Hoare Logic

Andreas Podelski

May 16, 2017

Hoare logic

> introduced by Hoare in 1969
builds on first-order logic

Hoare logic

> introduced by Hoare in 1969
builds on first-order logic

> correctness specification = pre- and postcondition pair

Hoare logic

> introduced by Hoare in 1969
builds on first-order logic

> correctness specification = pre- and postcondition pair

» standard presentation of Hoare logic:
proof uses invariant for every loop in program

Hoare logic

> introduced by Hoare in 1969
builds on first-order logic

> correctness specification = pre- and postcondition pair
» standard presentation of Hoare logic:

proof uses invariant for every loop in program
> here:

invariants are given as part of correctness specification

Hoare logic

> introduced by Hoare in 1969
builds on first-order logic

> correctness specification = pre- and postcondition pair
» standard presentation of Hoare logic:

proof uses invariant for every loop in program
> here:

invariants are given as part of correctness specification

» correctness proof possible only if invariants are adequate for
pre- and postcondition pair

Programs

» (program) expression

e = x| f(e,...

where f maps into domain of values

7en)

Programs

» (program) expression

e = x| f(e,...

where f maps into domain of values

» Boolean expression

b = x| f(e,...

where f maps into Boolean domain

7en)

aen)

Programs

» (program) expression
e n= x| f(er,...,en)

where f maps into domain of values

» Boolean expression
b = x| f(e,...,en)

where f maps into Boolean domain

» command

C == skip | x=e | Ci ; G, | if b then C; else G, | while b do C

Semantics of Expression e

» state s = function from program variables to value,

s : Var — Val

Semantics of Expression e

» state s = function from program variables to value,
s : Var — Val

> program expression e in state s evaluates to value

[el(s) € Val

Semantics of Expression e

» state s = function from program variables to value,
s : Var — Val

> program expression e in state s evaluates to value
[el(s) € Val

» semantics of program expressions e
= function from set of states to set of values

Je] : States — Val

Semantics of Expression e

» state s = function from program variables to value,
s : Var — Val

> program expression e in state s evaluates to value
[el(s) € Val

» semantics of program expressions e
= function from set of states to set of values

Je] : States — Val

> interpretation of function symbol f in expression f(ey, ...

depends on logical first-order model
(“+" interpreted over model of unbounded integers or
in model for modulo arithmetic?)

Semantics of Boolean Expression b

» state s = function from program variables to values,

s : Var — Val

Semantics of Boolean Expression b

» state s = function from program variables to values,
s : Var — Val

» Boolean expression b in state s evaluates to Boolean truth
value

[6](s) € {T,F}

Semantics of Boolean Expression b

» state s = function from program variables to values,
s : Var — Val

» Boolean expression b in state s evaluates to Boolean truth
value

[6](s) € {T,F}

» semantics of Boolean expression b
= function from set of states to set of Boolean truth values

[b] : States — {T,F}

Semantics of Boolean Expression b

» state s = function from program variables to values,
s : Var — Val

» Boolean expression b in state s evaluates to Boolean truth
value

[6](s) € {T,F}

» semantics of Boolean expression b
= function from set of states to set of Boolean truth values

[b] : States — {T,F}

> evaluation of Boolean expression b depends on logical
first-order model
(“x < x+1" true in model of unbounded integers but
false in model for modulo arithmetic)

Semantics of Commands C (1)

» semantics of command C
= functions from set of states to set of states

[C| : States — States, s+ s

Semantics of Commands C (1)

» semantics of command C
= functions from set of states to set of states

[C| : States — States, s+ s

» execution of command C starting in state s ends in state s’

(C,s) ~ ¢

Semantics of Commands C (1)

» semantics of command C
= functions from set of states to set of states

[C| : States — States, s+ s
» execution of command C starting in state s ends in state s’

(C,s) ~ ¢

> execution of update statement
= update of function s : Var — Val

(x=e,s) ~ s’ where s'(x)

lel(s) and
s'(y)=s

(y) for x#y

Semantics of Commands C (1)

» semantics of command C
= functions from set of states to set of states

[C| : States — States, s+ s
» execution of command C starting in state s ends in state s’

(C,s) ~ ¢

> execution of update statement
= update of function s : Var — Val

(x=e,s) ~ s’ where s'(x)=]e|(s) and
s'(y) =s(y) for x#y

> execution of update depends on logical first-order model

Semantics of Commands C (2)

» execution of sequence of commands C = G ; &
= execution of first command C; followed by execution of
second command G

(C,s) ~s" if (Ci,s)~ s and (Cy,s')~~s"

Semantics of Commands C (2)

» execution of sequence of commands C = G ; &
= execution of first command C; followed by execution of
second command G

(C,s)~s" if (Ci,8)~ s and (G,s')~s"
> execution of command skip does not change state

(skip,s) ~ s

(“empty sequence of commands")

Semantics of Commands C (3)

» execution of conditional command C = if b then C; else G
= execution of then-command C; if expression b evaluates to
true

(C,s)~s" if |b](s)=T and (Ci,s)~ s

Semantics of Commands C (3)

» execution of conditional command C = if b then C; else G
= execution of then-command C; if expression b evaluates to
true

(C,s)~s" if |b](s)=T and (Ci,s)~ s

» execution of conditional command C = if b then (; else G
= execution of then-command G, if expression b evaluates to
false

(C,s)~s" if |b](s)=F and (Gp,s)~ s

Semantics of Commands C (3)

» execution of conditional command C = if b then C; else G
= execution of then-command C; if expression b evaluates to
true

(C,s)~s" if |b](s)=T and (Ci,s)~ s

» execution of conditional command C = if b then (; else G
= execution of then-command G, if expression b evaluates to
false

(C,s)~s" if |b](s)=F and (Gp,s)~ s

» execution of conditional depends on logical first-order model

Semantics of Commands C (4)

» execution of while command C = while bdo (
= execution of body (y followed by execution of while
command C if expression b evaluates to true

(C,s)~s" if [b](s)=T and (Co,s)~ s and (C,s')~s"

Semantics of Commands C (4)

» execution of while command C = while bdo (
= execution of body (y followed by execution of while
command C if expression b evaluates to true

(C,s)~s" if [b](s)=T and (Co,s)~ s and (C,s')~s"

» execution of while command C = while bdo
= execution of skip if expression b evaluates to false

(C,s)~s if |b](s)=F

Semantics of Commands C (4)

» execution of while command C = while bdo (
= execution of body (y followed by execution of while
command C if expression b evaluates to true

(C,s)~s" if [b](s)=T and (Co,s)~ s and (C,s')~s"

» execution of while command C = while bdo
= execution of skip if expression b evaluates to false

(C,s)~s if |b](s)=F

» execution of while loop depends on logical first-order model

Hoare Triple {¢} C {v}

» {¢} C {2} valid in given logical first-order model if

Hoare Triple {¢} C {v}

» {¢} C {2} valid in given logical first-order model if
for all states s
if [#](s)=T and

Hoare Triple {¢} C {v}

» {¢} C {2} valid in given logical first-order model if
for all states s
if [#](s)=T and
if (C,s) ~ s then

Hoare Triple {¢} C {v}

» {¢} C {2} valid in given logical first-order model if
for all states s

if [#](s)=T and
if (C,s) ~ s then
[01(s) =T
» {¢} C {+} valid if valid in every logical first-order model
» [= {¢} C{y}if {¢} C {¢} valid in every logical first-order

model of set of assertions I

Variables in Hoare Triple {¢} C {¢}

» program variables: occur in commands in program C

Variables in Hoare Triple {¢} C {¢}

» program variables: occur in commands in program C
may occur (free) in ¢ and

» auxiliary variables: occur (free) in ¢ and/or ¢
but do not occur in commands in program C

Variables in Hoare Triple {¢} C {¢}

» program variables: occur in commands in program C
may occur (free) in ¢ and

» auxiliary variables: occur (free) in ¢ and/or ¢
but do not occur in commands in program C

> needed, e.g., for specification of in-place sort program

if x <y thenskipelse z=y ; y=x ; x=z

Variables in Hoare Triple {¢} C {¢}

» program variables: occur in commands in program C
may occur (free) in ¢ and

» auxiliary variables: occur (free) in ¢ and/or ¢
but do not occur in commands in program C

> needed, e.g., for specification of in-place sort program
if x <y thenskipelse z=y ; y=x ; x=z

> take precondition ¢ = x=x Ay =Y A X0 > Yo
and postcondition 1 = x =yg Ay = Xp

