Hoare Calculus

Andreas Podelski

May 17, 2017

Loop Invariant, Invariant, Inductive Invariant

given while command $C \equiv$ while b do C_{0}

- θ is loop invariant if:

$$
\{\theta \wedge b\} C_{0}\{\theta\}
$$

Loop Invariant, Invariant, Inductive Invariant

given while command $C \equiv$ while b do C_{0}

- θ is loop invariant if:

$$
\{\theta \wedge b\} C_{0}\{\theta\}
$$

- given precondition ϕ, θ is invariant if:
$\{\phi\}$ skip $\{\theta\}$
$\{\phi\}$ if b then C_{0} else skip $\{\theta\}$
$\{\phi\}$ if b then $\left\{C_{0}\right.$; if b then C_{0} else skip $\}$ else skip $\{\theta\}$

Loop Invariant, Invariant, Inductive Invariant

given while command $C \equiv$ while b do C_{0}

- θ is loop invariant if:

$$
\{\theta \wedge b\} C_{0}\{\theta\}
$$

- given precondition ϕ, θ is invariant if:
$\{\phi\}$ skip $\{\theta\}$
$\{\phi\}$ if b then C_{0} else skip $\{\theta\}$
$\{\phi\}$ if b then $\left\{C_{0}\right.$; if b then C_{0} else skip $\}$ else skip $\{\theta\}$
- given precondition ϕ, θ is inductive invariant if:

$$
\begin{aligned}
& \{\phi\} \text { skip }\{\theta\} \\
& \{\theta \wedge b\} C_{0}\{\theta\}
\end{aligned}
$$

Annotated Programs

- expression (where f maps into Val)

$$
e::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

Annotated Programs

- expression (where f maps into Val)

$$
e::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

- Boolean expression (where f maps into $\{\mathbf{T}, \mathbf{F}\}$)

$$
b::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

Annotated Programs

- expression (where f maps into Val)

$$
e::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

- Boolean expression (where f maps into $\{\mathbf{T}, \mathbf{F}\}$)

$$
b::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

- assertion

$$
\phi, \psi, \theta::=b|\top| \perp|\neg \phi| \phi \vee \psi \mid \exists x \cdot \phi
$$

Annotated Programs

- expression (where f maps into Val)

$$
e::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

- Boolean expression (where f maps into $\{\mathbf{T}, \mathbf{F}\}$)

$$
b::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

- assertion

$$
\phi, \psi, \theta::=b|\top| \perp|\neg \phi| \phi \vee \psi \mid \exists x \cdot \phi
$$

- command

$$
\begin{aligned}
C::= & \operatorname{skip}|x:=e| C_{1} ; C_{2} \mid \text { if } b \text { then } C_{1} \text { else } C_{2} \mid \\
& \text { while } b \text { do }\{\theta\} C
\end{aligned}
$$

Example: Factorial function

$$
\begin{aligned}
& \{n \geq 0\} \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{f=\operatorname{fact}(i-1) \wedge i \leq n+1\}\{ \\
& \quad \quad:=f \times i \\
& \quad i:=i+1 \\
& \left\{\begin{array}{l}
\text { }
\end{array}\right. \\
& \{f=\operatorname{fact}(n)\}
\end{aligned}
$$

Example: Factorial function

$$
\begin{aligned}
& \{n \geq 0\} \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{f=\operatorname{fact}(i-1) \wedge i \leq n+1\}\{ \\
& \quad \quad:=f \times i \\
& \quad i:=i+1 \\
& \left\{\begin{array}{l}
\text { }
\end{array}\right. \\
& \{f=\operatorname{fact}(n)\}
\end{aligned}
$$

- function symbol fact used in assertions ϕ, ψ, θ not used in commands C

Example: Factorial function

$$
\begin{aligned}
& \{n \geq 0\} \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{f=\operatorname{fact}(i-1) \wedge i \leq n+1\}\{ \\
& \quad \quad:=f \times i \\
& \quad i:=i+1 \\
& \} \quad \\
& \{f=\text { fact }(n)\}
\end{aligned}
$$

- function symbol fact used in assertions ϕ, ψ, θ not used in commands C
- interpretation of function symbol fact in logical model for integers (bounded or unbounded)

Example: Factorial function

$$
\begin{aligned}
& \{n \geq 0\} \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{f=\text { fact }(i-1) \wedge i \leq n+1\}\{ \\
& \quad \quad:=f \times i \\
& \quad i:=i+1 \\
& \} \quad \\
& \{f=\text { fact }(n)\}
\end{aligned}
$$

- function symbol fact used in assertions ϕ, ψ, θ not used in commands C
- interpretation of function symbol fact in logical model for integers (bounded or unbounded)
- axioms added in set of assertions 「

$$
\begin{aligned}
& \operatorname{fact}(0)=1 \\
& \forall n . \quad n>0 \rightarrow \operatorname{fact}(n)=n \times \operatorname{fact}(n-1)
\end{aligned}
$$

Loop Unfolding

- equivalence (proved using the semantics of programs)
while b do $C_{0} \equiv$ if b then $\left\{C_{0}\right.$; while b do $\left.C_{0}\right\}$ else skip

Loop Unfolding

- equivalence (proved using the semantics of programs) while b do $C_{0} \equiv$ if b then $\left\{C_{0}\right.$; while b do $\left.C_{0}\right\}$ else skip
- number of unfoldings may be huge

Loop Unfolding

- equivalence (proved using the semantics of programs)
while b do $C_{0} \equiv$ if b then $\left\{C_{0}\right.$; while b do $\left.C_{0}\right\}$ else skip
- number of unfoldings may be huge
- number of unfoldings statically not known

System $\mathcal{H}(1)$

- Hoare triple $\{\phi\} \subset\{\psi\}$ derivable in \mathcal{H} if exists a derivation using the axioms and inference rules of \mathcal{H}

System $\mathcal{H}(1)$

- Hoare triple $\{\phi\} \subset\{\psi\}$ derivable in \mathcal{H} if exists a derivation using the axioms and inference rules of \mathcal{H}
- skip

$$
\overline{\{\phi\} \mathbf{s k i p}\{\phi\}}
$$

System $\mathcal{H}(1)$

- Hoare triple $\{\phi\} \subset\{\psi\}$ derivable in \mathcal{H} if exists a derivation using the axioms and inference rules of \mathcal{H}
- skip

$$
\overline{\{\phi\} \mathbf{s k i p}\{\phi\}}
$$

- assignment

$$
\overline{\{\psi[e / x]\} x:=e\{\psi\}}
$$

System \mathcal{H} (2)

- sequential command $C \equiv C_{1} ; C_{2}$

$$
\frac{\{\phi\} C_{1}\left\{\phi^{\prime}\right\} \quad\left\{\phi^{\prime}\right\} \subset\{\psi\}}{\{\phi\} C\{\psi\}}
$$

System $\mathcal{H}(2)$

- sequential command $C \equiv C_{1} ; C_{2}$

$$
\frac{\{\phi\} C_{1}\left\{\phi^{\prime}\right\} \quad\left\{\phi^{\prime}\right\} \subset\{\psi\}}{\{\phi\} C\{\psi\}}
$$

- conditional command $C \equiv$ if b then C_{1} else C_{2}

$$
\frac{\{\phi \wedge b\} C_{1}\{\psi\} \quad\{\phi \wedge \neg b\} C\{\psi\}}{\{\phi\} \subset\{\psi\}}
$$

System \mathcal{H} (3)

- while command $C \equiv$ while b do $\{\theta\} C_{0}$

$$
\frac{\{\theta \wedge b\} C_{0}\{\theta\}}{\{\theta\} C\{\theta \wedge \neg b\}}
$$

System \mathcal{H} (3)

- while command $C \equiv$ while b do $\{\theta\} C_{0}$

$$
\frac{\{\theta \wedge b\} C_{0}\{\theta\}}{\{\theta\} C\{\theta \wedge \neg b\}}
$$

- strengthen precondition, weaken postcondition

$$
\frac{\{\phi\} C\{\psi\}}{\left\{\phi^{\prime}\right\} C\left\{\psi^{\prime}\right\}} \text { if } \phi^{\prime} \rightarrow \phi \text { and } \psi \rightarrow \psi^{\prime}
$$

System \mathcal{H} (3)

- while command $C \equiv$ while b do $\{\theta\} C_{0}$

$$
\frac{\{\theta \wedge b\} C_{0}\{\theta\}}{\{\theta\} C\{\theta \wedge \neg b\}}
$$

- strengthen precondition, weaken postcondition

$$
\frac{\{\phi\} C\{\psi\}}{\left\{\phi^{\prime}\right\} C\left\{\psi^{\prime}\right\}} \text { if } \phi^{\prime} \rightarrow \phi \text { and } \psi \rightarrow \psi^{\prime}
$$

System \mathcal{H} (3)

- while command $C \equiv$ while b do $\{\theta\} C_{0}$

$$
\frac{\{\theta \wedge b\} C_{0}\{\theta\}}{\{\theta\} C\{\theta \wedge \neg b\}}
$$

- strengthen precondition, weaken postcondition

$$
\frac{\{\phi\} C\{\psi\}}{\left\{\phi^{\prime}\right\} C\left\{\psi^{\prime}\right\}} \text { if } \phi^{\prime} \rightarrow \phi \text { and } \psi \rightarrow \psi^{\prime}
$$

- Hoare triple derivable in all logicals models in which implications in side condition are valid

Soundness of \mathcal{H}

- if $\{\phi\} \subset\{\psi\}$ derivable in given logical model then $\{\phi\} \subset\{\psi\}$ valid in the model

Soundness of \mathcal{H}

- if $\{\phi\} \subset\{\psi\}$ derivable in given logical model then $\{\phi\} \subset\{\psi\}$ valid in the model
- if $\{\phi\} \subset\{\psi\}$ derivable from given set of assertions Γ then $\{\phi\} \subset\{\psi\}$ valid in all models in which Γ is valid

Soundness of \mathcal{H}

- if $\{\phi\} \subset\{\psi\}$ derivable in given logical model then $\{\phi\} \subset\{\psi\}$ valid in the model
- if $\{\phi\} \subset\{\psi\}$ derivable from given set of assertions Γ then $\{\phi\} \subset\{\psi\}$ valid in all models in which Γ is valid
- inverse does not hold in general

Soundness of \mathcal{H}

- if $\{\phi\} \subset\{\psi\}$ derivable in given logical model then $\{\phi\} \subset\{\psi\}$ valid in the model
- if $\{\phi\} \subset\{\psi\}$ derivable from given set of assertions Γ then $\{\phi\} \subset\{\psi\}$ valid in all models in which Γ is valid
- inverse does not hold in general
- derivability depends on annotation with loop invariants, validity does not

Example: Factorial function

$$
\begin{aligned}
& \{n \geq 0\} \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{f=\operatorname{fact}(i-1) \wedge i \leq n+1\}\{ \\
& \quad f:=f \times i \\
& \quad i:=i+1 \\
& \{f=\operatorname{fact}(n)\}
\end{aligned}
$$

Adaptation

- $\{n=10\}$ Fact $\{f=\operatorname{fact}(n)\}$ valid

Adaptation

- $\{n=10\}$ Fact $\{f=$ fact $(n)\}$ valid
- derivable from $\{n \geq 0\}$ Fact $\{f=\operatorname{fact}(n)\}$

Adaptation

- $\{n=10\}$ Fact $\{f=$ fact $(n)\}$ valid
- derivable from $\{n \geq 0\}$ Fact $\{f=\operatorname{fact}(n)\}$
- not derivable from
$\left\{n \geq 0 \wedge n=n_{0}\right\}$ Fact $\left\{f=\operatorname{fact}(n) \wedge n=n_{0}\right\}$

Adaptation

- $\{n=10\}$ Fact $\{f=$ fact $(n)\}$ valid
- derivable from $\{n \geq 0\}$ Fact $\{f=\operatorname{fact}(n)\}$
- not derivable from
$\left\{n \geq 0 \wedge n=n_{0}\right\}$ Fact $\left\{f=\operatorname{fact}(n) \wedge n=n_{0}\right\}$
none of the implications in side conditions is valid

Adaptation

- $\{n=10\}$ Fact $\{f=$ fact $(n)\}$ valid
- derivable from $\{n \geq 0\}$ Fact $\{f=$ fact $(n)\}$
- not derivable from
$\left\{n \geq 0 \wedge n=n_{0}\right\}$ Fact $\left\{f=\operatorname{fact}(n) \wedge n=n_{0}\right\}$ none of the implications in side conditions is valid
- more complicated inference rule for 'instantiating a Hoare triple' with auxiliary variables

Adaptation

- $\{n=10\}$ Fact $\{f=$ fact $(n)\}$ valid
- derivable from $\{n \geq 0\}$ Fact $\{f=\operatorname{fact}(n)\}$
- not derivable from
$\left\{n \geq 0 \wedge n=n_{0}\right\}$ Fact $\left\{f=\operatorname{fact}(n) \wedge n=n_{0}\right\}$
none of the implications in side conditions is valid
- more complicated inference rule for 'instantiating a Hoare triple' with auxiliary variables
- in practice, we will need adaptation only for procedure contracts
which we will introduce later

