (bounded or unbounded)

I axioms added in set of assertions Γ

fact(0) = 1
∀n. n > 0→ fact(n) = n × fact(n − 1)
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Loop Unfolding

I equivalence (proved using the semantics of programs)

while b do C0 ≡ if b then {C0 ; while b do C0} else skip

I number of unfoldings may be huge

I number of unfoldings statically not known
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System H (1)

I Hoare triple {φ} C {ψ} derivable in H if
exists a derivation using the axioms and inference rules of H

I skip

{φ} skip {φ}
I assignment

{ψ[e/x ]} x := e {ψ}
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System H (2)

I sequential command C ≡ C1 ; C2

{φ} C1 {φ′} {φ′} C {ψ}
{φ} C {ψ}

I conditional command C ≡ if b then C1 else C2

{φ ∧ b} C1 {ψ} {φ ∧ ¬b} C {ψ}
{φ} C {ψ}
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System H (3)

I while command C ≡ while b do {θ} C0

{θ ∧ b} C0 {θ}
{θ} C {θ ∧ ¬b}

I strengthen precondition, weaken postcondition

{φ} C {ψ}
{φ′} C {ψ′}

if φ′ → φ and ψ → ψ′

I Hoare triple derivable in all logicals models in which
implications in side condition are valid
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Soundness of H

I if {φ} C {ψ} derivable in given logical model
then {φ} C {ψ} valid in the model

I if {φ} C {ψ} derivable from given set of assertions Γ
then {φ} C {ψ} valid in all models in which Γ is valid

I inverse does not hold in general

I derivability depends on annotation with loop invariants,
validity does not
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Adaptation

I {n = 10} Fact {f = fact(n)} valid

I derivable from {n ≥ 0} Fact {f = fact(n)}
I not derivable from
{n ≥ 0 ∧ n = n0} Fact {f = fact(n) ∧ n = n0}
none of the implications in side conditions is valid

I more complicated inference rule for ‘instantiating a Hoare
triple’ with auxiliary variables

I in practice, we will need adaptation only for procedure
contracts
which we will introduce later
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